
4th Dimension®

Language Reference
Windows and Mac OS Versions

4th Dimension
by

Laurent Ribardière
Adapted by Bernard Gallet

__

4th Dimension Language Reference
Version 6.0 for Windows® and Mac™ OS

Copyright © 1985-1998 ACI SA/ACI US, Inc.
All rights reserved
__

The Software described in this manual is governed by the grant of license in the ACI
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the ACI
Product Line License Agreement.

4th Dimension, 4D, the 4D logo, 4D Server, ACI, and the ACI logo are registered
trademarks of ACI SA.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac, Power Macintosh, Laser Writer, Image Writer, ResEdit, and
QuickTime are trademarks or registered trademarks of Apple Computer, Inc.
All other referenced trade names are trademarks or registered trademarks of their
respective holders.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the ACI Product Line License Agreement, which is
provided in electronic form with the Software. Please read the ACI Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1. Introduction 31
Preface 33
Introduction 35
Building a 4D Application 45

2. Language Definition 59
Introduction to the 4D Language 61
Data Types 66
Constants 71
Variables 75
System Variables 80
Pointers 83
Identifiers 92
Control Flow 103
If...Else...End if 105
Case of...Else...End case 107
While...End while 110
Repeat...Until 111
For...End for 112
Methods 118
Project Methods 123

3. 4D Environment 131
Application type 133
Version type 134
Application version 135
Compiled application 137
PLATFORM PROPERTIES 138
Application file 142
Structure file 143
Data file 144
ACI folder 146
DATA SEGMENT LIST 148
ADD DATA SEGMENT 150

4th Dimension Language Reference 3

FLUSH BUFFERS 151
QUIT 4D 152
SELECT LOG FILE 154

4. Arrays 157
Arrays 159
Creating Arrays 160
Arrays and Form Objects 163
Grouped Scrollable Areas 171
Arrays and the 4D Language 174
Arrays and Pointers 176
Using the element zero of an array 178
Two-dimensional Arrays 180
Arrays and Memory 182
ARRAY INTEGER 184
ARRAY LONGINT 185
ARRAY REAL 186
ARRAY STRING 187
ARRAY TEXT 189
ARRAY DATE 190
ARRAY BOOLEAN 191
ARRAY PICTURE 193
ARRAY POINTER 195
Size of array 197
SORT ARRAY 198
Find in array 200
INSERT ELEMENT 202
DELETE ELEMENT 203
COPY ARRAY 204
LIST TO ARRAY 205
ARRAY TO LIST 206
SELECTION TO ARRAY 208
SELECTION RANGE TO ARRAY 210
ARRAY TO SELECTION 213
DISTINCT VALUES 215

4 4th Dimension Language Reference

5. BLOB 217
BLOB Commands 219
SET BLOB SIZE 222
BLOB size 223
COMPRESS BLOB 224
EXPAND BLOB 226
BLOB PROPERTIES 228
DOCUMENT TO BLOB 230
BLOB TO DOCUMENT 232
VARIABLE TO BLOB 234
BLOB TO VARIABLE 237
LIST TO BLOB 238
BLOB to list 240
INTEGER TO BLOB 242
LONGINT TO BLOB 244
REAL TO BLOB 246
TEXT TO BLOB 249
BLOB to integer 251
BLOB to longint 253
BLOB to real 255
BLOB to text 257
INSERT IN BLOB 259
DELETE FROM BLOB 260
COPY BLOB 261

6. Boolean 263
Boolean Commands 265
True 266
False 267
Not 268

7. Clipboard 269
APPEND TO CLIPBOARD 271
CLEAR CLIPBOARD 277

4th Dimension Language Reference 5

GET CLIPBOARD 278
GET PICTURE FROM CLIPBOARD 280
Get text from clipboard 281
SET PICTURE TO CLIPBOARD 283
SET TEXT TO CLIPBOARD 284
Test clipboard 285

8. Communications 287
SET CHANNEL 289
SET TIMEOUT 293
USE ASCII MAP 294
SEND PACKET 295
RECEIVE PACKET 297
RECEIVE BUFFER 300
SEND VARIABLE 302
RECEIVE VARIABLE 303
SEND RECORD 304
RECEIVE RECORD 305

9. Compiler 311
Compiler Commands 313
C_BLOB 316
C_BOOLEAN 317
C_DATE 318
C_GRAPH 319
C_INTEGER 320
C_LONGINT 321
C_PICTURE 322
C_POINTER 323
C_REAL 324
C_STRING 325
C_TEXT 326
C_TIME 327
IDLE 328

6 4th Dimension Language Reference

10. Database Methods 329
Database Methods 331
On Startup Database Method 333
On Exit Database Method 335

11. Data Entry 341
ADD RECORD 343
MODIFY RECORD 345
ADD SUBRECORD 347
MODIFY SUBRECORD 349
DIALOG 350
Modified 352
Old 354

12. Date and Time 355
Current date 357
Day of 359
Month of 360
Year of 362
Day number 363
Add to date 365
Date 366
Current time 367
Time string 368
Time 369
Tickcount 370
Milliseconds 371
SET DEFAULT CENTURY 372

13. Debugging 375
Why a Debugger? 377
Syntax Error Window 381

4th Dimension Language Reference 7

Debugger 383
Watch Pane 388
Call Chain Pane 393
Custom Watch Pane 394
Source Code Pane 397
Break Points 401
Break List Window 403
Debugger Shortcuts 409
Tracing a Process not visible or not executing code 411

14. Drag and Drop 413
Drag and Drop 415
Drop position 422
DRAG AND DROP PROPERTIES 423

15. Entry Control 429
ACCEPT 431
CANCEL 432
Keystroke 433
FILTER KEYSTROKE 438
GOTO AREA 444
REJECT 445

16. Form Events 447
Form event 449
Before 467
During 468
After 469
In header 470
In break 471
In footer 472
Activated 473
Deactivated 474
Outside call 475

8 4th Dimension Language Reference

17. Form Pages 477
Form Pages 479
FIRST PAGE 480
LAST PAGE 481
NEXT PAGE 482
PREVIOUS PAGE 483
GOTO PAGE 484
Current form page 485

18. Graphs 487
GRAPH 489
GRAPH SETTINGS 493
GRAPH TABLE 495

19. Hierarchical Lists 499
Load list 501
SAVE LIST 503
New list 504
Copy list 505
CLEAR LIST 506
Count list items 508
Is a list 510
REDRAW LIST 511
SET LIST PROPERTIES 512
GET LIST PROPERTIES 519
SORT LIST 521
APPEND TO LIST 523
INSERT LIST ITEM 529
SET LIST ITEM PROPERTIES 530
GET LIST ITEM PROPERTIES 532
List item position 533
List item parent 534
DELETE LIST ITEM 536
GET LIST ITEM 537

4th Dimension Language Reference 9

SET LIST ITEM 539
Selected list item 541
SELECT LIST ITEM 543
SELECT LIST ITEM BY REFERENCE 544

20. Import and Export 545
IMPORT TEXT 547
EXPORT TEXT 549
IMPORT SYLK 551
EXPORT SYLK 553
IMPORT DIF 555
EXPORT DIF 557

21. Interruptions 559
ON EVENT CALL 561
FILTER EVENT 565
ON ERR CALL 566
ABORT 570

22. Language 571
Count parameters 573
Type 575
Self 578
RESOLVE POINTER 579
Nil 581
Is a variable 582
Get pointer 583
EXECUTE 584
Command name 585
Commands by Name 588
Commands by Number 605
TRACE 621
NO TRACE 623

10 4th Dimension Language Reference

23. Math 625
Abs 627
Int 628
Dec 629
Round 630
Trunc 631
Random 632
Mod 633
Square root 634
Log 635
Exp 636
Sin 637
Cos 638
Tan 639
Arctan 640
SET REAL COMPARISON LEVEL 641
Display of Real Numbers 642

24. Menus 645
Managing Menus 647
MENU BAR 650
HIDE MENU BAR 652
SHOW MENU BAR 653
SET ABOUT 654
Menu selected 655
Count menus 657
Count menu items 658
Get menu title 659
Get menu item 660
SET MENU ITEM 661
Get menu item style 662
SET MENU ITEM STYLE 663
Get menu item mark 664
SET MENU ITEM MARK 665
Get menu item key 666
SET MENU ITEM KEY 667

4th Dimension Language Reference 11

DISABLE MENU ITEM 668
ENABLE MENU ITEM 669
APPEND MENU ITEM 670
INSERT MENU ITEM 672
DELETE MENU ITEM 673

25. Messages 675
MESSAGES OFF 677
MESSAGES ON 678
ALERT 679
CONFIRM 682
Request 685
MESSAGE 687
GOTO XY 691

26. Named Selections 693
Named Selections 695
COPY NAMED SELECTION 697
CUT NAMED SELECTION 699
USE NAMED SELECTION 700
CLEAR NAMED SELECTION 701

27. Object Properties 703
Object Properties 705
FONT 707
FONT SIZE 708
FONT STYLE 709
ENABLE BUTTON 711
DISABLE BUTTON 712
BUTTON TEXT 714
SET FORMAT 716
SET FILTER 718
SET CHOICE LIST 720
SET ENTERABLE 721

12 4th Dimension Language Reference

SET VISIBLE 722
SET COLOR 724
SET RGB COLOR 726

28. Obsolete commands 731
SEARCH BY INDEX 733
SORT BY INDEX 734
ON SERIAL PORT CALL 735

29. On a Series 737
On a Series 739
Sum 740
Average 741
Min 742
Max 743
Std deviation 744
Variance 745
Sum squares 746

30. Operators 747
Operators 749
String Operators 751
Numeric Operators 752
Date Operators 753
Time Operators 754
Comparison Operators 756
Logical Operators 761
Picture Operators 762
Bitwise Operators 771

4th Dimension Language Reference 13

31. Printing 775
REPORT 777
PRINT LABEL 779
PRINT SELECTION 782
Printing page 784
BREAK LEVEL 785
ACCUMULATE 786
Subtotal 787
Level 790
PRINT RECORD 792
PAGE SETUP 793
PRINT SETTINGS 795
SET PRINT PREVIEW 796
PRINT FORM 797
PAGE BREAK 799

32. Pictures 801
Pictures 803
COMPRESS PICTURE 806
LOAD COMPRESS PICTURE FROM FILE 807
COMPRESS PICTURE FILE 808
SAVE PICTURE TO FILE 809
Picture size 810
PICTURE PROPERTIES 811
PICTURE LIBRARY LIST 812
GET PICTURE FROM LIBRARY 814
SET PICTURE TO LIBRARY 815
REMOVE PICTURE FROM LIBRARY 818

33. Process (Communications) 819
Semaphore 821
CLEAR SEMAPHORE 823
CALL PROCESS 824
GET PROCESS VARIABLE 825

14 4th Dimension Language Reference

SET PROCESS VARIABLE 828
VARIABLE TO VARIABLE 831

34. Process (User Interface) 833
HIDE PROCESS 835
SHOW PROCESS 836
BRING TO FRONT 837
Frontmost process 838

35. Processes 839
Processes 841
New process 845
Execute on server 848
DELAY PROCESS 852
PAUSE PROCESS 853
RESUME PROCESS 854
Current process 855
Process state 856
PROCESS PROPERTIES 858
Process number 860
Count users 862
Count tasks 863
Count user processes 864

36. Queries 865
QUERY BY EXAMPLE 867
QUERY 868
QUERY SELECTION 874
QUERY BY FORMULA 875
QUERY SELECTION BY FORMULA 877
SET QUERY DESTINATION 878
SET QUERY LIMIT 884
ORDER BY 885
ORDER BY FORMULA 888

4th Dimension Language Reference 15

37. Record Locking 891
Record Locking 893
READ WRITE 900
READ ONLY 901
Read only state 902
LOAD RECORD 903
UNLOAD RECORD 904
Locked 905
LOCKED ATTRIBUTES 906

38. Records 907
DISPLAY RECORD 909
CREATE RECORD 910
DUPLICATE RECORD 911
Modified record 912
SAVE RECORD 913
DELETE RECORD 914
Records in table 915
Record number 916
GOTO RECORD 917
Sequence number 918
About Record Numbers 920
PUSH RECORD 923
POP RECORD 924
Using the Record Stack 925

39. Relations 927
Relations 929
AUTOMATIC RELATIONS 932
RELATE ONE 933
RELATE MANY 935
CREATE RELATED ONE 937
SAVE RELATED ONE 938
OLD RELATED ONE 939

16 4th Dimension Language Reference

SAVE OLD RELATED ONE 940
OLD RELATED MANY 941
RELATE ONE SELECTION 942
RELATE MANY SELECTION 943

40. Resources 945
Resources 947
Resources and 4D Insider: an Example 955
Open resource file 962
Create resource file 966
CLOSE RESOURCE FILE 968
RESOURCE TYPE LIST 969
RESOURCE LIST 971
STRING LIST TO ARRAY 973
ARRAY TO STRING LIST 974
Get indexed string 976
Get string resource 977
SET STRING RESOURCE 978
Get text resource 979
SET TEXT RESOURCE 980
GET PICTURE RESOURCE 981
SET PICTURE RESOURCE 982
GET ICON RESOURCE 983
GET RESOURCE 985
SET RESOURCE 987
Get resource name 989
SET RESOURCE NAME 991
Get resource properties 992
SET RESOURCE PROPERTIES 993
DELETE RESOURCE 996

41. Selection 999
ALL RECORDS 1001
Records in selection 1002
DELETE SELECTION 1003
Selected record number 1005

4th Dimension Language Reference 17

GOTO SELECTED RECORD 1006
FIRST RECORD 1008
NEXT RECORD 1009
LAST RECORD 1010
PREVIOUS RECORD 1011
Before selection 1012
End selection 1014
DISPLAY SELECTION 1016
MODIFY SELECTION 1019
APPLY TO SELECTION 1020
REDUCE SELECTION 1022
SCAN INDEX 1024
ONE RECORD SELECT 1025

42. Sets 1027
Sets 1029
CREATE EMPTY SET 1034
CREATE SET 1035
USE SET 1036
ADD TO SET 1037
REMOVE FROM SET 1038
CLEAR SET 1039
Is in set 1040
Records in set 1041
SAVE SET 1042
LOAD SET 1043
DIFFERENCE 1044
INTERSECTION 1046
UNION 1048
COPY SET 1050

43. String 1051
String 1053
Num 1056
Position 1058
Substring 1059

18 4th Dimension Language Reference

Length 1061
Ascii 1062
Char 1064
Character Reference Symbols 1065
Uppercase 1068
Lowercase 1069
Change string 1070
Insert string 1071
Delete string 1072
Replace string 1073
Mac to Win 1074
Win to Mac 1075
Mac to ISO 1076
ISO to Mac 1079

44. Structure Access 1081
Structure Access 1083
Count tables 1084
Count fields 1085
Table name 1086
Field name 1087
Table 1088
Field 1089
GET FIELD PROPERTIES 1090
SET INDEX 1092

45. Subrecords 1093
CREATE SUBRECORD 1095
DELETE SUBRECORD 1096
ALL SUBRECORDS 1098
Records in subselection 1099
APPLY TO SUBSELECTION 1100
FIRST SUBRECORD 1101
LAST SUBRECORD 1102
NEXT SUBRECORD 1103
PREVIOUS SUBRECORD 1104

4th Dimension Language Reference 19

Before subselection 1105
End subselection 1106
ORDER SUBRECORDS BY 1107
QUERY SUBRECORDS 1108

46. System Documents 1109
System Documents 1111
Open document 1117
Create document 1119
Append document 1121
CLOSE DOCUMENT 1122
COPY DOCUMENT 1123
MOVE DOCUMENT 1124
DELETE DOCUMENT 1125
Test path name 1126
CREATE FOLDER 1127
VOLUME LIST 1128
VOLUME ATTRIBUTES 1129
FOLDER LIST 1131
DOCUMENT LIST 1132
Document type 1133
SET DOCUMENT TYPE 1134
MAP FILE TYPES 1135
Document creator 1137
SET DOCUMENT CREATOR 1138
GET DOCUMENT PROPERTIES 1139
SET DOCUMENT PROPERTIES 1145
Get document size 1146
SET DOCUMENT SIZE 1147
Get document position 1148
SET DOCUMENT POSITION 1149

47. System Environment 1151
Screen height 1153
Screen width 1154
Count screens 1155

20 4th Dimension Language Reference

SCREEN COORDINATES 1156
SCREEN DEPTH 1157
SET SCREEN DEPTH 1159
Menu bar screen 1160
Menu bar height 1161
FONT LIST 1162
Font name 1163
Font number 1164
System folder 1165
Temporary folder 1166
Current machine 1167
Current machine owner 1168
Gestalt 1169

48. Table 1171
DEFAULT TABLE 1173
Current default table 1175
INPUT FORM 1176
OUTPUT FORM 1178
Current form table 1179

49. Transactions 1181
Using Transactions 1183
START TRANSACTION 1188
VALIDATE TRANSACTION 1189
CANCEL TRANSACTION 1190
In transaction 1191

50. Triggers 1193
Triggers 1195
Database event 1206
Trigger level 1208
TRIGGER PROPERTIES 1209

4th Dimension Language Reference 21

51. User Interface 1211
BEEP 1213
PLAY 1214
Get platform interface 1216
SET PLATFORM INTERFACE 1217
SET TABLE TITLES 1219
SET FIELD TITLES 1223
Shift down 1225
Caps lock down 1226
Windows Ctrl down 1227
Windows Alt down 1228
Macintosh command down 1229
Macintosh option down 1230
Macintosh control down 1231
GET MOUSE 1232
Pop up menu 1233
POST KEY 1236
POST CLICK 1237
POST EVENT 1238
GET HIGHLIGHT 1240
HIGHLIGHT TEXT 1241
SET CURSOR 1242
Last object 1243
REDRAW 1244
INVERT BACKGROUND 1245

52. Users and Groups 1247
EDIT ACCESS 1249
CHANGE ACCESS 1250
CHANGE PASSWORD 1251
Validate password 1252
Current user 1253
User in group 1254
DELETE USER 1255
Is user deleted 1256
GET USER LIST 1257

22 4th Dimension Language Reference

GET USER PROPERTIES 1258
Set user properties 1260
GET GROUP LIST 1262
GET GROUP PROPERTIES 1263
Set group properties 1265

53. Variables 1267
SAVE VARIABLES 1269
LOAD VARIABLES 1270
CLEAR VARIABLE 1271
Undefined 1273

54. Web Server 1275
Web Services, Overview 1277
Web Services, Configuration 1280
Web Services, Your First Time (Part I) 1286
Web Services, Your First Time (Part II) 1292
Web Services, Web Connection Processes 1298
On Web Connection Database Method 1305
Web Services, HTML Support 1311
Web Services, HTML and Javascript Encapsulation 1317
The Text Parameter Passed to 4D Methods Called via URLs 1329
START WEB SERVER 1333
STOP WEB SERVER 1334
SET WEB TIMEOUT 1335
SET WEB DISPLAY LIMITS 1336
SET HTML ROOT 1339
SEND HTML FILE 1340
CHANGE WEB LICENSE 1343

55. Windows 1345
Managing Windows 1347
Open window 1348
Window Types 1352

4th Dimension Language Reference 23

Open external window 1357
SHOW WINDOW 1359
HIDE WINDOW 1360
CLOSE WINDOW 1362
ERASE WINDOW 1363
REDRAW WINDOW 1364
DRAG WINDOW 1365
Get window title 1367
SET WINDOW TITLE 1368
HIDE TOOL BAR 1369
SHOW TOOL BAR 1370
WINDOW LIST 1371
Window kind 1372
Window process 1373
GET WINDOW RECT 1374
SET WINDOW RECT 1375
Frontmost window 1376
Next window 1377
Find window 1378
MAXIMIZE WINDOW 1379
MINIMIZE WINDOW 1381

56. Error Codes 1383
Syntax Errors 1385
Database Engine Errors 1388
Network Components Errors 1391
OS File Manager Errors 1392
OS Memory Manager Errors 1393
OS Printing Manager Errors 1394
OS Resource Manager Errors 1395
SANE NaN Errors 1396
OS Sound Manager Errors 1397
OS Serial Ports Manager Errors 1398
MacOS System Errors 1399
Testing the locked status of the data file 1400

24 4th Dimension Language Reference

57. ASCII Codes 1403
ASCII Codes 1405
ASCII Codes 0..63 1406
ASCII Codes 64..127 1407
ASCII Codes 128..191 1408
ASCII Codes 192..255 1412
Function Key Codes 1416

58. Command Syntax 1417
Command Syntax by Name 1419

Constants 1437
4D Environment 1439
ASCII Codes 1440
BLOB 1442
Clipboard 1443
Colors 1444
Communications 1445
Database Engine 1446
Database Events 1447
Date Display Formats 1448
Days and Months 1449
Events (Modifiers) 1450
Events (What) 1451
Expressions 1452
Field and Variable Types 1453
Find window 1454
Font Styles 1455
Form Events 1456
Function Keys 1457
Hierarchical Lists 1458
ISO Latin Character Entities 1459
Math 1461
Open window 1462

4th Dimension Language Reference 25

Picture Display Formats 1463
Platform Interfaces 1464
Platform Properties 1465
Process state 1466
Query Destinations 1467
Resources Properties 1468
SCREEN DEPTH 1469
SET RGB COLOR 1470
Standard System Signatures 1471
TCP Port Numbers 1472
Test path name 1473
Time Display Formats 1474
Window kind 1475

Command Index 1477

26 4th Dimension Language Reference

4th Dimension Language Reference 27

28 4th Dimension Language Reference

4th Dimension Language Reference 29

30 4th Dimension Language Reference

1 Introduction

4th Dimension Language Reference 31

32 4th Dimension Language Reference

Preface Introduction

version 6.0
__

4th Dimension has its own programming language. This built-in language, consisting of
over 500 commands, makes 4th Dimension a powerful development tool for database
applications on desktop computers. You can use the 4th Dimension language for many
different tasks—from performing simple calculations to creating complex custom user
interfaces. For example, you can:

• Programmatically access any of the editors available to the user in the User
environment,
• Create and print complex reports and labels with the information from the database,
• Communicate with other devices,
• Manage documents,
• Import and export data between 4th Dimension databases and other applications,
• Incorporate procedures written in other languages into the 4th Dimension
programming language.

The flexibility and power of the 4th Dimension programming language make it the ideal
tool for all levels of users and developers to accomplish a complete range of information
management tasks. Novice users can quickly perform calculations. Experienced users
without programming experience can customize their databases. Experienced developers
can use this powerful programming language to add sophisticated features and capabilities
to their databases, including file transfer and communications. Developers with
programming experience in other languages can add their own commands to the
4th Dimension language.

The 4th Dimension programming language is expanded when any of the 4th Dimension
modules are added to the application. Each module includes language commands that are
specific to the capabilities they provide.

4th Dimension Language Reference 33

About the Manuals
The manuals described here provide a guide to the features of both 4th Dimension and
4D Server. The only exception is the 4D Server Reference, which describes features exclusive
to 4D Server and is included only in the 4D Server documentation package.

• The Language Reference is a guide to using the 4th Dimension language. Use this manual
to learn how to customize your database by incorporating 4th Dimension commands and
functions.
• The Design Reference provides detailed descriptions of the operations you can perform in
the Design environment to create forms for managing data.
• The User Reference provides a description of the User environment, in which users enter
and manipulate data in forms.
• The Discover 4D manual leads you through example lessons in which you create and use
a 4th Dimension database. These examples provide hands-on experience and help you
become familiar with the concepts and features of 4th Dimension and 4D Server.
• The 4D Server Reference, which is included only in the 4D Server package, is a guide to
managing multi-user databases with 4D Server.

About this Manual
This manual describes the 4th Dimension language. It assumes that you are familiar with
terms such as table, field, and form. Before you read this manual, you should:

• Use the Discover 4D manual to work through the database example.
• Begin creating your own databases, referring to the Design Reference manual when
necessary.
• Be comfortable with managing your database in the User environment. See the User
Reference manual for more information on the User environment.

Where to go from here?
If you read this manual for the first time, read the section Introduction.

34 4th Dimension Language Reference

Introduction Introduction

version 6.0
__

This topic introduces you to the 4th Dimension programming language. The following
topics are discussed:

• What the language is and what it can do for you,
• How you will use methods,
• How to develop an application with 4th Dimension.

These topics are covered here in general terms; they are covered in greater detail in other
sections.

What is a Language?
__

The 4th Dimension language is not very different from the spoken language we use every
day. It is a form of communication used to express ideas, inform, and instruct. Like a
spoken language, 4th Dimension has its own vocabulary, grammar, and syntax; you use it
to tell 4th Dimension how to manage your database and data.

You do not need to know everything in the language in order to work effectively with
4th Dimension. In order to speak, you do not need to know the entire English language;
in fact, you can have a small vocabulary and still be quite eloquent. The 4th Dimension
language is much the same—you only need to know a small part of the language to
become productive, and you can learn the rest as the need arises.

Why Use a Language?
__

At first it may seem that there is little need for a programming language in 4th
Dimension. The Design and User environments provide flexible tools, which require no
programming to perform a wide variety of data management tasks. Fundamental tasks,
such as data entry, queries, sorting, and reporting are handled with ease. In fact, many
extra capabilities are available, such as data validation, data entry aids, graphing, and label
generation.

4th Dimension Language Reference 35

Then why do we need a 4th Dimension language? Here are some of its uses:

• Automate repetitive tasks: These tasks include data modification, generation of complex
reports, and unattended completion of long series of operations.
• Control the user interface: You can manage windows and menus, and control forms
and interface objects.
• Perform sophisticated data management: These tasks include transaction processing,
complex data validation, multi-user management, sets, and named selection operations.
• Control the computer: You can control serial port communications, document
management, and error management.
• Create applications: You can create easy-to-use, customized databases that use the
Runtime environment.
• Add functionality to the built-in 4D Web Services: Create dynamic HTML pages in
addition to those automatically translated from forms by 4D.

The language lets you take complete control over the design and operation of your
database. While the User environment gives you powerful “generic” tools, the language
lets you customize your database to whatever degree you require.

Taking Control of Your Data
__

The 4th Dimension language lets you take complete control of your data in a powerful
and elegant manner. The language is easy enough for a beginner, and sophisticated
enough for an experienced application developer. It provides smooth transitions from
built-in database functions to a completely customized database.

The commands in the 4th Dimension language provide access to the User environment
editors, with which you are already familiar. For example, when you use the QUERY
command, you are presented with the Query Editor. Using this language command is
almost as easy as choosing the Query command from the Queries menu, but the QUERY
command is even more useful. You can tell the QUERY command to search for explicitly
described data. For example, QUERY ([People];[People]Last Name="Smith") will find all the
people named Smith in your database.

The 4th Dimension language is very powerful—one command often replaces hundreds or
even thousands of lines of code written in traditional computer languages. Surprisingly
enough, with this power comes simplicity—commands have plain English names. For
example, to perform a query, you use the QUERY command; to add a new record, you use
the ADD RECORD command.

The language is designed for you to easily accomplish almost any task. Adding a record,
sorting records, searching for data, and similar operations are specified with simple and
direct commands. But the language can also control the serial ports, read disk documents,
control sophisticated transaction processing, and much more.

36 4th Dimension Language Reference

The 4th Dimension language accomplishes even the most sophisticated tasks with relative
simplicity. Performing these tasks without using the language would be unimaginable for
many.

Even with the language’s powerful commands, some tasks can be complex and difficult. A
tool by itself does not make a task possible; the task itself may be challenging and the
tool can only ease the process. For example, a word processor makes writing a book faster
and easier, but it will not write the book for you. Using the 4th Dimension language will
make the process of managing your data easier and will allow you to approach
complicated tasks with confidence.

Is it a “Traditional” Computer Language?
__

If you are familiar with traditional computer languages, this section may be of interest. If
not, you may want to skip it.

The 4th Dimension language is not a traditional computer language. It is one of the most
innovative and flexible languages available on a computer today. It is designed to work
the way you do, and not the other way around.

To use traditional languages, you must do extensive planning. In fact, planning is one of
the major steps in development. 4th Dimension allows you to start using the language at
any time and in any part of your database. You may start by adding a method to a form,
then later add a few more methods. As your database becomes more sophisticated, you
might add a project method controlled by a menu. You can use as little or as much of the
language as you want. It is not “all or nothing,” as is the case with many other databases.

Traditional languages force you to define and pre-declare objects in formal syntactic
terms. In 4th Dimension, you simply create an object, such as a button, and use it.
4th Dimension automatically manages the object for you. For example, to use a button,
you draw it on a form and name it. When the user clicks the button, the language
automatically notifies your methods.

Traditional languages are often rigid and inflexible, requiring commands to be entered in
a very formal and restrictive style. The 4th Dimension language breaks with tradition,
and the benefits are yours.

4th Dimension Language Reference 37

Methods are the Gateway to the Language
__

A method is a series of instructions that causes 4th Dimension to perform a task. Each
line of instruction in a method is called a statement. Each statement is composed of parts
of the language.

Because you have already worked through the Discover 4D tutorials (you did go through
Discover 4D, didn’t you?), you have already written and used methods.

You can create five types of methods with 4th Dimension:

• Object Methods: Usually short methods used to control form objects.
• Form Methods: Manage the display or printing of a form.
• Table Methods/Triggers: Used to enforce the rules of your database.
• Project methods: Methods that are available for use throughout your database. For
example, methods that can be attached to menus.
• Database methods: Execute initializations or special actions when a database is opened
or closed, or when a Web browser connects to your database published as a Web Server on
Internet an Intranet.

The following sections introduce each of these method types and give you a feel for how
you can use them to automate your database.

Getting started with object methods
Any form object that can perform an action (that is, any active object) can have a
method associated with it. An object method monitors and manages the active object
during data entry and printing. A object method is bound to its active object even when
the object is copied and pasted. This allows you to create reusable libraries of scripted
objects. The object method takes control exactly when needed.

Object methods are the primary tools for managing the user interface, which is the
doorway to your database. The user interface consists of the procedures and conventions
by which a computer communicates with the user. The goal is to make the user interface
of your database as simple and easy to use as possible. The user interface should make
interaction with the computer a pleasant process, one that the user enjoys or does not
even notice.

38 4th Dimension Language Reference

There are two basic types of active objects in a form:
• Those for entering, displaying, and storing data; such as fields and subfields
• Those for control; such as enterable areas, buttons, scrollable areas, hierarchical lists, and
meters

4th Dimension enables you to build classic forms, such as the one shown here:

You can also build forms with multiple graphic controls, such as this one:

4th Dimension Language Reference 39

You can even build forms that incorporate a graphical flair limited only by your
imagination:

Whatever your style in building forms, all active objects have built-in aids, like range
checking and entry filters for data entry areas, and automatic actions for controls, menus,
and buttons. Always use these aids before adding object methods. The built-in aids are
similar to methods in that they remain associated with the active object and are active
only when the active object is being used. You will typically use a combination of built-in
aids and object methods to control the user interface.

An object method associated with an active object used for data entry typically performs a
data-management task specific to the field or variable. The method can perform data
validation, data formatting, or calculations. It may even get related information from
other files. Some of these tasks can, of course, also be performed with the built-in data
entry aids for objects. Use object methods when the task is too complex for the built-in
data entry aids to manage. For more information about the built-in data entry aids, refer
to the 4th Dimension Design Reference.

Object methods are also associated with active objects used for control, such as buttons.
Active objects used for control are essential to navigating within your database. Buttons
allow you to move from record to record, move to different forms, and add and delete
data. These active objects simplify the use of a database and reduce the time required to
learn it. Buttons also have built-in aids and, as with data entry, you should use these built-
in aids before adding methods. Object methods enable you to add actions that are not
built-in, to your controls.

40 4th Dimension Language Reference

For example, the following window is the object method for a button that, when clicked,
displays the Query editor.

As you become more proficient with scripts, you will find that you can create libraries of
objects with associated methods. You can copy and paste these objects and their methods
between forms, tables, and databases. You can even keep them in the Clipbook
(Windows) or Scrapbook (Macintosh), ready to be used when you need them.

Controlling forms with form methods
In the same way that object methods are associated with the active objects in a form, a
form method is associated with a form. Each form can have one form method. A form is
the means through which you can enter, view, and print your data. Forms allow you to
present the data to the user in different ways. Through the use of forms, you can create
attractive and easy-to-use data entry screens and printed reports. A form method monitors
and manages the use of an individual form both for data entry and for printing.

Form methods manage forms at a higher level than do object methods. Object methods
are activated only when the object is used, whereas a form method is activated when
anything in the form is used. Form methods are typically used to control the interaction
between the different objects and the form as a whole.

As forms are used in so many different ways, it is informative to monitor what is
happening while your form is in use. You use the various form events for this purpose.
They tell you what is currently happening with the form. Each type of event (i.e., clicks,
double-clicks, keystrokes...) enables or disables the execution of the form method as well
as the object method of each object of the form.

For more information about form, objects, events and methods, see the section Form
event.

4th Dimension Language Reference 41

Enforcing the rules of your database using the table methods/triggers
A Trigger is attached to a table; for this reason, it is also called a Table Method. Triggers are
automatically invoked by the 4D database engine each you manipulate the records of a
table (Add, Delete, Modify and Load). Triggers are methods that can prevent “illegal”
operations with the records of your database. For example, in an invoicing system, you
can prevent anyone from adding an invoice without specifying the customer to whom
the invoice is billed. Triggers are a very powerful tool to restrict operations on a table as
well as to prevent accidental data loss or tampering. You can write very simple triggers,
then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

Using project method throughout the database
Unlike object methods, form methods, and triggers, which are all associated with a
particular object, form, or table, project methods are available for use throughout your
database. Project methods are reusable, and available for use by any other method. If you
need to repeat a task, you do not have to write identical methods for each case. You can
call project methods wherever you need them—from other project methods or from
object or form methods. When you call a project method, it acts as if you had written the
method at the location where you called it. Project methods called from other method are
often referred to as “subroutines.”

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu is chosen. You can think of the menu command as calling the project
method.

Handling working sessions with database methods
In the same way object and form methods are invoked when events occur in a form,
there are methods associated with the database which are invoked when a working
session event occurs. These are the database methods. For example, each time you open a
database, you may want to initialize some variables that will be used during the whole
working session. To do so, you use the On Startup Database Method, automatically
executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

42 4th Dimension Language Reference

Developing Your Database
__

Development is the process of customizing a database using the language and other built-
in tools.

By simply creating a database, you have already taken the first steps to using the
language. All the parts of your database—the tables and fields, the forms and their objects,
and the menus—are tied to the language. The 4th Dimension language “knows” about all
of these parts of your database.

Perhaps your first use of the language is to add a method to a form object in order to
control data entry. Later, you might add a form method to control the display of your
form. As the database becomes more complex, you can add a menu bar with project
methods to completely customize your database.

As with other aspects of 4th Dimension, development is a very flexible process. There is
no formal path to take during development—you can develop in a manner with which
you are comfortable. There are, of course, some general patterns in the process.

• Implementation: Implement your design in the Design environment.
• Testing: You try out the design in the User environment and perhaps stay there to use
your customized database.
• Usage: When your database is fully customized, you use it in the Custom Menus
environment.
• Corrections: If you find errors, you return to the Design environment to fix them.

Special development support tools, hidden until needed, are built into 4th Dimension. As
you use the language more frequently, you will find that these tools facilitate the
development process. For example, the Method Editor catches typing errors and formats
your work; the Interpreter (the engine that runs the language) catches errors in syntax
and shows you where and what they are; and the Debugger lets you monitor the
execution of your methods to catch errors in design.

4th Dimension Language Reference 43

Building Applications
__

By now you are familiar with the general uses of a database—data entry, searching,
sorting, and reporting. You have performed these tasks in the User environment, using
the built-in menus and editors.

As you use a database, you perform some sequences of tasks repeatedly. For example, in a
database of personal contacts, you might search for your business associates, order them
by last name, and print a specific report each time information about them is changed.
These tasks may not seem difficult, but they can certainly be time-consuming after you
have done them 20 times. In addition, if you don’t use the database for a couple of weeks,
you may return to find that the steps used to generate the report are not so fresh in your
mind. The steps in methods are chained together, so a single command automatically
performs all the tasks linked to it. Consequently, you do not have to worry about the
specific steps.

Applications have custom menus and perform tasks that are specific to the needs of the
person using your database. An application is composed of all the pieces of your database:
the structure, the forms, the object, form and project methods, the menus, and the
passwords.

You can use 4D Compiler to compile your databases and create stand-alone Windows and
Macintosh applications. Compiling databases increases the execution speed of the
language, protects your databases, and allows you to create applications that are
completely independent. It also checks the syntax and the types of variables in methods
for consistency.

An application can be as simple as a single menu that lets you enter people’s names and
print a report, or as complex as an invoicing, inventory, and control system. There are no
limits to the uses of database applications. Typically, an application grows from a database
used in the User environment to a database controlled completely by custom menus.

Where to go from here?
• Developing applications can be as simple or complex as you like. For a quick overview
about building a simple 4D application, see the section Building a 4D application.
• If you are new to 4D, refer to the Language Definition sections to learn about the basics
of the 4D language: start with Introduction to the 4D Language.

44 4th Dimension Language Reference

Building a 4D Application Introduction

version 6.0
__

An application is a database designed to fill a specific need. It has a user interface designed
specifically to facilitate its use. The tasks that an application performs are limited to those
appropriate for its purpose. Creating applications with 4th Dimension is smoother and
easier than with traditional programming. 4th Dimension can be used to create a variety
of applications, including:

• An invoice system
• An inventory control system
• An accounting system
• A payroll system
• A personnel system
• A customer tracking system
• A database shared over the Internet or an Intranet

It is possible that a single application could even contain all of these systems. Applications
like these are typical uses of databases. In addition, the tools in 4th Dimension allow you
to create innovative applications, such as:

• A document tracking system
• A graphic image management system
• A catalog publishing application
• A serial device control and monitoring system
• An electronic mail system (E-mail)
• A multi-user scheduling system
• A list such as a menu list, video collection, or music collection

An application typically starts as a database used in the User environment. The database
“evolves” into an application as it is customized. What differentiates an application is that
the systems required to manage the database are hidden from the user. Database
management is automated, and users use menus to perform specific tasks.

When you use a 4th Dimension database in the User environment, you must know the
steps to take to achieve a result. In an application, you use the Custom Menus
environment, in which you need to manage all the aspects that are automatic in the User
Environment.

4th Dimension Language Reference 45

These include:

•Table Navigation: The Choose Table/Form dialog box and List of Tables window are not
available to the user. You can use menu commands and methods to control navigation
between tables.
• Menus: In the Custom Menus environment, you only have the default File menu with
the Quit menu command, Edit menu, and the Help menu (Windows only) or the Apple
menu (Macintosh only). If the application requires more menus, you have to create and
manage them using 4D methods.
• Editors: The editors, such as the Query and Order By editors, are no longer automatically
available in the Custom Menus environment. If you want to use them in the Custom
Menus environment, you have to call them using 4D methods.

The following sections include examples showing how the language can automate the use
of a database.

Custom Menus: an Example
__

Custom Menus are the primary interface in an application. They make it easier for users
to learn and use a database. Creating custom menus is very simple—you associate
methods with each menu command (also called menu items) in the Menu editor.

“The User's Perspective” section describes what happens when the user chooses a menu
command. Next, “Behind the Scenes” describes the design work that made it happen.
Although the example is simple, it should be apparent how custom menus make the
database easier to use and learn. Rather than the “generic” tools and menu commands in
the User environment, the user sees only things that are appropriate to his or her needs.

46 4th Dimension Language Reference

The User’s Perspective
The user chooses a menu item called New from the People menu to add a new person to
the database.

The Input form for the People table is displayed.

4th Dimension Language Reference 47

The user enters the person’s first name and then tabs to the next field.

The user enters the person’s last name and then tabs to the next field.

48 4th Dimension Language Reference

The user sees that the last name has been converted to uppercase.

The user finishes entering the record and clicks the validation button (the last button in
the vertical row of buttons).

Another blank record appears, and the user clicks the Cancel button (the one with the
“X”) to terminate the “data entry loop.” The user is returned to the menu bar.

4th Dimension Language Reference 49

Behind the Scenes
The menu bar was created in the Design environment, using the Menu Bar Editor.

The menu item New has a project method named New Person associated with it. This
method was created in the Design environment, using the Method editor.

When the user chooses this menu item, the New Person method executes:

Repeat
ADD RECORD([People])

Until (OK=0)

50 4th Dimension Language Reference

The Repeat...Until loop with an ADD RECORD command within the loop acts just like the
New Record menu item in the User environment. It displays the input form to the user,
so that he or she can add a new record. When the user saves the record, another new
blank record appears. This ADD RECORD loop continues to execute until the user clicks
the Cancel button.

When a record is entered, the following occurs:
• There is no method for the First Name field, so nothing executes.
• There is a method for the Last Name field. This Object Method was created in the Design
environment, using the Form and Method editors. The method executes:

Last Name:=Uppercase(Last Name)

This line converts the Last Name field to uppercase characters.

After a record has been entered, when the user clicks the Cancel button for the next one,
the OK variable is set to zero, thus ending the execution of the ADD RECORD loop.

As there are no more statements to execute, the New Person method stops executing and
control returns to the menu bar.

Comparing an Automated Task with the Actions to be performed in the User
environment
__

Let’s compare the way a task is performed in the User environment and the way the same
task is performed using the language. The task is a common one:

• Find a group of records
• Sort them
• Print a report

The next section, “Using a Database in the User Environment,” displays the tasks
performed in the User environment.

The following section, “Using the Built-in Editors within the Custom Menus
environment,” displays the same tasks performed in an application.

Note that although both methods perform the same task, the steps in the second section
are automated using the language.

4th Dimension Language Reference 51

Using a database in the User environment
The user chooses Query from the Queries menu.

The Query editor is displayed.

The user enters the criteria and clicks the Query button. The search is performed.

52 4th Dimension Language Reference

The user chooses Order by from the Queries menu.

The Order By editor is displayed.

The user enters the criteria and clicks the Sort button. The sort is performed.

Then, to print the records, these additional steps are required:
• The user chooses Print from the File menu.
• The Choose Print Form dialog box is displayed, because users need to know which form
to print.
• The Printing dialog boxes are displayed. The user chooses the settings, and the report is
printed.

4th Dimension Language Reference 53

Using the built-in editors within the Custom Menus environment
Let’s examine how this can be performed in the Custom Menus environment.

The User chooses Report from the People menu.

Even at this point, using an application is easier for the users—they did not need to know
that querying is the first step!

A method called My Report is attached to the menu command; it looks like this:

QUERY ([People])
ORDER BY ([People])
OUTPUT FORM ([People]; "Report")
PRINT SELECTION ([People])

The first line is executed:

QUERY ([People])

The Query editor is displayed.

The user enters the criteria and clicks the Query button. The query is performed.

The second line of the My Report method is executed:

ORDER BY ([People])

Note that the user did not need to know that ordering the records was the next step.

54 4th Dimension Language Reference

The Order By Editor is displayed.

The user enters the criteria and clicks the Sort button. The sort is performed.

The third line of the My Report method is executed:

OUTPUT FORM ([People]; "Report")

Once again, the user did not need to know what to do next; the method takes care of
that.

The final line of the My Report method is executed:

PRINT SELECTION ([People])

The Printing dialog boxes are displayed. The User chooses the settings, and the report is
printed.

4th Dimension Language Reference 55

Automating the Application Further
__

The same commands used in the previous example can be used to further automate the
database.

Let’s take a look at the new version of the My Report method.

The user chooses Report from the People menu. A method called My Report2 is attached
to the menu command. It looks like this:

QUERY([People];[People]Company="Acme")
ORDER BY([People]; [People]Last Name;>;[People]First Name;>)
OUTPUT FORM([People];"Report")
PRINT SELECTION([People];*)

The first line is executed:

QUERY([People];[People]Company="Acme")

The Query editor is not displayed. Instead, the query is specified and performed by the
QUERY command. The user does not need to do anything.

The second line of the My Report2 method is executed:

ORDER BY([People];[People]Last Name;>;[People]First Name;>)

The Order By editor is not displayed, and the sort is immediately performed. Once again,
no user actions are required.

The final lines of the My Report2 method are executed:

OUTPUT FORM ([People]; "Report")
PRINT SELECTION ([People]; *)

The Printing dialog boxes are not displayed. The PRINT SELECTION command accepts an
optional asterisk (*) parameter that instructs the command to use the print settings that
were in effect when the report form was created. The report is printed.

This additional automation saved the user from having to enter options in three dialog
boxes. Here are the benefits :
• The query is automatically performed: users may select wrong criteria when making a
query.
• The sort is automatically performed: users may select wrong criteria when defining a
sort.
• The printing is automatically performed: users may select the wrong form to print.

56 4th Dimension Language Reference

Tools for Developing 4D Applications
__

As you develop a 4D application, you will discover many capabilities that you did not
notice when you started. You can even augment the standard version of 4D by adding
other tools and plug-ins to your 4D development environment.

Development tools
ACI provides several tools that can be used for developing applications. These tools help
you move objects from one database to another, compile your databases, and check your
database syntactically. These tools include:

• 4D Insider allows you to cross-reference your 4th Dimension databases. You can use it to
view and print methods, variables, commands, externals, structures, lists, and forms. The
cross-referencing utility tells you where each of these objects is used throughout your
database. It also helps you to move objects like tables, forms, methods, menu bars, lists,
packages, and styles from one database to another.

• 4D Compiler translates your methods and scripts into assembly-level instructions. This
increases the execution speed of your databases, checks the consistency of the code, and
detects logical and syntactical conflicts. Furthermore, it protects your database from being
viewed or modified, deliberately or inadvertently.

4D Plug-ins
You can extend the capabilities of your 4D applications by adding professional Plug-ins to
your 4D development environment.

ACI provides the following Productivity Plug-ins:

• 4D Write: Word-processor
• 4D Calc: Spreadsheet
• 4D Draw: Graphical drawing program

ACI also provides the following Connectivity Plug-ins:

• 4D ODBC: Connectivity via ODBC
• 4D ORACLE: Connectivity with ORACLE databases
• 4D SQL SERVER: Connectivity with SYBASE SQL Server and Microsoft SQL Server
• 4D Open: Connectivity (from 4D to 4D) for building distributed 4D information
systems.

4th Dimension Language Reference 57

For more information, contact ACI or its Partners. Visit our Web Sites:

USA and International http://www.acius.com
France and International http://www.aci.fr
Japan and Asia http://www.aci.co.jp

The 4D community and third party tools
There is a very active worldwide 4D community, composed of User Groups, Electronic
Forums, and ACI Partners. ACI Partners produce Third Party Tools, such as Area List Pro
from Foresight Technology, Inc. (http://www.fsti.com).

Browse your 4D CD—it contains demos and information from ACI Partners. Find out
about them on the Web. Subscribe to Dimensions magazine (Mark Yelich, Publisher,
myelichcps@aol.com).

The 4D community offers access to tips and tricks, solutions, information, and additional
tools that will save you time and energy, and increase your productivity.

58 4th Dimension Language Reference

2 Language Definition

4th Dimension Language Reference 59

60 4th Dimension Language Reference

Introduction to the 4D Language Language Definition

version 6.0
__

The 4th Dimension language is made up of various components that help you perform
tasks and manage your data.

• Data types: Classifications of data in a database. See discussion in this section as well as
the detailed discussion in the section Data Types.
• Variables: Temporary storage places for data in memory. See detailed discussion in the
section Variables.
• Operators: Symbols that perform a calculation between two values. See discussion in this
section as well as the detailed discussion in the section Operators and its subsections.
• Expressions: Combinations of other components that result in a value. See discussion in
this section.
• Commands: Built-in instructions to perform an action. All 4D commands, such as ADD
RECORD, are described in this manual, grouped by theme; when necessary, the theme is
preceded by an introductory section. You can use 4D Plug-ins to add new commands to
your 4D development environment. For example, once you have added the 4D Write
Plug-in to your 4D system, the 4D Write commands become available for creating and
manipulating word-processing documents.
• Methods: Instructions that you write using all parts of the language listed here. See
discussion in the section Methods and its subsections.

This section introduces Data Types, Operators, and Expressions. For the other components,
refer to the sections cited above.

In addition:
• Language components, such as variables, have names called Identifiers. For a detailed
discussion about identifiers and the rules for naming objects, refer to the section
Identifiers.
• To learn more about array variables, refer to the section Arrays.
• To learn more about BLOB variables, refer to the section BLOB commands.
• If you plan to compile your database, refer to the section Compiler Commands as well as
the 4D Compiler Reference Guide.

4th Dimension Language Reference 61

Data Types
__

In the language, the various types of data that can be stored in a 4th Dimension database
are referred to as data types. There are seven basic data types: string, numeric, date, time,
Boolean, picture, and pointer.

• String: A series of characters, such as “Hello there”. Alpha and Text fields, and string and
text variables, are of the string data type.
• Numeric: Numbers, such as 2 or 1,000.67. Integer, Long Integer, and Real fields and
variables are of the numeric data type.
• Date: Calendar dates, such as 1/20/89. Date fields and variables are of the date data type.
• Time: Times, including hours, minutes, and seconds, such as 1:00:00 or 4:35:30 PM.
Time fields and variables are of the time data type.
• Boolean: Logical values of TRUE or FALSE. Boolean fields and variables are of the
Boolean data type.
• Picture: Picture fields and variables are of the picture data type.
• Pointer: A special type of data used in advanced programming. Pointer variables are of
the pointer data type. There is no corresponding field type.

Note that in the list of data types, the string and numeric data types are associated with
more than one type of field. When data is put into a field, the language automatically
converts the data to the correct type for the field. For example, if an integer field is used,
its data is automatically treated as numeric. In other words, you need not worry about
mixing similar field types when using the language; it will manage them for you.

However, when using the language it is important that you do not mix different data
types. In the same way that it makes no sense to store “ABC” in a Date field, it makes no
sense to put “ABC” in a variable used for dates. In most cases, 4th Dimension is very
tolerant and will try to make sense of what you are doing. For example, if you add a
number to a date, 4th Dimension will assume that you want to add that number of days
to the date, but if you try to add a string to a date, 4th Dimension will tell you that the
operation cannot work.

There are cases in which you need to store data as one type and use it as another type. The
language contains a full complement of commands that let you convert from one data
type to another. For example, you may need to create a part number that starts with a
number and ends with characters such as “abc”. In this case, you might write:

[Products]Part Number:=String(Number)+"abc"

If Number is 17, then [Products]Part Number will get the string “17abc”.

The data types are fully defined in the section Data Types.

62 4th Dimension Language Reference

Operators
__

When you use the language, it is rare that you will simply want a piece of data. It is more
likely that you will want to do something to or with that data. You perform such
calculations with operators. Operators, in general, take two pieces of data and perform an
operation on them that results in a new piece of data. You are already familiar with many
operators. For example, 1 + 2 uses the addition (or plus sign) operator to add two numbers
together, and the result is 3. This table shows some familiar numeric operators:

Operator Operation Example
+ Addition 1 + 2 results in 3
– Subtraction 3 – 2 results in 1
* Multiplication 2 * 3 results in 6
/ Division 6 / 2 results in 3

Numeric operators are just one type of operator available to you. 4th Dimension supports
many different types of data, such as numbers, text, dates, and pictures, so there are
operators that perform operations on these different data types.

The same symbols are often used for different operations, depending on the data type. For
example, the plus sign (+) performs different operations with different data:

Data Type Operation Example
Number Addition 1 + 2 adds the numbers and results in 3
String Concatenation “Hello ” + “there” concatenates (joins together)

the strings and results in “Hello there”
Date and Number Date addition !1/1/1989! + 20 adds 20 days to the date

January 1, 1989, and results in the date
January 21, 1989

The operators are fully defined in the section Operators and its subsections.

Expressions
__

Simply put, expressions return a value. In fact, when using the 4th Dimension language,
you use expressions all the time and tend to think of them only in terms of the value
they represent. Expressions are also sometimes referred to as formulas.

Expressions are made up of almost all the other parts of the language: commands,
operators, variables, and fields. You use expressions to build statements (lines of code),
which in turn are used to build methods. The language uses expressions wherever it needs
a piece of data.

4th Dimension Language Reference 63

Expressions rarely “stand alone.” There are only a few places in 4th Dimension where an
expression can be used by itself:
• Query by Formula dialog box in the User environment
• Debugger where the value of expressions can be checked
• Apply Formula dialog box
• Quick Report editor as a formula for a column

An expression can simply be a constant, such as the number 4 or the string “Hello.” As
the name implies, a constant’s value never changes. It is when operators are introduced
that expressions start to get interesting. In preceding sections you have already seen
expressions that use operators. For example, 4 + 2 is an expression that uses the addition
operator to add two numbers together and return the result 6.

You refer to an expression by the data type it returns. There are seven expression types:
• String expression
• Numeric expression (also referred to as number)
• Date expression
• Time expression
• Boolean expression
• Picture expression
• Pointer expression

The following table gives examples of each of the seven types of expressions.

Expression Type Explanation
“Hello” String The word Hello is a string constant,

indicated by the double quotation marks.
“Hello ” + “there” String Two strings, “Hello ” and “there”,

are added together (concatenated)
with the string concatenation operator (+).
The string “Hello there” is returned.

“Mr. ” + [People]Name String Two strings are concatenated:
the string “Mr. ” and the current value
of the Name field in the People table.
If the field contains “Smith”, the expression
returns “Mr. Smith”.

Uppercase (“smith”) String This expression uses “Uppercase”,
a command from the language,
to convert the string “smith” to uppercase.
It returns “SMITH”.

4 Number This is a number constant, 4.
4 * 2 Number Two numbers, 4 and 2, are multiplied

using the multiplication operator (*).
The result is the number 8.

64 4th Dimension Language Reference

My Button Number This is the name of a button.
It returns the current value of the button:
1 if it was clicked, 0 if not.

!1/25/97! Date This is a date constant for the date 1/25/97
(January 25, 1997).

Current date + 30 Date This is a date expression that uses
the command “Current date” to get today’s

date.
It adds 30 days to today’s date and returns
the new date.

?8:05:30? Time This is a time constant that represents 8 hours,
5 minutes, and 30 seconds.

?2:03:04? + ?1:02:03? Time This expression adds two times together and
returns the time 3:05:07.

True Boolean This command returns the Boolean value TRUE.
10 # 20 Boolean This is a logical comparison between two
numbers.

The number sign (#) means “is not equal to”.
Since 10 “is not equal to” 20, the expression
returns TRUE.

“ABC” = “XYZ” Boolean This is a logical comparison between two
strings.

They are not equal, so the expression returns
FALSE.
My Picture + 50 Picture This expression takes the picture in My
Picture,

moves it 50 pixels to the right, and returns
the resulting picture.

->[People]Name Pointer This expression returns a pointer to the field
called [People]Name.

Table (1) Pointer This is a command that returns a pointer to
the first table.

See Also
Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

4th Dimension Language Reference 65

Data Types Language Definition

version 6.0
__

4th Dimension fields, variables, and expressions can be of the following data types:

Data Type Field Variable Expression
String (see note 1) Yes Yes Yes
Number (see note 2) Yes Yes Yes
Date Yes Yes Yes
Time Yes Yes Yes
Boolean Yes Yes Yes
Picture Yes Yes Yes
Pointer No Yes Yes
BLOB (see note 3) Yes Yes No
Array (see note 4) No Yes No
Subtable Yes No No
Undefined No Yes Yes

Notes
1. String includes alphanumeric field, fixed length variable, and text field or variable.
2. Number includes Real, Integer, and Long Integer field and variable.
3. BLOB is an acronym for Binary Large OBject. For more information about BLOBs, see
the section BLOB Commands.
4. Array includes all types of arrays. For more information, see the section Arrays.

String
__

String is a generic term that stands for:
• Alphanumeric field
• Fixed length variable
• Text field or variable
• Any string or text expression

A string is composed of characters. Each character can be any of the 256 ASCII codes. For
more information about ASCII codes and how 4D handles them in a cross-platform
environment, see the section ASCII Codes.

66 4th Dimension Language Reference

• An Alphanumeric field may contain from 0 to 80 characters (limit depends on the field
definition).
• A Fixed length variable may contain from 0 to 255 (limit depends on the variable
declaration).
• A Text field, variable, or expression may contain from 0 to 32,000 characters.

You can assign a string to a text field and vice-versa; 4D does the conversion, truncating
if necessary. You can mix string and text in an expression.

Note: In the 4D Language Reference, both string and text parameters in command
descriptions are denoted as String, except when marked otherwise.

Number
__

Number is a generic term that stands for:
• Real Field, variable or expression
• Integer field, variable or expression
• Long Integer field, variable or expression

The range for the Real data type is ±1.7e±308 (15 digits)
The range for the Integer data type (2-byte Integer) is -32,768..32,766 (2^15..(2^15))
The range for the Long Integer data type (4-byte Integer) is -2^31..(2^31)-1

You can assign any Number data type to another; 4D does the conversion, truncating or
rounding if necessary. However, when values are out of range, the conversion will not
return a valid value. You can mix Number data types in expressions.

Note: In the 4D Language Reference, no matter the actual data type, the Real, Integer, and
Long Integer parameters in command descriptions are denoted as Number, except when
marked otherwise.

Date
__

• A Date field, variable or expression can be in the range of 1/1/100 to 12/31/32,767.
• Using the US English version of 4D, a date is ordered month/day/year.
• If a year is given as two digits, it is assumed to be in the 1900’s (unless this default was
changed using the command SET DEFAULT CENTURY).

Note: In the 4D Language Reference, Date parameters in command descriptions are
denoted as Date, except when marked otherwise.

4th Dimension Language Reference 67

Time
__

• A Time field, variable or expression can be in the range of 00:00:00 to 596,000:00:00.
• Using the US English version of 4D, time is ordered hour:minute:second.
• Times are in 24-hour format.
• A time value can be treated as a number. The number returned from a time is the
number of seconds that time represents. For more information, see the section Time
Operators.

Note: In the 4D Language Reference, Time parameters in command descriptions are
denoted as Time, except when marked otherwise.

Boolean
__

A Boolean field, variable or expression can be either TRUE or FALSE.

Note: In the 4D Language Reference, Boolean parameters in command descriptions are
denoted as Boolean, except when marked otherwise.

Picture
__

A Picture field, variable or expression can be any Windows or Macintosh picture. In
general, this includes any picture that can be put on the Clipboard or read from the disk
using 4D or Plug-In commands.

Note: In the 4D Language Reference, Picture parameters in command descriptions are
denoted as Picture, except when marked otherwise.

Pointer
__

A Pointer variable or expression is a reference to another variable (including arrays and
array elements), table, or field. There is no field of type Pointer.

For more information about Pointers, see the section Pointers.

Note: In the 4D Language Reference, Pointer parameters in command descriptions are
denoted as Pointer except when marked otherwise.

68 4th Dimension Language Reference

BLOB
__

A BLOB field or variable is a series of bytes (from 0 to 2 GB in length) that you can address
individually or by using the BLOB Commands. There is no expression of type BLOB.

Note: In the 4D Language Reference, BLOB parameters in command descriptions are
denoted as BLOB.

Array
__

Array is not actually a data type. The various types of arrays (such as Integer Array, Text
Array, and so on) are grouped under this title. Arrays are variables—there is no field of
type Array, and there is no expression of type Array. For more information about arrays,
see the section Arrays.

Note: In the 4D Language Reference, Array parameters in command descriptions are
denoted as Array, except when marked otherwise (i.e., String Array, Numeric Array, ...).

Subtable
__

Subtable is not actually a data type. Only fields can be of type Subtable. There is no
variable or expression of type Subtable. For more information about subtables, see the 4th
Dimension Design Reference manual as well as the commands regrouped under the
Subrecords theme.

Undefined
__

Undefined is not actually a data type. It denotes a variable that has not yet been defined.
A function (a project method that returns a result) can return an undefined value if,
within the method, the function result ($0) is assigned an undefined expression (an
expression calculated with at least one undefined variable). A field cannot be undefined.

Converting Data Types
__

The 4D language contains operators and commands to convert between data types, where
such conversions are meaningful. The 4D language enforces data type checking. For
example, you cannot write: "abc"+0.5+!12/25/96!-?00:30:45?. This will generate syntax
errors.

4th Dimension Language Reference 69

The following table lists the basic data types, the data types to which they can be
converted, and the commands used to do so:

Data Type Convert to Convert to Convert to Convert to
String Number Date Time

String Num Date Time
Number (*) String
Date String
Time String
Boolean Num

(*) Time values can be be treated as numbers.

Note: In addition to the data conversions listed inthis table, more sophisticated data
conversions can be obtained by combining operators and other commands.

See Also
Arrays, Constants, Control Flow, Identifiers, Methods, Operators, Pointers, Type, Variables.

70 4th Dimension Language Reference

Constants Language Definition

version 6.0
__

A constant is an expression that has a fixed value. There are two types of constants:
predefined constants that you select by name, and literal constants for which you type
the actual value.

Predefined Constants
__

Version 6 of 4th Dimension introduces predefined constants. These constants are listed in
the Explorer Window:

The predefined constants are listed by theme. To use a predefined constant in a Method
editor window:
• Drag and drop the constant from the Explorer window to the Method Editor window.
• Directly type its name in the Method Editor window.

Predefined constant names can contain up to 31 characters.

Tip: If you directly enter the name of a predefined constant, you can use the @ symbol (at
sign) to avoid typing the entire constant name. For example, if you type “No such da@”,
4D will fill the line with the constant “No such data in clipboard” when you press Return
or Enter to validate the line of code.

4th Dimension Language Reference 71

Note: The predefined constants (about 500) are listed by theme in this manual. See the
section About this manual for more information. When appropriate, predefined constants
are also listed in the command descriptions.

Predefined constants appear underlined within the Method Editor and Debugger
windows:

In the window shown here, Is Alpha Field, for example, is a predefined constant.

Literal Constants
__

Literal Constants can be of four data types:
• String
• Numeric
• Date
• Time

String Constants
A string constant is enclosed in double, straight quotation marks ("…"). Here are some
examples of string constants:

"Add Records"
"No records found."
"Invoice"

An empty string is specified by two quotation marks with nothing between them ("").

72 4th Dimension Language Reference

Numeric Constants
A numeric constant is written as a real number. Here are some examples of numeric
constants:

27
123.76
0.0076

Negative numbers are specified with the minus sign(–). For example:

–27
–123.76
–0.0076

Date Constants
A date constant is enclosed by exclamation marks (!…!). In the US English version of 4D,
a date is ordered month/day/year, with a slash (/) setting off each part. Here are some
examples of date constants:

!1/1/76!
!4/4/04!
!12/25/96!

A null date is specified by !00/00/00!

Tip: The Method Editor includes a shortcut for entering a null date. To type a null date,
enter the exclamation (!) character and press Enter.

Note: A two-digit year is assumed to be in the 1900’s. Unless this default setting has been
changed using the command SET DEFAULT CENTURY.

Time Constants
A time constant is enclosed by question marks (?...?).

Note: This syntax can be used on both Windows and Macintosh. On Macintosh, you can
also use the Dagger symbol (Option-T on a US keyboard).

In the US English version of 4D, a time constant is ordered hour:minute:second, with a
colon (:) setting off each part. Times are specified in 24-hour format.

4th Dimension Language Reference 73

Here are some examples of time constants:

?00:00:00? ` midnight
?09:30:00? ` 9:30 am
?13:01:59? ` 1 pm, 1 minute, and 59 seconds

A null time is specified by ?00:00:00?

Tip: The Method Editor includes a shortcut for entering a null time. To type a null time,
enter the question mark (?) character and press Enter.

See Also
Control Flow, Data Types, Identifiers, Methods, Operators, Pointers, Variables.

74 4th Dimension Language Reference

Variables Language Definition

version 6.0
__

Data in 4th Dimension is stored in two fundamentally different ways. Fields store data
permanently on disk; variables store data temporarily in memory.

When you set up your 4th Dimension database, you specify the names and types of fields
that you want to use. Variables are much the same—you also give them names and
different types.

The following variable types correspond to each of the data types:
• String: Fixed alphanumeric string of up to 255 characters
• Text: Alphanumeric string of up to 32,000 characters
• Integer: Integer from -32768 to 32767
• Long Integer: Integer from -2^31 to (2^31)-1
• Real: A number to ±1.7e±308 (15 digits)
• Date: 1/1/100 to 12/31/32767
• Time: 00:00:00 to 596000:00:00 (seconds from midnight)
• Boolean: True or False
• Picture: Any Windows or Macintosh picture
• BLOB (Binary Large OBject): Series of bytes up to 2 GB in size
• Pointer: A pointer to a table, field, variable, array, or array element

You can display variables (except Pointer and BLOB) on the screen, enter data into them,
and print them in reports. In these ways, enterable and non-enterable area variables act
just like fields, and the same built-in controls are available when you create them:

• Display formats
• Data validation, such entry filters and default values
• Character filters
• Choice lists (hierarchical lists)
• Enterable or non-enterable values

Variables can also do the following:

• Control buttons (buttons, check boxes, radio buttons, 3D buttons, and so on)
• Control sliders (meters, rulers, and dials)
• Control scrollable areas, pop-up menus, and drop-down list boxes
• Control hierarchical lists and hierarchical pop-up menus
• Control button grids, tab controls, picture buttons, and so on
• Display results of calculations that do not need to be saved.

4th Dimension Language Reference 75

Creating Variables
__

You create variables simply by using them; you do not need to formally define them as
you do with fields. For example, if you want a variable that will hold the current date plus
30 days, you write:

MyDate:=Current date+30

4th Dimension creates MyDate and holds the date you need. The line of code reads
“MyDate gets the current date plus 30 days.” You could now use MyDate wherever you
need it in your database. For example, you might need to store the date variable in a field
of same type:

[MyTable]MyField:=MyDate

Sometimes you may want a variable to be explicitly defined as a certain type. For more
information about typing variables for a database that you intend to compile, see the
section Compiler Commands.

Assigning Data to Variables
__

Data can be put into and copied out of variables. Putting data into a variable is called
assigning the data to the variable and is done with the assignment operator (:=). The
assignment operator is also used to assign data to fields.

The assignment operator is the primary way to create a variable and to put data into it.
You write the name of the variable that you want to create on the left side of the
assignment operator. For example:

MyNumber:=3

creates the variable MyNumber and puts the number 3 into it. If MyNumber already exists,
then the number 3 is just put into it.

Of course, variables would not be very useful if you could not get data out of them. Once
again, you use the assignment operator. If you need to put the value of MyNumber in a
field called [Products]Size, you would write MyNumber on the right side of the assignment
operator:

[Products]Size:=MyNumber

In this case, [Products]Size would be equal to 3. This example is rather simple, but it
illustrates the fundamental way that data is transferred from one place to another by
using the language.

76 4th Dimension Language Reference

Important: Be careful not to confuse the assignment operator (:=) with the comparison
operator, equal (=). Assignment and comparison are very different operations. For more
information about the comparison operators, see the section Operators.

Local, Process, and Interprocess Variables
__

You can create three types of variables: local variables, process variables, and interprocess
variables. The difference between the three types of variables is their scope, or the objects
to which they are available.

Local variables
A local variable is, as its name implies, local to a method—accessible only within the
method in which it was created and not accessible outside of that method. Being local to
a method is formally referred to as being “local in scope.” Local variables are used to
restrict a variable so that it works only within the method.

You may want to use a local variable to:
• Avoid conflicts with the names of other variables
• Use data temporarily
• Reduce the number of process variables

The name of a local variable always starts with a dollar sign ($) and can contain up to 31
additional characters. If you enter a longer name, 4th Dimension truncates it to the
appropriate length.

When you are working in a database with many methods and variables, you often find
that you need to use a variable only within the method on which you are working. You
can create and use a local variable in the method without worrying about whether you
have used the same variable name somewhere else.

Frequently, in a database, small pieces of information are needed from the user. The
Request command can obtain this information. It displays a dialog box with a message
prompting the user for a response. When the user enters the response, the command
returns the information the user entered. You usually do not need to keep this
information in your methods for very long. This is a typical way to use a local variable.
Here is an example:

$vsID:=Request("Please enter your ID:")
If (OK=1)

QUERY ([People];[People]ID =$vsID)
End if

This method simply asks the user to enter an ID. It puts the response into a local variable,
$vsID, and then searches for the ID that the user entered. When this method finishes, the
$vsID local variable is erased from memory. This is fine, because the variable is needed
only once and only in this method.

4th Dimension Language Reference 77

Process variables
A process variable is available only within a process. It is accessible to the process method
and any other method called from within the process.

A process variable does not have a prefix before its name. A process variable name can
contain up to 31 characters.

In interpreted mode, variables are maintained dynamically, they are created and erased
from memory “on the fly.” In compiled mode, all processes you create (user processes)
share the same definition of process variables, but each process has a different instance for
each variable. For example, the variable myVar is one variable in the process P_1 and
another one in the process P_2.

Starting with version 6, a process can “peek and poke” process variables from another
process using the commands GET PROCESS VARIABLE and SET PROCESS VARIABLE. It is
good programming practice to restrict the use of these commands to the situation for
which they were added to 4D:
• Interprocess communication at specific places or your code
• Handling of interprocess drag and drop
• In Client/Server, communication between processes on client machines and the stored
procedures running on the server machines

For more information, see the section Processes and the description of these commands.

Interprocess variables
Interprocess variables are available throughout the database and are shared by all
processes. They are primarily used to share information between processes.

The name of an interprocess variable always begins with the symbols (<>) — a “less than”
sign followed by a “greater than” sign— followed by 31 characters.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

In Client/Server, each machine (Client machines and Server machine) share the same
definition of interprocess variables, but each machine has a different instance for each
variable.

COMPONENTS OF THE LANGUAGE 2

78 4th Dimension Language Reference

Form Object Variables
__

In the Form editor, naming an active object—button, radio button, check box, scrollable
area, meter bar, and so on—automatically creates a variable with the same name. For
example, if you create a button named MyButton, a variable named MyButton is also
created. Note that this variable name is not the label for the button, but is the name of
the button.

The form object variables allow you to control and monitor the objects. For example,
when a button is clicked, its variable is set to 1; at all other times, it is 0. The variable
associated with a meter or dial lets you read and change the current setting. For example,
if you drag a meter to a new setting, the value of the variable changes to reflect the new
setting. Similarly, if a method changes the value of the variable, the meter is redrawn to
show the new value.

For more information about variables and forms, see the 4th Dimension Design Reference
Manual as well as the section Form event.

System Variables
__

4th Dimension maintains a number of variables called system variables. These variables
let you monitor many operations. System variables are all process variables, accessible only
from within a process.

The most important system variable is the OK system variable. As its name implies, it tells
you if everything is OK in the particular process. Was the record saved? Has the importing
operation been completed? Did the user click the OK button? The OK system variable is
set to 1 when a task is completed successfully, and to 0 when it is not.

For more information about system variables, see the section System Variables.

See Also
Arrays, Constants, Control Flow, Data Types, Identifiers, Methods, Operators, Pointers.

4th Dimension Language Reference 79

System Variables Language Definition

version 6.0 (Modified)
__

4th Dimension manages system variables, which allow you to control the execution of
different operations. All system variables are process variables that can only be accessed
within one process. This section describes 4th Dimension system variables.

OK
This is the most commonly used system variable. Usually it is set to 1 when an operation
is successfully executed. It is set to 0 when the operation fails. The following commands
modify the value of the OK system variable:

Append document APPEND TO CLIPBOARD
ADD RECORD ADD SUBRECORD
APPLY TO SELECTION BLOB TO DOCUMENT
CHANGE ACCESS LOAD SET
QUERY QUERY SELECTION
QUERY BY EXAMPLE QUERY BY FORMULA
QUERY SELECTION BY FORMULA SEARCH BY INDEX
COMPRESS BLOB CONFIRM
Create document Create resource file
EXPAND BLOB Request
DIALOG DOCUMENT TO BLOB
SET PICTURE TO CLIPBOARD SET RESOURCE NAME
SET RESOURCE PROPERTIES SET RESOURCE
SET STRING RESOURCE SET PICTURE RESOURCE
SET TEXT RESOURCE SET TEXT TO CLIPBOARD
SAVE VARIABLES EXPORT TEXT
EXPORT DIF EXPORT SYLK
SEND RECORD SEND PACKET
SEND VARIABLE REPORT
SELECT LOG FILE SET TIMEOUT
PRINT LABEL PRINT SELECTION
RELATE ONE SELECTION PLAY
START WEB SERVER IMPORT TEXT
IMPORT DIF IMPORT SYLK
Get indexed string GET PICTURE FROM LIBRARY
GET RESOURCE Get string resource
GET ICON RESOURCE GET PICTURE RESOURCE
Get text resource Get text from clipboard
LOAD VARIABLES STRING LIST TO ARRAY
MODIFY RECORD MODIFY SUBRECORD
CANCEL Open document
Open resource file PRINT SETTINGS
RECEIVE RECORD RECEIVE PACKET
RECEIVE VARIABLE SET CHANNEL
RELATE MANY SELECTION SAVE SET

80 4th Dimension Language Reference

DELETE DOCUMENT DELETE RESOURCE
ARRAY TO LIST ARRAY TO STRING LIST
ARRAY TO SELECTION ORDER BY
ORDER BY FORMULA USE ASCII MAP
DISTINCT VALUES ACCEPT
VALIDATE TRANSACTION

Document
Document contains the "long name" (access path+name) of the last file opened or created
using the following commands:

Append document LOAD SET
Create document Create resource file
SAVE VARIABLES EXPORT TEXT
EXPORT DIF EXPORT SYLK
REPORT SELECT LOG FILE
PRINT LABEL IMPORT TEXT
IMPORT DIF IMPORT SYLK
LOAD VARIABLES Open document
Open resource file SAVE SET
SET CHANNEL USE ASCII MAP

FldDelimit
FldDelimit contains the ASCII code that will be used as a field separator when importing or
exporting text. By default, this value is set to 9, which is the ASCII code for the Tab key.
To use a different field separator, assign a new value to FldDelimit.

RecDelimit
RecDelimit contains the ASCII code that will be used as a record separator when importing
or exporting text. By default, this value is set to 9, which is the ASCII code for the
Carriage Return key. To use a different record separator, assign a new value to FldDelimit.

Error
Error can only be used in a method installed by the ON ERR CALL command. This variable
contains the error code. 4th Dimension error codes and system error codes are listed in
the Error Codes section.

4th Dimension Language Reference 81

MouseDown, MouseX, MouseY, KeyCode, Modifiers and MouseProc
These system variables can only be used in a method installed by the ON EVENT CALL
command.

• MouseDown is set to 1 when the mouse button is pushed. Otherwise, it is set to 0.
• If the event is a MouseDown (MouseDown=1), the MouseX and MouseY system variables
are respectively set to the vertical and horizontal coordinates of the location where the
click took place. Both values are expressed in pixels and use the local coordinate system of
the window.
• KeyCode is set to the ASCII code of the key that was just pressed. If the key is a function
key, KeyCode is set to a special code. ASCII codes and function key codes are listed in the
sections ASCII Codes and Function Key Codes.
• Modifiers is set to the keyboard modifier keys (Ctrl/command, Alt/Option, Shift, Caps
Lock). This variable is only significant in an "interruption on event" installed by the
command ON EVENT CALL.
• MouseProc is set to the process number in which the last event took place.

See Also
No reference.

82 4th Dimension Language Reference

Pointers Language Definition

version 6.0
__

Pointers provide an advanced way (in programming) to refer to data.

When you use the language, you access various objects—in particular, tables, fields,
variables, and arrays—by simply using their names. However, it is often useful to refer to
these elements and access them without knowing their names. This is what pointers let
you do.

The concept behind pointers is not that uncommon in everyday life. You often refer to
something without knowing its exact identity. For example, you might say to a friend,
“Let’s go for a ride in your car” instead of “Let’s go for a ride in the car with license plate
123ABD.” In this case, you are referencing the car with license plate 123ABD by using the
phrase “your car.” The phrase “car with license plate 123ABD” is like the name of an
object, and using the phrase “your car” is like using a pointer to reference the object.

Being able to refer to something without knowing its exact identity is very useful. In fact,
your friend could get a new car, and the phrase “your car” would still be accurate—it
would still be a car and you could still take a ride in it. Pointers work the same way. For
example, a pointer could at one time refer to a numeric field called Age, and later refer to
a numeric variable called Old Age. In both cases, the pointer references numeric data that
could be used in a calculation.

You can use pointers to reference tables, fields, variables, arrays, and array elements. The
following table gives an example of each data type:

Object To Reference To Use To Assign
Table vpTable:=->[Table] DEFAULT TABLE(vpTable->) n/a
Field vpField:=->[Table]Field ALERT(vpField->) vpField->:="John"
Variable vpVar:=->Variable ALERT(vpVar->) vpVar->:="John"
Array vpArr:=->Array SORT ARRAY(vpArr->;>) COPY ARRAY (Arr;vpArr->)
Array element vpElem:=->Array{1} ALERT (vpElem->) vpElem->:="John"

4th Dimension Language Reference 83

Using Pointers: An Example
__

It is easiest to explain the use of pointers through an example. This example shows how
to access a variable through a pointer. We start by creating a variable:

MyVar:="Hello"

MyVar is now a variable containing the string “Hello.” We can now create a pointer to
MyVar:

MyPointer:=->MyVar

The -> symbol means “get a pointer to.” This symbol is formed by a dash followed by a
“greater than” sign. In this case, it gets the pointer that references or “points to” MyVar.
This pointer is assigned to MyPointer with the assignment operator.

MyPointer is now a variable that contains a pointer to MyVar. MyPointer does not contain
“Hello”, which is the value in MyVar, but you can use MyPointer to get this value. The
following expression returns the value in MyVar:

MyPointer->

In this case, it returns the string “Hello”. The -> symbol, when it follows a pointer,
references the object pointed to. This is called dereferencing.

It is important to understand that you can use a pointer followed by the -> symbol
anywhere that you could have used the object that the pointer points to. This means that
you could use the expression MyPointer-> anywhere that you could use the original MyVar
variable.

For example, the following line displays an alert box with the word Hello in it:

ALERT(MyPointer->)

You can also use MyPointer to change the data in MyVar. For example, the following
statement stores the string "Goodbye" in the variable MyVar:

MyPointer->:="Goodbye"

If you examine the two uses of the expression MyPointer->, you will see that it acts just as
if you had used MyVar instead. In summary, the following two lines perform the same
action—both display an alert box containing the current value in the variable MyVar:

ALERT(MyPointer->)
ALERT(MyVar)

84 4th Dimension Language Reference

The following two lines perform the same action— both assign the string "Goodbye" to
MyVar:

MyPointer->:="Goodbye"
MyVar:="Goodbye"

Using Pointers to Buttons
__

This section describes how to use a pointer to reference a button. A button is (from the
language point of view) nothing more than a variable. Although the examples in this
section use pointers to reference buttons, the concepts presented here apply to the use of
all types of objects that can be referenced by a pointer.

Let’s say that you have a number of buttons in your forms that need to be enabled or
disabled. Each button has a condition associated with it that is TRUE or FALSE. The
condition says whether to disable or enable the button. You could use a test like this each
time you need to enable or disable the button:

If (Condition) ` If the condition is TRUE…
ENABLE BUTTON (MyButton) ` enable the button

Else ` Otherwise…
DISABLE BUTTON (MyButton) ` disable the button

End if

You would need to use a similar test for every button you set, with only the name of the
button changing. To be more efficient, you could use a pointer to reference each button
and then use a subroutine for the test itself.

You must use pointers if you use a subroutine, because you cannot refer to the button’s
variables in any other way. For example, here is a project method called SET BUTTON,
which references a button with a pointer:

` SET BUTTON project method
` SET BUTTON (Pointer ; Boolean)
` SET BUTTON (-> Button ; Enable or Disable)
`
` $1 – Pointer to a button
` $2 – Boolean. If TRUE, enable the button. If FALSE, disable the button

If ($2) ` If the condition is TRUE…
ENABLE BUTTON($1->) ` enable the button

Else ` Otherwise…
DISABLE BUTTON($1->) ` disable the button

End if

4th Dimension Language Reference 85

You can call the SET BUTTON project method as follows:

` ...
SET BUTTON (->bValidate;True)

` ...
SET BUTTON (->bValidate;False)

` ...
SET BUTTON (->bValidate;([Employee]Last Name#"")

` ...
For ($vlRadioButton;1;20)

$vpRadioButton:=Get pointer("r"+String($vlRadioButton))
SET BUTTON ($vpRadioButton;False)

End for

Using Pointers to Tables
__

Anywhere that the language expects to see a table, you can use a dereferenced pointer to
the table.
You create a pointer to a table by using a line like this:

TablePtr:=->[anyTable]

You can also get a pointer to a table by using the Table command. For example:

TablePtr:=Table(20)

You can use the dereferenced pointer in commands, like this:

DEFAULT TABLE(TablePtr->)

Using Pointers to Fields
__

Anywhere that the language expects to see a field, you can use a dereferenced pointer to
reference the field. You create a pointer to a field by using a line like this:

FieldPtr:=->[aTable]ThisField

You can also get a pointer to a field by using the Field command. For example:

FieldPtr:=Field(1; 2)

You can use the dereferenced pointer in commands, like this:

FONT(FieldPtr->; "Arial")

86 4th Dimension Language Reference

Using Pointers to Array Elements
__

You can create a pointer to an array element. For example, the following lines create an
array and assign a pointer to the first array element to a variable called ElemPtr:

ARRAY REAL(anArray; 10) ` Create an array
ElemPtr:=->anArray{1} ` Create a pointer to the array element

You could use the dereferenced pointer to assign a value to the element, like this:

ElemPtr->:=8

Using Pointers to Arrays
__

You can create a pointer to an array. For example, the following lines create an array and
assign a pointer to the array to a variable called ArrPtr:

ARRAY REAL(anArray; 10) ` Create an array
ArrPtr := ->anArray ` Create a pointer to the array

It is important to understand that the pointer points to the array; it does not point to an
element of the array. For example, you can use the dereferenced pointer from the
preceding lines like this:

SORT ARRAY(ArrPtr->; >) ` Sort the array

If you need to refer to the fourth element in the array by using the pointer, you do this:

ArrPtr->{4} := 84

Using an Array of Pointers
__

It is often useful to have an array of pointers that reference a group of related objects.

One example of such a group of objects is a grid of variables in a form. Each variable in
the grid is sequentially numbered, for example: Var1,Var2,…, Var10. You often need to
reference these variables indirectly with a number. If you create an array of pointers, and
initialize the pointers to point to each variable, you can then easily reference the
variables. For example, to create an array and initialize each element, you could use the
following lines:

ARRAY POINTER(apPointers; 10) ` Create an array to hold 10 pointers
For ($i; 1; 10) ` Loop once for each variable

apPointers{$i}:=Get pointer("Var"+String($i)) ` Initialize the array element
End for

4th Dimension Language Reference 87

The Get pointer function returns a pointer to the named object.

To reference any of the variables, you use the array elements. For example, to fill the
variables with the next ten dates (assuming they are variables of the date type), you could
use the following lines:

For ($i; 1; 10) ` Loop once for each variable
apPointers{$i}->:=Current date+$i ` Assign the dates

End for

Setting a Button Using a Pointer
__

If you have a group of related radio buttons in a form, you often need to set them
quickly. It is inefficient to directly reference each one of them by name. Let’s say you
have a group of radio buttons named Button1, Button2,…, Button5.

In a group of radio buttons, only one radio button is on. The number of the radio button
that is on can be stored in a numeric field. For example, if the field called
[Preferences]Setting contains 3, then Button3 is selected. In your form method, you could
use the following code to set the button:

Case of
:(Form event=On Load)

` ...
Case of

: ([Preferences]Setting = 1)
Button1:=1

: ([Preferences]Setting = 2)
Button2:=1

: ([Preferences]Setting = 3)
Button3:=1

: ([Preferences]Setting = 4)
Button4:=1

: ([Preferences]Setting = 5)
Button5:=1

End case
` ...

End case

88 4th Dimension Language Reference

A separate case must be tested for each radio button. This could be a very long method if
you have many radio buttons in your form. Fortunately, you can use pointers to solve
this problem. You can use the Get pointer command to return a pointer to a radio button.
The following example uses such a pointer to reference the radio button that must be set.
Here is the improved code:

Case of
:(Form event=On Load)

` ...
$vpRadio:=Get pointer("Button"+String([Preferences]Setting))
$vpRadio->:=1

` ...
End case

The number of the set radio button must be stored in the field called [Preferences]Setting.
You can do so in the form method for the On Clicked event:

[Preferences]Setting:=Button1+(Button2*2)+(Button3*3)+(Button4*4)+(Button5*5)

Passing Pointers to Methods
__

You can pass a pointer as a parameter to a method. Inside the method, you can modify
the object referenced by the pointer. For example, the following method, TAKE TWO,
takes two parameters that are pointers. It changes the object referenced by the first
parameter to uppercase characters, and the object referenced by the second parameter to
lowercase characters. Here is the method:

` TAKE TWO project method
` $1 – Pointer to a string field or variable. Change this to uppercase.
` $2 – Pointer to a string field or variable. Change this to lowercase.

$1->:=Uppercase($1->)
$2->:=Lowercase($2->)

The following line uses the TAKE TWO method to change a field to uppercase characters
and to change a variable to lowercase characters:

TAKE TWO (->[My Table]My Field; ->MyVar)

If the field [My Table]My Field contained the string "jones", it would be changed to the
string "JONES". If the variable MyVar contained the string "HELLO", it would be changed to
the string "hello".

4th Dimension Language Reference 89

In the TAKE TWO method, and in fact, whenever you use pointers, it is important that
the data type of the object being referenced is correct. In the previous example, the
pointers must point to an object that contains a string or text.

Pointers to Pointers
__

If you really like to complicate things, you can use pointers to reference other pointers.
Consider this example:

MyVar := "Hello"
PointerOne := ->MyVar
PointerTwo := ->PointerOne
(PointerTwo->)-> := "Goodbye"
ALERT((Point Two->)->)

It displays an alert box with the word “Goodbye” in it.

Here is an explanation of each line of the example:

• MyVar:="Hello"

® This line puts the string "Hello" into the variable MyVar.

• PointerOne:=->MyVar

® PointerOne now contains a pointer to MyVar.

• PointerTwo:=->PointerOne

® PointerTwo (a new variable) contains a pointer to PointerOne, which in turn points to
MyVar.

• (PointerTwo->)->:="Goodbye"

® PointerTwo-> references the contents of PointerOne, which in turn references MyVar.
Therefore (PointerTwo->)-> references the contents of MyVar. So in this case, MyVar is
assigned "Goodbye".

• ALERT ((PointerTwo->)->)

® Same thing: PointerTwo-> references the contents of PointerOne, which in turn
references MyVar. Therefore (PointerTwo->)-> references the contents of MyVar. So in this
case, the alert box displays the contents of myVar.

The following line puts "Hello" into MyVar:

(PointerTwo->)->:="Hello"

90 4th Dimension Language Reference

The following line gets "Hello" from MyVar and puts it into NewVar:

NewVar:=(PointerTwo->)->

Important: Multiple dereferencing requires parentheses.

See Also
Arrays, Arrays and Pointers, Constants, Control Flow, Data Types, Identifiers, Methods,
Operators, Variables.

4th Dimension Language Reference 91

Identifiers Language Definition

version 6.0
__

This section describes the conventions for naming various objects in the 4th Dimension
language. The names for all objects follow these rules:

• A name must begin with an alphabetic character.
• Thereafter, the name can include alphabetic characters, numeric characters, the space
character, and the underscore character.
• Periods, slashes, and colons are not allowed.
• Characters reserved for use as operators, such as * and +, are not allowed.
• 4th Dimension ignores any trailing spaces.

Tables
__

You denote a table by placing its name between brackets: [...]. A table name can contain
up to 31 characters.

Examples
DEFAULT TABLE ([Orders])
INPUT FORM ([Clients]; "Entry")
ADD RECORD ([Letters])

Fields
__

You denote a field by first specifying the table to which the field belongs. The field name
immediately follows the table name. A field name can contain up to 31 characters.

Do not start a field name with the underscore character (_). The underscore character is
reserved for plug-ins. When 4th Dimension encounters this character at the beginning of
a field in the Method editor, it removes the underscore.

Examples
[Orders]Total:=Sum([Line]Amount)
QUERY([Clients];[Clients]Name="Smith")
[Letters]Text:=Capitalize text ([Letters]Text)

It is a good programming technique to specify the table name before the field, even
though it is not absolutely necessary in a table, form, or object method.

92 4th Dimension Language Reference

Subtables
__

You denote a subtable by first specifying the parent table to which the subtable belongs.
The subtable name immediately follows the table name. A subtable name can contain up
to 31 characters.

Examples
ALL SUBRECORDS ([People]Children)
ADD SUBRECORD ([Clients]Phones;"Add One")
NEXT SUBRECORD ([Letters]Keywords)

A subtable is treated as a type of field; therefore, it follows the same rules as a field when
used in a form. If you are specifying a subtable in the table, form, or object method of the
parent table, you do not need to specify the parent table name. However, it is a good
programming technique to specify the name of the table before the subtable name.

Subfields
__

You denote a subfield in the same way as a field. You denote the subfield by first
specifying the subtable to which the subfield belongs. The subfield name follows, and is
separated from the subtable name by an apostrophe ('). A subfield name can contain up to
31 characters.

Examples
[People]Children'First Name:=Uppercase([People]Children'First Name)
[Clients]Phones'Number:="408 555–1212"
[Letters]Keywords'Word:=Capitalize text ([Letters]Keywords'Word)

If you are specifying a subfield in a subtable, form, or object method of the subfile, you
do not need to specify the subtable name. However it is a good programming technique
to specify the table name and the subtable name before the name of the subfield.

Interprocess Variables
__

You denote an interprocess variable by preceding the name of the variable with the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess variable can have up to 31 characters, not including the <> symbols.

4th Dimension Language Reference 93

Examples
<>vlProcessID:=Current process
<>vsKey:=Char(KeyCode)
If (<>vtName#"")

Process Variables
__

You denote a process variable by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process variable name can contain up to 31 characters.

Examples
<>vrGrandTotal:=Sum([Accounts]Amount)
If (bValidate=1)
vsCurrentName:=""

Local Variables
__

You denote a local variable with a dollar sign ($) followed by its name. A local variable
name can contain up to 31 characters, not including the dollar sign.

Examples
For ($vlRecord; 1; 100)
If ($vsTempVar="No")
$vsMyString:="Hello there"

Arrays
__

You denote an array by using its name, which is the name you passed to the array
declaration (such as ARRAY LONGINT) when you created the array. Arrays are variables,
and from the scope point of view, like variables, there are three different types of arrays:

• Interprocess arrays,
• Process arrays,
• Local arrays.

Interprocess Arrays
The name of an interprocess array is preceded by the symbols (<>) — a “less than” sign
followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

94 4th Dimension Language Reference

An interprocess array name can contain up to 31 characters, not including the <>
symbols.

Examples

ARRAY TEXT(<>atSubjects;Records in table([Topics]))
SORT ARRAY (<>asKeywords; >)
ARRAY INTEGER(<>aiBigArray;10000)

Process Arrays
You denote a process array by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process array name can contain up to 31 characters.

Examples

ARRAY TEXT(atSubjects;Records in table([Topics]))
SORT ARRAY (asKeywords; >)
ARRAY INTEGER(aiBigArray;10000)

Local Arrays
The name of a local array is preceded by the dollar sign ($). An local array name can
contain up to 31 characters, not including the dollar sign.

Examples

ARRAY TEXT($atSubjects;Records in table([Topics]))
SORT ARRAY ($asKeywords; >)
ARRAY INTEGER($aiBigArray;10000)

Elements of arrays
You reference an element of an interprocess, process or local array by using the curly
braces({…}). The element referenced is denoted by a numeric expression.

Examples
` Adressing an element of an interprocess array

If (<>asKeywords{1}="Stop")
<>atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{Size of array(<>aiBigArray)}

` Adressing an element of a process array
If (asKeywords{1}="Stop")
atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=aiBigArray{Size of array(aiBigArray)}

4th Dimension Language Reference 95

` Adressing an element of a local array
If ($asKeywords{1}="Stop")
$atSubjects{$vlElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{Size of array($aiBigArray)}

Elements of two-dimensional arrays
You reference an element of a two-dimensional array by using the curly braces ({…})
twice. The element referenced is denoted by two numeric expressions in two sets of curly
braces.

Examples
` Adressing an element of a two-dimensional interprocess array

If (<>asKeywords{$vlNextRow}{1}="Stop")
<>atSubjects{10}{$vlElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{$vlSet}{Size of array(<>aiBigArray{$vlSet})}

` Adressing an element of a two-dimensional process array
If (asKeywords{$vlNextRow}{1}="Stop")
atSubjects{10}{$vlElem}:=[Topics]Subject
$viNextValue:=aiBigArray{$vlSet}{Size of array(aiBigArray{$vlSet})}

` Adressing an element of a two-dimensional local array
If ($asKeywords{$vlNextRow}{1}="Stop")
$atSubjects{10}{$vlElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{$vlSet}{Size of array($aiBigArray{$vlSet})}

Forms
__

You denote a form by using a string expression that represents its name. A form name
can contain up to 31 characters.

Examples
INPUT FORM([People];"Input")
OUTPUT FORM([People]; "Output")
DIALOG([Storage];"Note box"+String($vlStage))

96 4th Dimension Language Reference

Methods
__

You denote a method (procedure and function) by using its name. A method name can
contain up to 31 characters.

Note: A method that does not return a result is also called a procedure. A method that
returns is a result is also called a function.

Examples
If (New client)
DELETE DUPLICATED VALUES
APPLY TO SELECTION ([Employees];INCREASE SALARIES)

Tip: It is a good programming technique to adopt the same naming convention as the
one used by 4D for built-in commands. Use uppercase characters for naming your
methods; however if a method is function, capitalize the first character of its name. By
doing so, when you reopen a database for maintenance after a few months, you will
already know if a method returns a result by simply looking at its name in the Explorer
window.

Note: When you call a method, you just type its name. However, some 4D built-in
commands, such as ON EVENT CALL, as well as all the Plug-In commands, expect the
name of a method as a string when a method parameter is passed. Example:

Examples
` This command expects a method (function) or formula

QUERY BY FORMULA ([aTable];Special query)
` This command expects a method (procedure) or statement

APPLY TO SELECTION ([Employees];INCREASE SALARIES)
` But this command expects a method name

ON EVENT CALL ("HANDLE EVENTS")
` And this Plug-In command expects a method name

WR ON ERROR ("WR HANDLE ERRORS")

Methods can accept parameters (arguments). The parameters are passed to the method in
parentheses, following the name of the method. Each parameter is separated from the
next by a semicolon (;). The parameters are available within the called method as
consecutively numbered local variables: $1, $2,…, $n. In addition, multiple consecutive
(and last) parameters can be addressed with the syntax ${n}where n, numeric expression,
is the number of the parameter.

 Inside a function, the $0 local variable contains the value to be returned.

4th Dimension Language Reference 97

Examples
` Within DROP SPACES $1 is a pointer the field [People]Name

DROP SPACES (->[People]Name)

` Within Calc creator:
` - $1 is numeric and equal to 1
` - $2 is numeric and equal to 5
` - $3 is text or string and equal to "Nice"
` - The result value is assigned to $0

$vsResult:=Calc creator (1; 5; "Nice")

` Within Dump:
` - The three parameters are text or string
` - They can be addressed as $1, $2 or $3
` - They can also be addressed as, for instance, ${$vlParam} where $vlParam is 1, 2 or

3
` - The result value is assigned to $0

vtClone:=Dump ("is"; "the"; "it")

Plug-In Commands (External Procedures, Functions and Areas)
__

You denote a plug-in command by using its name as defined by the plug-in. A plug-in
command name can contain up to 31 characters.

Examples
WR BACKSPACE (wrArea; 0)
$spNewArea:=SP New offscreen area

98 4th Dimension Language Reference

Sets
__

From the scope point of view, there are two types of sets:
• Interprocess sets
• Process sets

4D Server also includes:
• Client sets

Interprocess Sets
A set is an interprocess set if the name of the set is preceded symbols (<>) — a “less than”
sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess set name can contain up to 80 characters, not including the <> symbols.

Process Sets
You denote a process set by using a string expression that represents its name (which
cannot start with the <> symbols or the dollar sign $). A set name can contain up to 80
characters.

Client Sets
The name of a client set is preceded by the dollar sign ($). A client set name can contain
up to 80 characters, not including the dollar sign.

Note: In 4D Client/Server up to version 6, a set was maintained on the Client machine
where it was created. Starting with version 6, sets are maintained on the Server machine.
In certain cases, for efficiency or special purposes, you may need to work with sets locally
on the Client machine. To do so, you use Client sets.

Examples
` Interprocess sets

USE SET("<>Deleted Records")
CREATE SET([Customers];"<>Customer Orders")
If (Records in set("<>Selection"+String($i))>0)

` Process sets
USE SET("Deleted Records")
CREATE SET([Customers];"Customer Orders")
If (Records in set("<>Selection"+String($i))>0)

` Client sets
USE SET("$Deleted Records")
CREATE SET([Customers];"$Customer Orders")
If (Records in set("$Selection"+String($i))>0)

4th Dimension Language Reference 99

Named Selections
__

From the scope point of view, there are two types of named selections:
• Interprocess named selections
• Process named selections

Interprocess Named Selections
A named selection is an interprocess named selection if its name is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess named selection name can contain up to 80 characters, not including the
<> symbols.

Process Named Selections
You denote a process named selection by using a string expression that represents its
name (which cannot start with the <> symbols nor the dollar sign $). A named selection
name can contain up to 80 characters.

Examples
` Interprocess Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")
` Process Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")

Processes
__

In the single-user version, or in Client/Server on the Client side, there are two types of
processes:
• Global processes
• Local processes

Global Processes
You denote a global process by using a string expression that represents its name (which
cannot start with the dollar sign $). A process name can contain up to 31 characters.

Local Processes
You denote a local process if the name of the process is preceded by a dollar ($) sign. The
process name can contain up to 31 characters, not including the dollar sign.

100 4th Dimension Language Reference

Example
` Starting the global process "Add Customers"

$vlProcessID:=New process("P_ADD_CUSTOMERS";48*1024;"Add Customers")
` Starting the local process "$Follow Mouse Moves"

$vlProcessID:=New process("P_MOUSE_SNIFFER";16*1024;"$Follow Mouse Moves")

Summary of Naming Conventions
__

The following table summarizes 4th Dimension naming conventions.

Type Max. Length Example
Table 31 [Invoices]
Field 31 [Employees]Last Name
Subtable 31 [Friends]Kids
Subfield 31 [Documents]Keyword'Keyword
Interprocess Variable <> + 31 <>vlNextProcessID
Process Variable 31 vsCurrentName
Local Variable $ + 31 $vlLocalCounter
Form 31 "My Custom Web Input"
Interprocess Array <> + 31 <>apTables
Process Array 31 asGender
Local Array $ + 31 $atValues
Method 31 M_ADD_CUSTOMERS
Plug-in Routine 31 WR INSERT TEXT
Interprocess Set <> + 80 "<>Records to be Archived"
Process Set 80 "Current selected records"
Client Set $ + 80 "$Previous Subjects"
Named Selection 80 "Employees A to Z"
Interprocess Named Selection <> + 80 "<>Employees Z to A"
Local Process $ + 31 "$Follow Events"
Global Process 31 "P_INVOICES_MODULE"

LANGUAGE DEFINITION 11

4th Dimension Language Reference 101

Resolving Naming Conflicts
__

If a particular object has the same name as another object of a different type (for
example, if a field is named Person and a variable is also named Person), 4th Dimension
uses a priority system to identify the object. It is up to you to ensure that you use unique
names for the parts of your database.

4th Dimension identifies names used in procedures in the following order:

1. Fields
2. Commands
3. Methods
4. Plug-in routines
5. Predefined constants
6. Variables

For example, 4th Dimension has a built-in command called Date. If you named a method
Date, 4th Dimension would recognize it as the built-in Date command, and not as your
method. This would prevent you from calling your method. If, however, you named a
field “Date”, 4th Dimension would try to use your field instead of the Date command.

See Also
Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

102 4th Dimension Language Reference

Control Flow Language Definition

version 6.0
__

Regardless of the simplicity or complexity of a method, you will always use one or more
of three types of programming structures. Programming structures control the flow of
execution, whether and in what order statements are executed within a method. There
are three types of structures:

• Sequential
• Branching
• Looping

The 4th Dimension language contains statements that control each of these structures.

Sequential structure
The sequential structure is a simple, linear structure. A sequence is a series of statements
that 4th Dimension executes one after the other, from first to last. For example:

OUTPUT FORM([People]; "Listing")
ALL RECORDS([People])
DISPLAY SELECTION([People])

A one-line routine, frequently used for object methods, is the simplest case of a sequential
structure. For example:

[People]Last Name:=Uppercase([People]Last Name)

Branching structures
A branching structure allows methods to test a condition and take alternative paths,
depending on the result. The condition is a Boolean expression, an expression that
evaluates TRUE or FALSE. One branching structure is the If...Else...End if structure, which
directs program flow along one of two paths. The other branching structure is the Case
of...Else...End case structure, which directs program flow to one of many paths.

4th Dimension Language Reference 103

Looping structures
When writing methods, it is very common to find that you need a sequence of
statements to repeat a number of times. To deal with this need, the language provides
three looping structures:

• While...End while
• Repeat...Until
• For...End for

The loops are controlled in two ways: either they loop until a condition is met, or they
loop a specified number of times. Each looping structure can be used in either way, but
While loops and Repeat loops are more appropriate for repeating until a condition is met,
and For loops are more appropriate for looping a specified number of times.

See Also
Logical Operators, Methods.

104 4th Dimension Language Reference

If...Else...End if Language Definition

version 6.0
__

The formal syntax of the If...Else...End if control flow structure is:

If (Boolean_Expression)
statements(s)

Else
statement(s)

End if

Note that the Else part is optional; you can write:

If (Boolean_Expression)
statements(s)

End if

The If...Else...End if structure lets your method choose between two actions, depending on
whether a test (a Boolean expression) is TRUE or FALSE.

When the Boolean expression is TRUE, the statements immediately following the test are
executed. If the Boolean expression is FALSE, the statements following the Else statement
are executed. The Else statement is optional; if you omit Else, execution continues with
the first statement (if any) following the End if.

Example
` Ask the user to enter the name

$Find:=Request(“Type a name:”)
If (OK=1)

QUERY([People]; [People]LastName=$Find)
Else

ALERT("You did not enter a name.")
End if

4th Dimension Language Reference 105

Tip: Branching can be performed without statements to be executed in one case or the
other. When developing an algorithm or a specialized application, nothing prevents you
from writing:

If (Boolean_Expression)
Else

statement(s)
End if

or:

If (Boolean_Expression)
statements(s)

Else
End if

See Also
Case of...Else...End case, Control Flow, For...End for, Repeat...Until, While...End while.

106 4th Dimension Language Reference

Case of...Else...End case Language Definition

version 6.0
__

The formal syntax of the Case of...Else...End case control flow structure is:

Case of
: (Boolean_Expression)

statement(s)
: (Boolean_Expression)

statement(s)
.
.
.

: (Boolean_Expression)
statement(s)

Else
statement(s)

End case

Note that the Else part is optional; you can write:

Case of
: (Boolean_Expression)

statement(s)
: (Boolean_Expression)

statement(s)
.
.
.

: (Boolean_Expression)
statement(s)

End case

As with the If...Else...End if structure, the Case of...Else...End case structure also lets your
method choose between alternative actions. Unlike the If...Else...End if structure, the Case
of...Else...End case structure can test a reasonable unlimited number of Boolean expressions
and take action depending on which one is TRUE.

4th Dimension Language Reference 107

Each Boolean expression is prefaced by a colon (:). This combination of the colon and the
Boolean expression is called a case. For example, the following line is a case:

: (bValidate=1)

Only the statements following the first TRUE case (and up to the next case) will be
executed. If none of the cases are TRUE, none of the statements will be executed (if no
Else part is included).

You can include an Else statement after the last case. If all of the cases are FALSE, the
statements following the Else will be executed.

Example
This example tests a numeric variable and displays an alert box with a word in it:

Case of
: (vResult = 1) ` Test if the number is 1

ALERT("One.") ` If it is 1, display an alert
: (vResult = 2) ` Test if the number is 2

ALERT("Two.") ` If it is 2, display an alert
: (vResult = 3) ` Test if the number is 3

ALERT("Three.") ` If it is 3, display an alert
Else ` If it is not 1, 2, or 3, display an alert

ALERT("It was not one, two, or three.")
End case

For comparison, here is the If...Else...End if version of the same method:

If (vResult = 1) ` Test if the number is 1
ALERT("One.") ` If it is 1, display an alert

Else
If (vResult = 2) ` Test if the number is 2

ALERT("Two.") ` If it is 2, display an alert
Else

If (vResult = 3) ` Test if the number is 3
ALERT("Three.") ` If it is 3, display an alert

Else ` If it is not 1, 2, or 3, display an alert
ALERT("It was not one, two, or three.")

End if
End if

End if

108 4th Dimension Language Reference

Remember that with a Case of...Else...End case structure, only the first TRUE case is
executed. Even if two or more cases are TRUE, only the statements following the first
TRUE case will be executed.

Tip: Branching can be performed without statements to be executed in one case or
another. When developing an algorithm or a specialized application, nothing prevents
you from writing:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

.

.

.

: (Boolean_Expression)
statement(s)

Else
statement(s)

End case

or:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

statement(s)
.
.
.

: (Boolean_Expression)
statement(s)

Else
End case

or:

Case of
Else

statement(s)
End case

See Also
Control Flow, For...End for, If...Else...End if, Repeat...Until, While...End while.

4th Dimension Language Reference 109

While...End while Language Definition

version 6.0
__

The formal syntax of the While...End while control flow structure is:

While (Boolean_Expression)
statement(s)

End while

A While...End while loop executes the statements inside the loop as long as the Boolean
expression is TRUE. It tests the Boolean expression at the beginning of the loop and does
not enter the loop at all if the expression is FALSE.

It is common to initialize the value tested in the Boolean expression immediately before
entering the While...End while loop. Initializing the value means setting it to something
appropriate, usually so that the Boolean expression will be TRUE and While...End while
executes the loop.

The Boolean expression must be set by something inside the loop or else the loop will
continue forever. The following loop continues forever because NeverStop is always TRUE:

NeverStop:=True
While (NeverStop)
End while

If you find yourself in such a situation, where a method is executing uncontrolled, you
can use the trace facilities to stop the loop and track down the problem. For more
information about tracing a method, see the section Debugging.

Example

CONFIRM ("Add a new record?") ` The user wants to add a record?
While (OK = 1) ` Loop as long as the user wants to

ADD RECORD([aTable]) ` Add a new record
End while ` The loop always ends with End while

In this example, the OK system variable is set by the CONFIRM command before the loop
starts. If the user clicks the OK button in the confirmation dialog box, the OK system
variable is set to 1 and the loop starts. Otherwise, the OK system variable is set to 0 and
the loop is skipped. Once the loop starts, the ADD RECORD command keeps the loop
going because it sets the OK system variable to 1 when the user saves the record. When
the user cancels (does not save) the last record, the OK system variable is set to 0 and the
loop stops.

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, Repeat...Until.

110 4th Dimension Language Reference

Repeat...Until Language Definition

version 6.0
__

The formal syntax of the Repeat...Until control flow structure is:

Repeat
statement(s)

Until (Boolean_Expression)

A Repeat...Until loop is similar to a While...End while loop, except that it tests the Boolean
expression after the loop rather than before. Thus, a Repeat...Until loop always executes
the loop once, whereas if the Boolean expression is initially False, a While...End while loop
does not execute the loop at all.

The other difference with a Repeat...Until loop is that the loop continues until the Boolean
expression is TRUE.

Example
Compare the following example with the example for the While...End while loop. Note
that the Boolean expression does not need to be initialized—there is no CONFIRM
command to initialize the OK variable.

Repeat
ADD RECORD([aTable])

Until (OK=0)

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, While...End while.

4th Dimension Language Reference 111

For...End for Language Definition

version 6.0
__

The formal syntax of the For...End for control flow structure is:

For (Counter_Variable; Start_Expression; End_Expression {; Increment_Expression})
statement(s)

End for

The For...End for loop is a loop controlled by a counter variable:

• The counter variable Counter_Variable is a numeric variable (Real, Integer, or Long
Integer) that the For...End for loop initializes to the value specified by Start_Expression.
• Each time the loop is executed, the counter variable is incremented by the value
specified in the optional value Increment_Expression. If you do not specify
Increment_Expression, the counter variable is incremented by one (1), which is the default.
• When the counter variable passes the End_Expression value, the loop stops.

Important: The numeric expressions Start_Expression, End_Expression and
Increment_Expression are evaluated once at the beginning of the loop. If these expressions
are variables, changing one of these variables within the loop will not affect the loop.

Tip: However, for special purposes, you can change the value of the counter variable
Counter_Variable within the loop; this will affect the loop.

• Usually Start_Expression is less than End_Expression.
• If Start_Expression and End_Expression are equal, the loop will execute only once.
• If Start_Expression is greater than End_Expression, the loop will not execute at all unless
you specify a negative Increment_Expression. See the examples.

Basic Examples
1. The following example executes 100 iterations:

For (vCounter;1;100)
` Do something

End for

2. The following example goes through all elements of the array anArray:

For ($vlElem;1;Size of array(anArray))
` Do something with the element

anArray{$vlElem}:=...
End for

112 4th Dimension Language Reference

3. The following example goes through all the characters of the text vtSomeText:

For ($vlChar;1;Length(vtSomeText))
` Do something with the character if it is a TAB

If (Ascii(vtSomeText£$vlChar³)=Char(Tab))
` ...

End if
End for

4. The following example goes through the selected records for the table [aTable]:

FIRST RECORD([aTable])
For ($vlRecord;1;Records in selection([aTable]))

` Do something with the record
SEND RECORD([aTable])

` ...
` Go to the next record

NEXT RECORD([aTable])
End for

Most of the For...End for loops you will write in your databases will look like the ones
listed in these examples.

Decrementing variable counter
In some cases, you may want to have a loop whose counter variable is decreasing rather
than increasing. To do so, you must specify Start_Expression greater than End_Expression
and a negative Increment_Expression. The following examples do the same thing as the
previous examples, but in reverse order:

5. The following example executes 100 iterations:

For (vCounter;100;1;-1)
` Do something

End for

6. The following example goes through all elements of the array anArray:

For ($vlElem;Size of array(anArray);1;-1)
` Do something with the element

anArray{$vlElem}:=...
End for

4th Dimension Language Reference 113

7. The following example goes through all the characters of the text vtSomeText:

For ($vlChar;Length(vtSomeText);1;-1)
` Do something with the character if it is a TAB

If (Ascii(vtSomeText£$vlChar³)=Char(Tab))
` ...

End if
End for

8. The following example goes through the selected records for the table [aTable]:

LAST RECORD([aTable])
For ($vlRecord;Records in selection([aTable]);1;-1)

` Do something with the record
SEND RECORD([aTable])

` ...
` Go to the previous record

PREVIOUS RECORD([aTable])
End for

Incrementing the counter variable by more than one
If you need to, you can use an Increment_Expression (positive or negative) whose absolute
value is greater than one.

9. The following loop addresses only the even elements of the array anArray:

For ($vlElem;2;((Size of array(anArray)+1)\2)*2;2)
` Do something with the element #2,#4...#2n

anArray{$vlElem}:=...
End for

Note that the ending expression ((Size of array(anArray)+1)\2)*2 takes care of even and
odd array sizes.

114 4th Dimension Language Reference

Getting out of a loop by changing the counter variable
In some cases, you may want to execute a loop for a specific number of iterations, but
then get out of the loop when another condition becomes TRUE. To do so, you can test
this condition within the loop and if it becomes TRUE, explicitly set the counter variable
to a value that exceeds the end expression.

10. In the following example, a selection of the records is browsed until this is actually
done or until the interprocess variable <>vbWeStop, intially set to FALSE, becomes TRUE.
This variable is handled by an ON EVENT CALL project method that allows you to interrupt
the operation:

<>vbWeStop:=False
ON EVENT CALL ("HANDLE STOP")

` HANDLE STOP sets <>vbWeStop to True if Ctrl-period (Windows) or Cmd-Period
(Macintosh) is pressed

$vlNbRecords:=Records in selection([aTable])
FIRST RECORD([aTable])
For ($vlRecord;1;$vlNbRecords)

` Do something with the record
SEND RECORD([aTable])

` ...
` Go to the next record

If (<>vbWeStop)
$vlRecord:=$vlNbRecords+1 ` Force the counter variable to get out of the loop

Else
NEXT RECORD([aTable])

End if
End for
ON EVENT CALL("")
If (<>vbWeStop)

ALERT("The operation has been interrupted.")
Else

ALERT("The operation has been successfully completed.")
End if

4th Dimension Language Reference 115

Comparing looping structures
Let's go back to the first For...End for example:

The following example executes 100 iterations:

For (vCounter;1;100)
` Do something

End for

It is interesting to see how the While...End while loop and Repeat...Until loop would
perform the same action.

Here is the equivalent While...End while loop:

$i := 1 ` Initialize the counter
While ($i<=100) ` Loop 100 times

` Do something
$i := $i + 1 ` Need to increment the counter

End while

Here is the equivalent Repeat...Until loop:

$i := 1 ` Initialize the counter
Repeat

` Do something
$i := $i + 1 ` Need to increment the counter

Until ($i=100) ` Loop 100 times

Tip: The For...End for loop is usually faster than the While...End while and Repeat...Until
loops, because 4th Dimension tests the condition internally for each cycle of the loop and
increments the counter. Therefore, use the For...End for loop whenever possible.

Optimizing the execution of the For...End for loops
You can use Real, Integer, and Long Integer variables as well as interprocess, process, and
local variable counters. For lengthy repetitive loops, especially in compiled mode, use local
Long Integer variables.

11. Here is an example:

C_LONGINT($vlCounter) ` use local Long Integer variables
For ($vlCounter;1;10000)

` Do something
End for

116 4th Dimension Language Reference

Nested For...End for looping structures
You can nest as many control structures as you (reasonably) need. This includes nesting
For...End for loops. To avoid mistakes, make sure to use different counter variables for each
looping structure.

Here are two examples:

12. The following example goes through all the elements of a two-dimensional array:

For ($vlElem;1;Size of array(anArray))
` ...
` Do something with the row
` ...

For ($vlSubElem;1;Size of array(anArray{$vlElem}))
` Do something with the element
anArray{$vlElem}{$vlSubElem}:=...

End for
End for

13. The following example builds an array of pointers to all the date fields present in the
database:

ARRAY POINTER($apDateFields;0)
$vlElem:=0
For ($vlTable;1;Count table)

For($vlField;1;Count fields($vlTable))
$vpField:=Field($vlTable;$vlField)
If (Type($vpField->)=Is Date)

$vlElem:=$vlElem+1
INSERT ELEMENT($apDateFields;$vlElem)
$apDateFields{$vlElem}:=$vpField

End if
End for

End for

See Also
Case of...Else...End case, Control Flow, If...Else...End if, Repeat...Until, While...End while.

4th Dimension Language Reference 117

Methods Language Definition

version 6.0
__

In order to make the commands, operators, and other parts of the language work, you
put them in methods. There are several kinds of methods: Object methods, Form
methods, Table methods (Triggers), Project methods, and Database methods. This section
describes features common to all types of methods.

A method is composed of statements; each statement consists of one line in the method.
A statement performs an action, and may be simple or complex. Although a statement is
always one line, that one line can be as long as needed (up to 32,000 characters, which is
probably enough for most tasks).

For example, the following line is a statement that will add a new record to the [People]
table:

ADD RECORD([People])

A method also contains tests and loops that control the flow of the execution. For a
detailed discussion about the control flow programming structures, see the section Control
Flow.

Types of Methods
__

There are five types of methods in 4th Dimension:

• Object methods: An object method is a property of an object. It is a usually a short
method associated with an active form object. Object methods generally “manage” the
object while the form is displayed or printed. You do not call an object method—4D calls
it automatically when an event involves the object to which the object method is
attached.

• Form methods: A form method is a property of a form. You can use a form method to
manage data and objects, but it is generally simpler and more efficient to use an object
method for these purposes. You do not call a form method—4D calls it automatically
when an event involves the form to which the form method is attached.

For more information about Object methods and Form methods, see the 4th Dimension
Design Reference Manual as well as the section Form event.

118 4th Dimension Language Reference

• Table methods (Triggers): A Trigger is a property of a table. You do not call a Trigger.
Triggers are automatically invoked by the 4D database engine each time that you
manipulate the records of a table (Add, Delete, Modify and Load). Triggers are methods
that can prevent “illegal” operations with the records of your database. For example, in an
invoicing system, you can prevent anyone from adding an invoice without specifying
the customer to whom the invoice is billed. Triggers are a very powerful tool to restrict
operations on a table, as well as to prevent accidental data loss or tampering. You can
write very simple triggers, and then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

• Project methods: Unlike object methods, form methods, and triggers, which are all
associated with a particular object, form, or table, project methods are available for use
throughout your database. Project methods are reusable, and available for use by any
other method. If you need to repeat a task, you do not have to write identical methods
for each case. You can call project methods wherever you need them—from other project
methods or from object or form methods. When you call a project method, it acts as if
you had written the method at the location where you called it. Project methods called
from other method are often referred to as “subroutines.” A project method that returns a
result can also be called a function.

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu is chosen. You can think of the menu command as calling the project
method.

For detailed information about Project methods, see the section Project Methods.

• Database methods: In the same way object and form methods are invoked when events
occur in a form, there are methods associated with the database that are invoked when a
working session event occurs. These are the database methods. For example, each time
you open a database, you may want to initialize some variables that will be used during
the whole working session. To do so, you use the On Startup Database Method,
automatically executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

Compatiblity with previous versions of 4D
You can skip these compatibility notes if you work with brand-new databases created with
version 6 of 4th Dimension.

1. Version 6 introduces many new object and form events (such as On Double Clicked, On
Getting Focus, and so on) that replace the execution cycles from the previous versions. If
you have converted a version 3 database to version 6, your forms have been converted in
order to preserve as much as the “expected behavior” of your forms and objects.

4th Dimension Language Reference 119

If you want to take advantage of the new events for forms and objects created with a
previous version of 4D, you must enable the new events in the Form Properties and
Object Properties windows for the forms and the objects.

2. Table method, also called trigger, is a new type of method introduced in version 6. In
previous versions of 4th Dimension, table methods (called file procedures) were executed
by 4D only when a form for a table was used for data entry, display, or printing. They
were rarely used. Note that triggers execute at a much lower level that the old file
procedures. No matter what you do to a record via user actions (like data entry) or
programmatically (like a call to SAVE RECORD), the trigger of a table will be invoked by
4D. Triggers are truly quite different from the old file procedures. If you have converted a
version 3 database to version 6, and if you want to take advantage of the new Trigger
capability, you must deselect the Use Old File Procedures Scheme property in the
Database Properties dialog box (shown in this section).

3. Database methods is a new type of method introduced in version 6. In previous
versions of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you have
converted a version 3 database to version 6, and if you want to take advantage of the new
On Startup Database Method capability, you must deselect the Use Old Startup Method
property in the Database Properties dialog box (shown in this section). This property
only affects the STARTUP/On Startup Database Method alternative. If you do not deselect
this property and add, for instance, an On Exit Database Method, this latter will be
invoked by 4D.

120 4th Dimension Language Reference

An Example Project Method
__

All methods are fundamentally the same—they start at the first line and work their way
through each statement until they reach the last line (i.e., they execute sequentially).
Here is an example project method:

QUERY ([People]) ` Display the Query editor
If (OK=1) ` The user clicked OK, not cancel

If (Records in selection([People])=0) ` If no record was found…
ADD RECORD([People]) ` Let the user add a new record

End if
End if ` The end

Each line in the example is a statement or line of code. Anything that you write using
the language is loosely referred to as code. Code is executed or run; this means that 4th
Dimension performs the task specified by the code.

We will examine the first line in detail and then move on more quickly:

QUERY([People]) ` Display the Query editor

The first element in the line, QUERY, is a command. A command is part of the 4th
Dimension language—it performs a task. In this case, QUERY displays the Query editor.
This is similar to choosing Query from the Queries menu in the User environment.

The second element in the line, specified between parantheses, is an argument to the
QUERY command. An argument (or parameter) is data required by a command in order
to complete its task. In this case, [People] is the name of a table. Table names are always
specified inside square brackets ([…]). In our example, the People table is an argument to
the QUERY command. A command can accept several parameters.

The third element is a comment at the end of the line. A comment tells you (and anyone
else who might read your code) what is happening in the code. It is indicated by the
reverse apostrophe (`). Anything (on the line) following the comment mark will be
ignored when the code is run. A comment can be put on a line by itself, or you can put
comments to the right of the code, as in the example. Use comments generously
throughout your code; this makes it easier for you and others to read and understand the
code.

Note: A comment can be up to 80 characters long.

4th Dimension Language Reference 121

The next line of the method checks to see if any records were found:

If (Records in selection([People]) = 0) ` If no record was found…

The If statement is a control-of-flow statement—a statement that controls the step-by-
step execution of your method. The If statement performs a test, and if the statement is
true, execution continues with the subsequent lines. Records in selection is a function—a
command that returns a value. Here, Records in selection returns the number of records in
the current selection for the table passed as argument.

Note: Notice that only the first letter of the function name is capitalized. This is the
naming convention for 4th Dimension functions.

You should already know what the current selection is—it is the group of records you are
working on at any one time. If the number of records is equal to 0 (in other words, if no
record was found), then the following line is executed:

ADD RECORD([People]) ` Let the user add a new record

The ADD RECORD command displays a form so that the user can add a new record. 4th
Dimension formats your code automatically; notice that this line is indented to show you
that it is dependent on the control-of-flow statement (If).

End if ` The end

The End if statement concludes the If statement’s section of control. Whenever there is a
control-of-flow statement, you need to have a corresponding statement telling the
language where the control stops.

Be sure you feel comfortable with the concepts in this section. If they are all new, you
may want to review them until they are clear to you.

Where to go from here?
To learn more about:
• Object methods and Form methods, see the section Form event.
• Triggers, see the section Triggers.
• Project methods, see the section Project Methods.
• Database methods, see the section Database Methods.

See Also
Arrays, Constants, Control Flow, Data Types, Database Methods, Identifiers, Operators,
Pointers, Triggers, Variables.

122 4th Dimension Language Reference

Project Methods Language Definition

version 6.0
__

Project methods are aptly named. Whereas form and object methods are bound to forms
and objects, a project method is available anywhere; it is not specifically attached to any
particular object of the database. A project method can have one of the following roles,
depending on how it is executed and used:

• Menu method
• Subroutine and function
• Process method
• Event catching method
• Error catching method

These terms do not distinguish project methods by what they are, but by what they do.

A menu method is a project method called from a custom menu. It directs the flow of
your application. The menu method takes control—branching where needed, presenting
forms, generating reports, and generally managing your database.

The subroutine is a project method that can be thought of as a servant. It performs those
tasks that other methods request it to perform. A function is a subroutine that returns a
value to the method that called it.

A process method is a project method that is called when a process is started. The process
lasts only as long as the process method continues to execute. For more information
about processes, see the section Processes. Note that a menu method attached to a menu
command whose property Start a New Process is selected, is also the process method for
the newly started process.

An event catching method runs in a separate process as the process method for catching
events. Usually, you let 4D do most of the event handling for you. For example, during
data entry, 4D detects keystrokes and clicks, then calls the correct object and form
methods so you can respond appropriately to the events from within these methods. In
other circumstances, you may want to handle events directly. For example, if you run a
lengthy operation (such as For...End For loop browsing records), you may want to be able
to interrupt the operation by typing Ctrl-Period (Windows) or Cmd-Period (Macintosh).
In this case, you should use an event catching method to do so. For more information,
see the description of the command ON EVENT CALL.

An error catching method is an interrupt-based project method. Each time an error or an
exception occurs, it executes within the process in which it was installed. For more
information, see the description of the command ON ERR CALL.

4th Dimension Language Reference 123

Menu Methods
__

A menu method is invoked in the Custom Menus environment when you select the
custom menu command to which it is attached. You assign the method to the menu
command using the Menu editor. The menu executes when the menu command is
chosen. This process is one of the major aspects of customizing a database. By creating
custom menus with menu methods that perform specific actions, you personalize your
database. Refer to the 4th Dimension Design Reference manual for more information about
the Menu editor.

Custom menu commands can cause one or more activities to take place. For example, a
menu command for entering records might call a method that performs two tasks:
displaying the appropriate input form, and calling the ADD RECORD command until the
user cancels the data entry activity.

Automating sequences of activities is a very powerful capability of the programming
language. Using custom menus, you can automate task sequences that would otherwise be
carried out manually in the User environment. With custom menus, you provide more
guidance to users of the database.

Subroutines
__

When you create a project method, it becomes part of the language of the database in
which you create it. You can then call the project method in the same way that you call
4th Dimension’s built-in commands. A project method used in this way is called a
subroutine.

You use subroutines to:
• Reduce repetitive coding
• Clarify your methods
• Facilitate changes to your methods
• Modularize your code

For example, let’s say you have a database of customers. As you customize the database,
you find that there are some tasks that you perform repeatedly, such as finding a
customer and modifying his or her record. The code to do this might look like this:

` Look for a customer
QUERY BY EXAMPLE([Customers])

` Select the input form
INPUT FORM([Customers];"Data Entry")

` Modify the customer's record
MODIFY RECORD([Customers])

124 4th Dimension Language Reference

If you do not use subroutines, you will have to write the code each time you want to
modify a customer’s record. If there are ten places in your custom database where you
need to do this, you will have to write the code ten times. If you use subroutines, you will
only have to write it once. This is the first advantage of subroutines—to reduce the
amount of code.

If the previously described code was a method called MODIFY CUSTOMER, you would
execute it simply by using the name of the method in another method. For example, to
modify a customer’s record and then print the record, you would write this method:

MODIFY CUSTOMER
PRINT SELECTION([Customers])

This capability simplifies your methods dramatically. In the example, you do not need to
know how the MODIFY CUSTOMER method works, just what it does. This is the second
reason for using subroutines—to clarify your methods. In this way, your methods become
extensions to the 4th Dimension language.

If you need to change your method of finding customers in this example database, you
will need to change only one method, not ten. This is the next reason to use
subroutines—to facilitate changes to your methods.

Using subroutines, you make your code modular. This simply means dividing your code
into modules (subroutines), each of which performs a logical task. Consider the following
code from a checking account database:

FIND CLEARED CHECKS ` Find the cleared checks
RECONCILE ACCOUNT ` Reconcile the account
PRINT CHECK BOOK REPORT ` Print a checkbook report

Even for someone who doesn’t know the database, it is clear what this code does. It is not
necessary to examine each subroutine. Each subroutine might be many lines long and
perform some complex operations, but here it is only important that it performs its task.

We recommend that you divide your code into logical tasks, or modules, whenever
possible.

4th Dimension Language Reference 125

Passing Parameters to Methods
__

You’ll often find that you need to pass data to your methods. This is easily done with
parameters.

Parameters (or arguments) are pieces of data that a method needs in order to perform its
task. The terms parameter and argument are used interchangeably throughout this
manual. Parameters are also passed to built-in 4th Dimension commands. In this example,
the string “Hello” is an argument to the ALERT command:

ALERT("Hello")

Parameters are passed to methods in the same way. For example, if a method named DO
SOMETHING accepted three parameters, a call to the method might look like this:

DO SOMETHING(WithThis;AndThat;ThisWay)

The parameters are separated by semicolons (;).

In the subroutine (the method that is called), the value of each parameter is automatically
copied into sequentially numbered local variables: $1, $2, $3, and so on. The numbering
of the local variables represents the order of the parameters.

The local variables/parameters are not the actual fields, variables, or expressions passed by
the calling method; they only contain the values that have been passed.

Within the subroutine, you can use the parameters $1, $2... in the same way you would
use any other local variable.

Since they are local variables, they are available only within the subroutine and are cleared
at the end of the subroutine. For this reason, a subroutine cannot change the value of the
actual fields or variables passed as parameters at the calling method level. For example:

` Here is some code from the method MY METHOD
` ...

DO SOMETHING ([People]Last Name) ` Let's say [People]Last Name is equal to "williams"
ALERT([People]Last Name)

` Here the code of the method DO SOMETHING
$1:=Uppercase($1)
ALERT($1)

The alert box displayed by DO SOMETHING will read “WILLIAMS” and the alert box
displayed by MY METHOD will read “williams”. The method locally changed the value of
the parameter $1, but this does not affect the value of the field [People]Last Name passed
as parameter by the method MY METHOD.

126 4th Dimension Language Reference

There are two ways to make the method DO SOMETHING change the value of the field:

1. Rather than passing the field to the method, you pass a pointer to it, so you would
write:

` Here is some code from the method MY METHOD
` ...
` Let's say [People]Last Name is equal to "williams"

DO SOMETHING (->[People]Last Name)
ALERT([People]Last Name)

` Here the code of the method DO SOMETHING
$1->:=Uppercase($1->)
ALERT($1->)

Here the parameter is not the field, but a pointer to it. Therefore, within the DO
SOMETHING method, $1 is no longer the value of the field but a pointer to the field. The
object referenced by $1 ($1-> in the code above) is the actual field. Consequently,
changing the referenced object goes beyond the scope of the subroutine, and the actual
field is affected. In this example, both alert boxes will read “WILLIAMS”.

For more information about Pointers, see the section Pointers.

2. Rather than having the method DO SOMETHING “doing something,” you can rewrite
the method so it returns a value. Thus you would write:

` Here is some code from the method MY METHOD
` ...
` Let's say [People]Last Name is equal to "williams"

[People]Last Name:=DO SOMETHING ([People]Last Name)
ALERT([People]Last Name)

` Here the code of the method DO SOMETHING
$0:=$1
ALERT($0)

This second technique of returning a value by a subroutine is called “using a function.”
This is described in the next paragraphs.

Advanced note: Parameters within the subroutine are accessible through the local
variables $1, $2... In addition, parameters can be optional and can be referred to using the
syntax ${...}. For more information on parameters, see the description of the command
Count parameters.

4th Dimension Language Reference 127

Functions: Project Methods that return a value
__

Data can be returned from methods. A method that returns a value is called a function.

4D or 4D Plug-in commands that return a value are also called functions.

For example, the following line is a statement that uses the built-in function, Length, to
return the length of a string. The statement puts the value returned by Length in a
variable called MyLength. Here is the statement:

MyLength:=Length("How did I get here?")

Any subroutine can return a value. The value to be returned is put into the local variable
$0.

For example, the following function, called Uppercase4, returns a string with the first four
characters of the string passed to it in uppercase:

$0:=Uppercase(Substring($1; 1; 4))+Substring($1; 5)

The following is an example that uses the Uppercase4 function:

NewPhrase:=Uppercase4 ("This is good.")

In this example, the variable NewPhrase gets “THIS is good.”

The function result, $0, is a local variable within the subroutine. It can be used as such
within the subroutine. For example, in the previous DO SOMETHING example, $0 was first
assigned the value of $1, then used as parameter to the ALERT command. Within the
subroutine, you can use $0 in the same way you would use any other local variable. It is
4D that returns the value of $0 (as it is when the subroutine ends) to the called method.

Recursive Project Methods
__

Project methods can call themselves. For example:
• The method A may call the method B which may call A, so A will call B again and so on.
• A method can call itself.

This is called recursivity. The 4D language fully supports recursivity.

Here is an example. Let’s say you have a [Friends and Relatives] table composed of this
extremely simplified set of fields:
- [Friends and Relatives]Name
- [Friends and Relatives]Children'Name

128 4th Dimension Language Reference

For this example, we assume the values in the fields are unique (there are no two persons
with the same name). Given a name, you want to build the sentence “A friend of mine,
John who is the child of Paul who is the child of Jane who is the child of Robert who is
the child of Eleanor, does this for a living!”:

1. You can build the sentence in this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)

QUERY([Friends and Relatives];[Friends and Relatives]Name=$vsName)
If (Records in selection([Friends and Relatives])>0)

$vtTheWholeStory:="A friend of mine, "+$vsName
Repeat

QUERY([Friends and Relatives];[Friends and Relatives]Children'Name=$vsName)
$vlQueryResult:=Records in selection([Friends and Relatives])
If ($vlQueryResult>0)

$vtTheWholeStory:=$vtTheWholeStory+" who is the child of "
+[Friends and Relatives]Name

$vsName:=[Friends and Relatives]Name
End if

Until ($vlQueryResult=0)
$vtTheWholeStory:=$vtTheWholeStory+", does this for a living!"
ALERT($vtTheWholeStory)

End if
End if

2. You can also build it this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)

QUERY([Friends and Relatives];[Friends and Relatives]Name=$vsName)
If (Records in selection([Friends and Relatives])>0)

ALERT("A friend of mine, "+Genealogy of ($vsName)+", does this for a living!")
End if

End if

with the recursive function Genealogy of listed here:

` Genealogy of project method
` Genealogy of (String) -> Text
` Genealogy of (Name) -> Part of sentence

$0:=$1
QUERY([Friends and Relatives];[Friends and Relatives]Children'Name=$1)
If (Records in selection([Friends and Relatives])>0)

$0:=$0+" who is the child of "+Genealogy of ([Friends and Relatives]Name)
End if

4th Dimension Language Reference 129

Note the Genealogy of method which calls itself.

The first way is an iterative algorithm. The second way is a recursive algorithm.

When implementing code for cases like the previous example, it is important to note that
you can always write methods using iteration or recursivity. Typically, recursivity provides
more concise, readable, and maintainable code, but using it is not mandatory.

Some typical uses of recursivity in 4D are:
• Treating records within tables that relate to each other in the same way as in the
example.
• Browsing documents and folders on your disk, using the commands FOLDER LIST and
DOCUMENT LIST. A folder may contain folders and documents, the subfolders can
themselves contain folders and documents, and so on.

Important: Recursive calls should always end at some point. In the example, the method
Genealogy of stops calling itself when the query returns no records. Without this
condition test, the method would call itself indefinitely; eventually, 4D would return a
“Stack Full” error becuase it would no longer have space to “pile up” the calls (as well as
parameters and local variables used in the method).

See Also
Control Flow, Database Methods, Methods.

130 4th Dimension Language Reference

3 4D Environment

4th Dimension Language Reference 131

132 4th Dimension Language Reference

Application type 4D Environment

version 6.0
__

Application type ® Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer ¬ Numeric value denoting the type of the
application

Description
The Application type command returns a numeric value that denotes the type of 4D
environment that you are running. 4D provides the following predefined constants:
Constant Type Value
4th Dimension Long Integer 0
4D Engine Long Integer 1
4D Runtime Long Integer 2
4D Runtime Classic Long Integer 3
4D Client Long Integer 4
4D Server Long Integer 5
4D First Long Integer 6

Example
Somewhere in your code, other than in the On Server Startup database method, you need
to check if you are running 4D Server. You can write:

Þ If (Application type=4D Server)
` Perform appropriate actions

End if

See Also
Application version, Version type.

4th Dimension Language Reference 133

Version type 4D Environment

version 6.0
__

Version type ® Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer ¬ 0 -> Full version
1 -> Demo Limited version

Description
The Version type command returns a numeric value that denotes the type of 4D
environment version that you are running. 4D provides the following predefined
constants:
Constant Type Value
Full Version Long Integer 0
Demo Version Long Integer 1

Example
Your 4D application includes some features that are not available when a demo version of
the 4D environment is used. Surround these features with a test that calls Version type:

Þ If (Version type=Full Version)
` Perform appropriate operations

Else
ALERT("This feature is not available in the Demo version of"

+" Super Management Systems™.")
End if

See Also
Application type, Application version.

134 4th Dimension Language Reference

Application version 4D Environment

version 6.0
__

Application version {(*)} ® String

Parameter Type Description
* * ® Long version number if passed, otherwise

Short version number

Function result String ¬ Version number encoded string

Description
The Application version command returns an encoded string value that expresses the
version number of the 4D environment you are running.

• If you do not pass the optional * parameter, a 4-character string is returned, formatted as
follows:
Characters Description
1-2 Version number
3 Update number
4 Revision number

Example: The string "0600" stands for version 6.0.0.

• If you pass the optional * parameter, an 8-character string is returned, formatted as
follows:
Characters Description
1 "F" denotes a final version

"B" denotes a beta version
Other characters denote an ACI internal version

2-3-4 Internal ACI compilation number
5-6 Version number
7 Update number
8 Revision number

Example: The string "B0120602" would stand for the Beta 12 of version 6.0.2.

4th Dimension Language Reference 135

Examples
1. This example displays the 4D environment version number:

Þ $vs4Dversion:=Application version
ALERT("You are using the version "+String(Num(Substring($vs4Dversion;1;2)))

+"."+$vs4Dversion[[3]]+"."+$vs4Dversion[[4]])

2. This example tests to verify that you are using a final version:

Þ If(Subtring(Application version(*);1;1)#"F")
ALERT("Please make sure you are using a Final Production version of 4D

 with this database!")
QUIT 4D

End if

See Also
Application type, Version type.

136 4th Dimension Language Reference

Compiled application 4D Environment

version 6.0
__

Compiled application ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ Compiled (True), Interpreted (False)

Description
Compiled application tests whether you are running in compiled mode (True) or
interpreted mode (False).

Example
In one of your routines, you include debugging code useful only when you are running
in interpreted mode, so surround this debugging code with a test that calls Compiled
application:

` ...
Þ If (Not(Compiled application))

` Include debugging code here
End if

` ...

See Also
IDLE, Undefined.

4th Dimension Language Reference 137

PLATFORM PROPERTIES 4D Environment

version 3
__

PLATFORM PROPERTIES (platform{; system{; machine}})

Parameter Type Description
platform Number ¬ 1 68K-based Macintosh

2 Power Macintosh
3 Windows

system Number ¬ Depends on the version you are running
machine Number ¬ Depends on the version you are running

Description
The PLATFORM PROPERTIES command returns information about the type of platform
you are running, the version of the operating system, and the processor installed on your
machine.

PLATFORM PROPERTIES returns environment information in the parameters platform,
system, and machine.

Platform indicates whether you are running a 68K or PowerPC-based Macintosh, or
Windows version of 4 th Dimension. This parameter returns one the following predefined
constants:

Constant Type Value
Macintosh 68K Long Integer 1
Power Macintosh Long Integer 2
Windows Long Integer 3

The information returned in system and machine depends on the version of 4th
Dimension you are running.

Macintosh (both 68K and PowerPC versions)
If you are running a MacOS version of 4th Dimension, the system and machine
parameters return the following information.

• The system parameter returns a 32-bit (Long Integer) value, for which the high level
word is unused and the low level word is structured like this:
- The high byte contains the major version number,
- The low byte is composed of two nibbles (4 bits each). The high nibble is the major
update version number and the low nibble is the minor update version. Example: System
7.5.1 is coded as $0751, so you receive the decimal value 1873.

138 4th Dimension Language Reference

Note: In 4D, you can extract these values using the % (modulo) and \ (integer division)
numeric operators or the bitwise operators introduced in version 6.

• The Machine parameter returns a unique ID number identifying the model of
Macintosh.

Note: An update list of these unique ID numbers is published by Apple Computer, Inc. in
its Developer and Technical documentation. New values may be added when Apple or
other manufacturers release new models of the Macintosh.

Windows version
If you are running the Windows version of 4 th Dimension, system and machine return
the following information.

• The system parameter returns a 32-bit (Long Integer) value, the bits and bytes of which
are structured as follows:

If the high level bit is set to 1, it means you are running one of the types of Windows NT.
If the bit is set to 0, it means you are running Windows 3.1 or Window 95.

Note: The high level bit fixes the sign of the long integer value. Therefore, in 4D, you
just need to test the sign of the value; if it is positive you are running Windows NT. You
can also use the bitwise operators introduced in version 6.

The low byte gives the major Windows version number. If it returns 3, you are running
version 3.x of Windows or Window NT. If it returns 4, you are running Windows 95 or
Windows NT 4. In both cases, the sign of the value tells whether or not you are running
NT.

The next low byte gives the minor Windows version number.

Note: In 4D, you can extract these values using the % (modulo) and \ (integer division)
numeric operators or the bitwise operators introduced in version 6.

• The machine parameter returns one the following predefined constants:
Constant Type Value
INTEL 386 Long Integer 386
INTEL 486 Long Integer 486
Pentium Long Integer 586
PowerPC 601 Long Integer 601
PowerPC 603 Long Integer 603
PowerPC 604 Long Integer 604

Note: Under Windows 3.1.x, machine returns 486 even though your machine is equipped
with a Pentium processor.

4th Dimension Language Reference 139

Example
The following project method displays an alert box showing the OS software you are
using:

` SHOW OS VERSION project method

Þ PLATFORM PROPERTIES($vlPlatform;$vlSystem;$vlMachine)
If (($vlPlatform<1) | (3<$vlPlatform))

$vsPlatformOS:=""
Else

If ($vlPlatform=3)
$vsPlatformOS:=""
If ($vlSystem<0)

$winMajVers:=((2^31)+$vlSystem)%256
$winMinVers:=(((2^31)+$vlSystem)\256)%256
If ($winMajVers>=4)

$vsPlatformOS:="Windows™ 95"
Else

$vsPlatformOS:="Windows™ (with Win32s)"
End if

Else
$winMajVers:=$vlSystem%256
$winMinVers:=($vlSystem\256)%256
$vsPlatformOS:="Windows™ NT"

End if
$vsPlatformOS:=$vsPlatformOS+" version

"+String($winMajVers)+"."+String($winMinVers)
Else

$vsPlatformOS:="MacOS™ version
"+String($vlSystem\256)+"."+String(($vlSystem\16)%16)

+(("."+String($vlSystem%16))*Num(($vlSystem%16) # 0))
End if

End if
ALERT($vsPlatformOS)

On Windows, you get an alert box similar to this:

140 4th Dimension Language Reference

On Macintosh, you get an alert box similar to this:

See Also
Bitwise Operators.

4th Dimension Language Reference 141

Application file 4D Environment

version 6.0
__

Application file ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Long name of the 4D executable file or
application

Description
The Application file command returns the long name of the 4D executable file or
application you are running.

On Windows
If, for example, you are running 4th Dimension located at \4DWIN600\PROGRAM on
the volume E, the command returns E:\4DWIN600\PROGRAM\4D.EXE.

On Macintosh
If, for example, you are running 4th Dimension in the folder 4th Dimension® 6.0ƒ on
the disk Macintosh HD, the command returns Macintosh HD:4th Dimension® 6.0ƒ:4th
Dimension® 6.0.

Example
At startup on Windows, you need to check if a DLL Library is correctly located at the
same level as the 4D executable file. In the On Startup database method of your
application you can write:

If (On Windows & (Application type#4D Server))
Þ If (Test path name (Long name to path name (

Application file)+"XRAYCAPT.DLL")#Is a document)
` Display a dialog box explaining that the library XRAYCAPT.DLL
` is missing. Therefore, the X-rays capture capabilitity will not be available.

End if
End if

Note: The project methods On Windows and Long name to path name are listed in the
section System Documents.

See Also
Data file, DATA SEGMENT LIST, Structure file.

142 4th Dimension Language Reference

Structure file 4D Environment

version 6.0
__

Structure file ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Long name of the database structure file

Description
The Structure file command returns the long name of structure file for the database with
which you are currently working.

On Windows
If, for example, you are working with the database MyCDs located in \DOCS\MyCDs on
the volume G, the command returns G:\DOCS\MyCDs\MyCDs.4DB.

On Macintosh
If, for example, you are are working with the database located in the folder
Documents:MyCDsƒ: on the disk Macintosh HD, the command returns Macintosh
HD:Documents:MyCDsƒ:MyCDs.

WARNING: If you call this command while running 4D Client, only the name of the
structure file is returned; the long name is not returned.

Example
This example displays the name and the location of the structure file currently in use:

If (Application type#4D Client)
Þ $vsStructureFilename:=Long name to file name (Structure file)
Þ $vsStructurePathname:=Long name to path name (Structure file)

ALERT("You are currently using the database "+
Char(34)+$vsStructureFilename+Char(34)+" located at "+

Char(34)+$vsStructurePathname+Char(34)+".")
Else

Þ ALERT("You are connected to the database "+Char(34)+Structure file+Char(34))
End if

Note: The project methods Long name to file name and Long name to path name are listed
in the section System Documents.

See Also
Application file, Data file, DATA SEGMENT LIST.

4th Dimension Language Reference 143

Data file 4D Environment

version 6.0
__

Data file {(segment)} ® String

Parameter Type Description
segment Number ® Segment number

Function result String ¬ Long name of the data file for the database

Description
The Data file command returns the long name of the data file or one data segment for the
database with which you are currently working.

If you do not pass the segment parameter, it returns the long name of the data file or the
first segment (if the database is segmented). If you pass the segment parameter, it returns
the long name of the corresponding data segment. If you pass a segment number greater
than the number of data segments, it returns an empty string.

On Windows
If, for example, you are working with the database MyCDs located at \DOCS\MyCDs on
the volume G, a call to Data file returns G:\DOCS\MyCDs\MyCDs.4DD (provided that
you accepted the default location and name proposed by 4D when you created the
database).

On Macintosh
If, for example, you are working with the database located in the folder
Documents:MyCDsƒ: on the disk Macintosh HD, a call to Data file returns Macintosh
HD:Documents:MyCDsƒ:MyCDs.data (provided that you accepted the default location
and name proposed by 4D when you created the database).

WARNING: If you call this command while running 4D Client, only the name of the data
file or the first data segment is returned, not the long name. In addition, even though
the database is segmented, the command returns an empty string for the other data
segments. If you need (for adminstrative purposes) to display a list of the data segments
on a 4D Client station, use a Stored Procedure to build the data segment list and store it in
a variable on the server machine, then get the contents of this variable using the GET
PROCESS VARIABLE command.

144 4th Dimension Language Reference

Example
The following code goes through the data segments of a database.

If (Application type#4D Client)
$vlDataSegNum:=0
Repeat

$vlDataSegNum:=$vlDataSegNum+1
Þ $vsDataSegName:=Data file($vlDataSegNum)

If ($vsDataSegName#"")
ALERT ("Data segment "+String($vlDataSegNum)+":"+Char(34)+

$vsDataSegName+Char(34)+".")
End if

Until ($vsDataSegName="")
ALERT("There is/are "+String($vlDataSegNum-1)+"data segment(s).")

End if

See Also
Application file, DATA SEGMENT LIST, Structure file.

4th Dimension Language Reference 145

ACI folder 4D Environment

version 6.0
__

ACI folder ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Pathname to ACI Folder

Description
The ACI folder command returns the pathname to the ACI folder located in the active
system folder or directory.

On Windows
The ACI directory (folder) is named ACI and is located in the active WINDOWS directory
(usually C:\WINDOWS). This is why the ACI folder command usually returns the
pathname C:\WINDOWS\ACI\. However, PC computers can be set up with multi-boot
configurations, and, the location and name of the active WINDOWS directory can be
customized during installation. Therefore, if you want to save your own files (documents)
in the ACI folder, this command enables you to get the actual pathname to that
directory.

On Macintosh
The ACI folder is named ACI and is located in the Preferences folder of the active system
folder. Typically, the pathname Macintosh HD:System folder:Preferences:ACI: is the value
returned by the ACI folder command after a fresh installation of 4D. Because Macintosh
users can rename their disks and system folders, the pathname to the ACI folder can vary.
Therefore, if you want to save your own documents (files) in the ACI folder, this
command enables you to get the actual pathname to this folder.

Platform Independence and International: By using the ACI folder command to get the
actual pathname to that folder, you also ensure that your code will work on any platform
running any localized system.

146 4th Dimension Language Reference

The 4D environment uses the ACI folder to store the following information:
• User registration files
• Preferences files used by the 4D environment applications, tools, and utility programs
• 4D Client/Server or Internet/Intranet Network Components (on Windows only, within
the ...\ACI\NETWORK directory) as well as their option files
• .rex and res files created by 4D Client for storing resources downloaded from 4D Server
• Local database folders created by 4D Client for storing the 4D Extensions downloaded
from 4D Server

WARNING: You are free to store whatever files or documents you wish into the ACI
folder, however, it is good idea not to move or modify the files created by the 4D
environment itself.

Example
During the startup of a single-user database, you want to load (or create) your own
settings in a file located in the ACI folder. To do so, in the On Startup database method,
you can write code similar to this:

MAP FILE TYPES("PREF";"PRF";"Preferences file")
` Map PREF MacOS file type to .PRF Windows file extension

Þ $vsPrefDocName:=ACI folder+"MyPrefs" ` Build pathname to the Preferences file
` Check if the file exists

If (Test pathname($vsPrefDocName+(".PRF"*Num(On Windows)))#Is a document)
$vtPrefDocRef:=Create document($vsPrefDocName;"PREF") ` If not, create it

Else
$vtPrefDocRef:=Open document($vsPrefDocName;"PREF") ` If so, open it

End if
If (OK=1)

` Process document contents
CLOSE DOCUMENT($vtPrefDocRef)

Else
` Handle error

End if

See Also
System folder, Temporary folder, Test path name.

4th Dimension Language Reference 147

DATA SEGMENT LIST 4D Environment

version 6.0
__

DATA SEGMENT LIST (Segments)

Parameter Type Description
Segments String array ¬ Long names of data segments for the database

Description
DATA SEGMENT LIST populates the segments array with the long names of the data
segments for the database with which you are currently working.

WARNING: This command does nothing if executed on 4D Client. If you need (for
administrative purposes) to display a list of the data segments on a 4D Client station, use
a Stored Procedure to build the data segment list and store it in a variable on the server
machine, then get the contents of this variable using the GET PROCESS VARIABLE
command.

Examples
1. In the Data Segments Information form for the [Dialogs] table, you want to display a
drop-down list populated with the names of the data segments. To do so, write:

` [Dialogs];"Data Segments Information" form method
Case of

: (Form event=On Load)
` ...

ARRAY STRING(255;asDataSegName;0)
Þ DATA SEGMENT LIST(asDataSegName)

` ...
End case

2. The following method tells you if a database is segmented.
` Is data file segmented -> Boolean

C_BOOLEAN ($0)
Þ DATA SEGMENT LIST($asDataSegName)

$0:=(Size of array($asDataSegName)>1)

148 4th Dimension Language Reference

3. After a call to ADD DATA SEGMENT, you want to test whether the user added new
segments.

Þ DATA SEGMENT LIST($asBefore)
ADD DATA SEGMENT

Þ DATA SEGMENT LIST($asAfter)
If(Size of array($asBefore)#Size of array($asAfter))

` Yes, there are more data segments
Else

` Same number of data segments
End if

See Also
Application file, Data file, Structure file.

4th Dimension Language Reference 149

ADD DATA SEGMENT 4D Environment

version 3
__

ADD DATA SEGMENT

Parameter Type Description
This command does not require any parameters

Description
The ADD DATA SEGMENT command displays the Data Segment Management dialog box
shown here:

If the user clicks the OK button to validate the dialog box, the OK variable is set to 1. If
the user clicks the Cancel button, OK is set to 0.

NOTE: This command does nothing when used with 4D Server.

When all data segments are full, 4th Dimension or 4D Server generates an error -9999. An
error message is displayed, stating that the disk is full.

If you are using 4th Dimension, you can use the ON ERR CALL method to trap the error
message so you can handle the error procedurally. You can then use ADD DATA SEGMENT
to allow the user to add a new data segment on another volume that has available space.

If you are using 4D Server, you can display an alert stating that the Database
Administrator must add a new data segment from the server machine.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the Data Segment Management dialog box is validated.

150 4th Dimension Language Reference

FLUSH BUFFERS 4D Environment

version 3
__

FLUSH BUFFERS

Parameter Type Description
This command does not require any parameters

Description
The command FLUSH BUFFERS immediately saves the data buffers to disk. All changes that
have been made to the database are stored on disk.

You usually do not need to call this command, as 4D saves data modification on a regular
basis. The database property Flush Data Buffers (in the Design environment), which
specifies how often to save, is typically used to control buffer flushing.

Note: 4D integrates a built-in data cache scheme for accelerating I/O operations. The fact
that data modifications are, for some time, present in the data cache and not on the disk
is transparent to your coding. For example, if you issue a QUERY call, the 4D database
engine integrates the data cache in the query operation.

4th Dimension Language Reference 151

QUIT 4D 4D Environment

version 3
__

QUIT 4D

Parameter Type Description
This command does not require any parameters

Description
The QUIT 4D command exits 4th Dimension and returns to the Desktop. After you call
QUIT 4D, the current process stops its execution, then 4D acts as follows:

• If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. For example, you can use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop the
execution of operations started by the On Startup Database Method (connection from 4D
to another database server). Note that 4D will eventually quit; the On Exit Database
Method can perform all the cleanup or closing operations you wish, but cannot refuse the
quit and will at some point end.

• If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction.

If the user is performing data entry, the records will be cancelled and not saved.

If you want to let the user save data entry modifications made in the current open
windows, you can use interprocess communication to signal all the other user processes
that the database is going to be exited. To do so, you can adopt two strategies:

• Perform these operations from within the current process before calling QUIT 4D
• Handle these operations from within the On Exit Database Method.

A third strategy is also possible. Before calling QUIT 4D, you check whether a window will
need validation; if that is the case, you ask the user to validate or cancel these windows
and then to choose Quit again. However, from a user interface standpoint, the first two
strategies are preferable.

152 4th Dimension Language Reference

Example
The project method listed here is associated with the Quit or Exit menu item in the File
menu.

` M_FILE_QUIT Project Method

CONFIRM("Are you sure that you want to quit?")
If (OK=1)

Þ QUIT 4D
End if

See Also
On Exit Database Method.

4th Dimension Language Reference 153

SELECT LOG FILE 4D Environment

version 3
__

SELECT LOG FILE (logFile | *)

Parameter Type Description
logFile | * String | * ® Name of the Log file or

"*" for closing the current Log file

Description
The SELECT LOG FILE command opens, creates, or closes the Log File according to the
value you pass in logFile.

IMPORTANT: Calling SELECT LOG FILE is the same as choosing Log File from the File
menu in the User environment. This should only be used when 4D Backup is installed in
the database.

If you pass an empty string in logFile, SELECT LOG FILE presents an Open File dialog box,
allowing the user to open a log file or to create a new one. If the user clicks the Open
button and the file is opened correctly, the OK variable is set to 1. Otherwise, if the user
clicks Cancel or if the Log File could not be opened or created, OK is set to 0.

If you pass "*" in logFile, SELECT LOG FILE closes the current Log File for the database. The
OK variable is set to 1 when the log file is closed.

If you use SELECT LOG FILE to create or open a Log File when a full backup has not yet
been performed and the data file already contains records, 4th Dimension displays the
following alert:

154 4th Dimension Language Reference

4D then generates an error -4447, which you can intercept with an ON ERR CALL method.

Note: The SELECT LOG FILE command does not do anything when used with 4D Server.
For more information about this command, see the documentation for the 4D Backup
plug-in.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the Log File is correctly opened, created, or closed.

Error Handling
An error -4447 is generated if the operation cannot be performed because the database
needs to be backed up. You can intercept the error with an ON ERR CALL method.

4th Dimension Language Reference 155

156 4th Dimension Language Reference

4 Arrays

4th Dimension Language Reference 157

158 4th Dimension Language Reference

Arrays Arrays

version 6.0
__

An array is an ordered series of variables of the same type. Each variable is called an
element of the array. The size of an array is the number of elements it holds. An array is
given its size when it is created; you can then resize it as many times as needed by adding,
inserting, or deleting elements, or by resizing the array using the same command used to
create it.

You create an array with one of the array declaration commands. For details, see the
section Creating Arrays.

Elements are numbered from 1 to N, where N is the size of the array. An array always has
an element zero that you can access just like any other element of the array, but this
element is not shown when an array is present in a form. Although the element zero is
not shown when an array supports a form object, there is no restriction in using it with
the language. For more information about the element zero, see the section Using the
element zero of an array.

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences. For more information, see the
sections Arrays and the 4D Language and Arrays and Pointers.

Arrays are language objects; you can create and use arrays that will never appear on the
screen. Arrays are also user interface objects. For more information about the interaction
between arrays and form objects, see the sections Arrays and Form Objects and Grouped
Scrollable Areas.

Arrays are designed to hold reasonable amounts of data for a short period of time.
However, because arrays are held in memory, they are easy to handle and quick to
manipulate. For details, see the section Arrays and Memory.

4th Dimension Language Reference 159

Creating Arrays Arrays

version 6.0
__

You create an array with one of the array declaration commands described in this chapter.
The following table lists the array declaration commands:

Command Creates or resizes an array of:
ARRAY INTEGER 2-byte Integer values
ARRAY LONGINT 4-byte Integer values
ARRAY REAL Real values
ARRAY TEXT Text values (from 0 to 32,000 characters per element) (see Note)
ARRAY STRING String values (from 0 to 255 characters per element) (see Note)
ARRAY DATE Date values
ARRAY BOOLEAN Boolean values
ARRAY PICTURE Pictures values
ARRAY POINTER Pointer values

Each array declaration command can create or resize one-dimensional or two-dimensional
arrays. For more information about two-dimensional arrays, see the section Two-
dimensional Arrays.

Note: The difference between Text arrays and String arrays lies in the nature of their
elements. In both types of array, elements can hold text values (characters). However:
• In a Text array, each element is of variable length and stores its characters in a separate
part of memory.
• In a String array, all elements have the same fixed length (the length passed when the
array was created). All elements are stored one after the other in the same part of
memory, no matter what the contents.
Due to this structural difference, string arrays act faster than text arrays. Note, however,
that an element of a String array can only hold up to 255 characters.

160 4th Dimension Language Reference

The following line of code creates (declares) an Integer array of 10 elements:
ARRAY INTEGER(aiAnArray;10)

Then, the following code resizes that same array to 20 elements:
ARRAY INTEGER(aiAnArray;20)

Then, the following code resizes that same array to no elements:
ARRAY INTEGER(aiAnArray;0)

You reference the elements in an array by using curly braces ({…}). A number is used
within the braces to address a particular element; this number is called the element
number. The following lines put five names into the array called atNames and then
display them in alert windows:

ARRAY TEXT (atNames;5)
atNames{1} := "Richard"
atNames{2} := "Sarah"
atNames{3} := "Sam"
atNames{4} := "Jane"
atNames{5} := "John"
For ($vlElem;1;5)

ALERT ("The element #"+String($vlElem)+" is equal to: "+atNames{$vlElem})
End for

Note the syntax atNames{$vlElem}. Rather than specifying a numeric literal such as
atNames{3}, you can use a numeric variable to indicate which element of an array you are
addressing.

Using the iteration provided by a loop structure (For...End for, Repeat... Until (...) or While
(...) End while), compact pieces of code can address all or part of the elements in an array.

4th Dimension Language Reference 161

Arrays and other areas of the 4D language
There are other 4D commands that can create and work with arrays. For more
information, refer to the descriptions of the following commands:

• To work with arrays and selection of records, use the commands SELECTION RANGE TO
ARRAY, SELECTION TO ARRAY, ARRAY TO SELECTION and DISTINCT VALUES.

• You can create graphs and charts on series of values stored in tables, subtables, and
arrays. For more information, see the GRAPH command.

• Although version 6 brings a full set of new commands to work with hierarchical lists,
the commands LIST TO ARRAY and ARRAY TO LIST (from the previous version) have been
retained for compatibility.

• New commands in version 6 build arrays in one call. These commands are FONT LIST,
WINDOW LIST, VOLUME LIST, FOLDER LIST, and DOCUMENT LIST.

See Also
ARRAY BOOLEAN, ARRAY DATE, ARRAY INTEGER, ARRAY LONGINT, ARRAY PICTURE, ARRAY
POINTER, ARRAY REAL, ARRAY STRING, ARRAY TEXT, Arrays, Two-dimensional Arrays.

162 4th Dimension Language Reference

Arrays and Form Objects Arrays

version 6.0
__

Arrays are language objects—you can create and use arrays that will never appear on the
screen. However, arrays are also user interface objects. The following types of Form
Objects are supported by arrays:

• Pop-up menu
• Drop-down List
• Combo Box
• Scrollable Area
• Tab Control

While you can predefine these objects in the Design Environment Form Editor (using the
Default Values button of the Object Properties window), you can also define them
programmatically using the arrays commands. In both cases, the form object is supported
by an array created by you or 4D.

When using these objects, you can detect which item within the object has been selected
(or clicked) by testing the array for its selected element. Conversely, you can select a
particular item within the object by setting the selected element for the array.

When an array is used to support a form object, it has then a dual nature; it is both a
language object and a user interface object. For example, when designing a form, you
create a scrollable area; in the Variable page of the Object Properties window, you name
the Variable Object:

4th Dimension Language Reference 163

The name, in this case atNames, is the name of the array you use for creating and
handling the array.

Note: You cannot display two-dimensional arays or pointer arrays.

Example: Creating a drop-down list
__

The following example shows how to fill an array and display it in a drop-down list. An
array arSalaries is created using the ARRAY REAL command. It contains all the standard
salaries paid to people in a company. When the user chooses an element from the drop-
down list, the [Employees]Salary field is assigned the value chosen in the User or Custom
Menus environment.

Create the arSalaries drop-down list on a form
Create a drop-down list and name it arSalaries. The name of the drop-down list should be
the same as the name of the array.

Initializing the array
Initialize the array arSalaries using the On Load event for the object. To do so, remember
to enable that event in the Object Properties window, as shown:

164 4th Dimension Language Reference

Click the Object Method button and create the method, as follows:

The lines:

ARRAY REAL(arSalaries;10)
For($vlElem;1;10)

arSalaries{$vlElem}:=2000+($vlElem*500)
End for

create the numeric array 2500, 3000... 7000, corresponding to the annual salaries $30,000
up to $84,000, before tax.

The lines:

arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)

arSalaries:=0
End if

handle both the creation of a new record or the modification of existing record.

• If you create a new record, the field [Employees]Salary is initially equal to zero. In this
case, Find in array does not find the value in the array and returns -1. The test If
(arSalaries=-1) resets arSalaries to zero, indicating that no element is selected in the drop-
down list.
• If you modify an existing record, Find in array retrieves the value in the array and sets
the selected element of the drop-down list to the current value of the field. If the value
for a particular employee is not in the list, the test If (arSalaries=-1) deselects any element
in the list.

Note: For more information about the array selected element, read the next section.

4th Dimension Language Reference 165

Reporting the selected value to the [Employees]Salary field
To report the value selected from the drop-down list arSalaries, you just need to handle the
On Clicked or On Data Change event to the object. The element number of the selected
element is the value of the array arSalaries itself. Therefore, the expression
arSalaries{arSalaries} returns the value chosen in the drop-down list.

Complete the method for the object arSalaries as follows:

Case of
: (Form event=On Load)

ARRAY REAL(arSalaries;10)
For($vlElem;1;10)

arSalaries{$vlElem}:=2000+($vlElem*500)
End for
arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)

arSalaries:=0
End if

: (Form event=On Data Change)
[Employees]Salary:=arSalaries{arSalaries}

End case

In the User or Custom Menus environment, the drop-down list looks like this:

The following section describes the common and basic operations you will perform on
arrays while using them as form objects.

166 4th Dimension Language Reference

Getting the size of the array
__

You can obtain the current size of the array by using the Size of array command. Using
the previous example, the following line of code would display 5:

ALERT ("The size of the array atNames is: "+String(Size of array(atNames)))

Reordering the elements of the array
__

You can reorder the elements of the array using the SORT ARRAY command. Using the
previous example, and provided the array is shown as a scrollable area:

a. Initially, the area would look like the list on the left.

b. After the execution of the following line of code:
SORT ARRAY(atNames;>)

the area would look like the list in the middle.

c. After the execution of the following line of code:
SORT ARRAY(atNames;<)

the area would look like the list on the right.

Adding or deleting elements
__

You can add, insert, or delete elements using the commands INSERT ELEMENT and DELETE
ELEMENT.

4th Dimension Language Reference 167

Handling clicks in the array: testing the selected element
__

Using the previous example, and provided the array is shown as a scrollable area, you can
handle clicks in this area as follows:

` atNames scrollable area object method
Case of

: (Form event=On Load)
` Initialize the array (as shown further above)

ARRAY TEXT (atNames;5)
` ...

: (Form event=On Unload)
` We no longer need the array

CLEAR VARIABLE(atNames)

: (Form event=On Clicked)
If (atNames#0)

vtInfo:="You clicked on: "+atNames{atNames}
End if

: (Form event=On Double Clicked)
If (atNames#0)

ALERT ("You double clicked on: "+atNames{atNames}
End if

End case

Note: The events must be activated in the Object Properties window.

While the syntax atNames{$vlElem} allows you to work with a particular element of the
array, the syntax atNames returns the element number of the selected element within
the array. Thus, the syntax atNames{atNames} means “the value of the selected element
in the array atNames.” If no element is selected, atNames is equal to 0 (zero), so the test If
(atNames#0) detects whether or not an element is actually selected.

Setting the selected element
__

In a similar fashion, you can programmatically change the selected element by assigning
a value to the array.

Examples

` Selects the first element (if the array is not empty)
atNames:=1

` Selects the last element (if the array is not empty)
atNames:=Size of array(atNames)

168 4th Dimension Language Reference

` Deselects the selected element (if any) then no element is selected
atNames:=0

If ((0<atNames)&(atNames<Size of array(atNames))
` If possible, selects the next element to the selected element

atNames:=atNames+1
End if

If (1<atNames)
 ` If possible, selects the previous element to the selected element

atNames:=atNames-1
End if

Looking for a value in the array
__

The Find in array command searches for a particular value within an array. Using the
previous example, the following code will select the element whose value is “Richard,” if
that is what is entered in the request dialog box:

$vsName:=Request("Enter the first name:")
If (OK=1)

$vlElem:=Find in array (atNames;$vsName)
If ($vlElem>0)

atNames:=$vlElem
Else

ALERT ("This is no "+$vsName+" in that list of first names.")
End if

End if

Pop-up menus, drop-down lists, scrollable areas, and tab controls can be usually handled in
 the same manner. Obviously, no additional code is required to redraw objects on the
screen each time you change the value of an element, or add or delete elements.

Note: To create and use tab controls with icons and enabled and disabled tabs, you must
use a hierarchical list as the supporting object for the tab control. For more information,
see the example for the New list command.

4th Dimension Language Reference 169

Handling combo boxes
__

While you can handle pop-up menus, drop-down lists, scrollable areas, and tab controls
with the algorithms described in the previous section, you must handle combo boxes
differently.

A combo box is actually a text enterable area to which is attached a list of values (the
elements from the array). The user can pick a value from this list, and then edit the text.
So, in a combo box, the notion of selected element does not apply.

With combo boxes, there is never a selected element. Each time the user selects one of
the values attached to the area, that value is put into the element zero of the array. Then,
if the user edits the text, the value modified by the user is also put into that element zero.

Example

` asColors Combo Box object method
Case of

: (Form event=On Load)
ARRAY STRING(31;asColors;3)
asColors{1}:="Blue"
asColors{2}:="White"
asColors{3}:="Red"

: (Form event=On Clicked)
If (asColors{0}#"")

` The object automatically changes its value
` Using the On Clicked event with a Combo Box
` is required only when additional actions must be taken

End if
: (Form event=On Data Change)

` Find in array ignores element 0, so returns -1 or >0
If (Find in array(asColors;asColors{0})<0)

` Entered value is not one the values attached to the object
` Add the value to the list for next time

$vlElem:=Size of array(asColors)+1
INSERT ELEMENT(asColors;$vlElem)
asColors{$vlElem}:=asColors{0}

Else
` Entered value is among the values attached to the object

End if
End case

See Also
Arrays, Grouped Scrollable Areas.

170 4th Dimension Language Reference

Grouped Scrollable Areas Arrays

version 6.0
__

You can group scrollable areas for display in a form. When several scrollable areas are
grouped, they act as one scrollable area. Each scrollable area can have its own font and
style; however, we recommend that you use the same font height (which depends on the
font and font size) for each column. When displayed during data entry, only the
frontmost scrollable area displays a scroll bar. Following are three scrollable areas grouped
together in the Design environment:

Here are some tips on creating grouped scrollable areas:
• Make sure that all the arrays have been given the same size (number of elements).
• Use the same font size for each area.
• Make each area the same height.
• Align the tops of all the areas.
• Make sure the areas do not overlap.
• Make sure that the area on the right is in front, because the scroll bar appears on the
frontmost area.
• Group the areas (using the Group menu command) to make them work as one
scrollable area.

The following project method fills the three arrays and displays them on the screen:

ALL RECORDS(Employees)
SELECTION TO ARRAY([Employees]Last
Name;asName;[Employees]Title;asTitle;[Departments]Name;asDepartment)
DIALOG([Departments];"Example Grouped SA")

4th Dimension Language Reference 171

This method uses the data in the fields of the [People] table and the [Departments] table.
These tables are shown here:

Note: The [Departments] table can be used, provided that there is an automatic relation
from [People] to [Departments].

The resulting display:

Note that only a single scroll bar is displayed; it is always on the frontmost scrollable area.
This scroll bar controls the scrolling of all three arrays as if they were one. When the user
clicks a line, all three areas are highlighted simultaneously. The variable associated with
each scrollable area is set to the number of the line that the user clicks; only the object
method for the area that is clicked executes. For example, if the user clicks the name
“Bentley,” asName, asTitle, and asDepartment are all set to two, but only the object
method for asName executes. If you set the selected element of one of the arrays in the
grouped scrollable areas, the other arrays are set to the same selected element for the next
event, and the respective line in the scrollable area is highlighted.

172 4th Dimension Language Reference

The arrays can be sorted with the command SORT ARRAY. For example:

SORT ARRAY(asTitle;asName;asDepartment;>)

The following is the result of the sort:

Note that the arrays were sorted based on the first argument to the SORT ARRAY
command; the other two arrays were specified in order to keep the rows synchronized.
The command SORT ARRAY always sorts the arrays (if several are specified) on the values
of the first array and keeps the additional arrays synchronized.

Note: SORT ARRAY does not perform a multi-level sort on arrays. To show a table similar to
the one above and also perform multi-level sorts (i.e., by department, then by title, then
by name), use a subform in which you display the table, and then use ORDER BY.

See Also
Arrays, Arrays and Form Objects.

4th Dimension Language Reference 173

Arrays and the 4D Language Arrays

version 6.0
__

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences.

Local, process and interprocess arrays
__

You can create and work with local, process, and interprocess arrays. Examples:

ARRAY INTEGER ($aiCodes;100) ` This creates a local array of 100 2-byte Integer values
ARRAY INTEGER (aiCodes;100) ` This creates a process array of 100 2-byte Integer

values
ARRAY INTEGER (<>aiCodes;100) ` This creates an interprocess array of 100 2-byte

Integer values

The scope of these arrays is identical to the scope of other local, process, and interprocess
variables:

Local arrays
A local array is declared when the name of the array starts with a dollar sign ($).

The scope of a local array is the method in which it is created. The array is cleared when
the method ends. Local arrays with the same name in two different methods can have
different types, because they are actually two different variables with different scopes.

When you create a local array within a form method, within an object method, within or
a project method called as subroutine by the two previous type of method, the array is
created and cleared each time the form or object method is invoked. In other words, the
array is created and cleared for each form event. Consequently, you cannot use local
arrays in forms, neither for display nor printing.

As with local variables, it is a good idea to use local arrays whenever possible. In doing so,
you tend to minimize the amount of memory necessary for running your application.

Process arrays
A process array is declared when the name of the array starts with a letter.

The scope of a process array is the process in which it is created. The array is cleared when
the process ends or is aborted. A process array automatically has one instance created per
process. Therefore, the array is of the same type throughout the processes. However, its
contents are particular to each process.

174 4th Dimension Language Reference

Interprocess arrays
An interprocess array is declared when the name of the array starts with <> (on Windows
and Macintosh) or with the diamond sign, Option-Shift-V on a US keyboard (on
Macintosh only).

The scope of an interprocess array consists of all processes during a working session. They
should be used only to share data and transfer information between processes.

Tip: When you know in advance that an interprocess array will be accessed by several
processes that could possible conflict, protect the access to that array with a semaphore.
For more information, see the example for the Semaphore command.

Note: You can use process and interprocess arrays in forms to create form objects such as
scrollable areas, drop-down lists, and so on.

Passing an Array as parameter
__

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method. For details, see the
section Arrays and Pointers.

Assigning and array to another array
__

Unlike text or string variables, you cannot assign one array to another. To copy (assign)
an array to another one, use COPY ARRAY.

See Also
Arrays, Arrays and Pointers.

4th Dimension Language Reference 175

Arrays and Pointers Arrays

version 6.0
__

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method.

Note: You can pass process and interprocess arrays as parameters, but not local arrays.

Here are some examples.

• Given this example:

If ((0<atNames)&(atNames<Size of array(atNames))
` If possible, selects the next element to the selected element

atNames:=atNames+1
End if

If you need to do the same thing for 50 different arrays in various forms, you can avoid
writing the same thing 50 times, by using the following project method:

` SELECT NEXT ELEMENT project method
` SELECT NEXT ELEMENT (Pointer)
` SELECT NEXT ELEMENT (-> Array)

C_POINTER ($1)

If ((0<$1->)&($1-><Size of array($1->))
$1->:=$1->+1 ` If possible, selects the next element to the selected element

End if

Then, you can write:

SELECT NEXT ELEMENT (->atNames)
` ...

SELECT NEXT ELEMENT (->asZipCodes)
` ...

SELECT NEXT ELEMENT (->alRecordIDs)
` ... and so on

176 4th Dimension Language Reference

• The following project method returns the sum of all the elements of a numeric array
(Integer, Long Integer, or real):

` Array sum
` Array sum (Pointer)
` Array sum (-> Array)

C_REAL ($0)

$0:=0
For ($vlElem;1;Size of array($1->))

$0:=$0+$1->{$vlElem}
End for

Then, you can write:

$vlSum:=Array sum (->arSalaries)
` ...

$vlSum:=Array sum (->aiDefectCounts)
` ..

$vlSum:=Array sum (->alPopulations)

• The following project method capitalizes of all the elements of a string or text array:

` CAPITALIZE ARRAY
` CAPITALIZE ARRAY (Pointer)
` CAPITALIZE ARRAY (-> Array)

For ($vlElem;1;Size of array($1->))
If ($1->{$vlElem}#"")

$1->{$vlElem}:=Uppercase($1->{$vlElem}[[1]])+
Lowercase(Substring($1->{$vlElem};2))

End if
End for

Then, you can write:

CAPITALIZE ARRAY (->atSubjects)
` ...

CAPITALIZE ARRAY (->asLastNames)

The combination of arrays, pointers, and looping structures, such as For... End for, allows
you to write many useful small project methods for handling arrays.

See Also
Arrays, Arrays and the 4D Language.

4th Dimension Language Reference 177

Using the element zero of an array Arrays

version 6.0
__

An array always has an element zero. While element zero is not shown when an array
supports a form object, there is no restriction in using it with the language.

One example of the use of element zero is the case of the combo box discussed in the
section Arrays and Form Objects.

Here are two other examples.

1. If you want to execute an action only when you click on an element other than the
previously selected element, you must keep track of each selected element. One way to do
this is to use a process variable in which you maintain the element number of the selected
element. Another way is to use the element zero of the array:

` atNames scrollable area object method
Case of

: (Form event=On Load)
` Initialize the array (as shown further above)

ARRAY TEXT (atNames;5)
` ...
` Initialize the element zero with the number
` of the current selected element in its string form
` Here you start with no selected element

atNames{0}:="0"

: (Form event=On Unload)
` We no longer need the array

CLEAR VARIABLE(atNames)

: (Form event=On Clicked)
If (atNames#0)

If (atNames#Num(atNames{0}))
vtInfo:="You clicked on: "+atNames{atNames}

+" and it was not selected before."
atNames{0}:=String(atNames)

End if
End if

: (Form event=On Double Clicked)
If (atNames#0)

ALERT ("You double clicked on: "+atNames{atNames}
End if

End case

178 4th Dimension Language Reference

2. When sending or receiving a stream of characters to or from a document or a serial
port, 4D provides a way to filter ASCII codes between platforms and systems that use
different ASCII maps— the commands USE ASCII MAP, Mac to ISO, ISO to Mac, Mac to Win
and Win to Mac.

In certain cases, you might want to fully control the way ASCII codes are translated. One
way to do this is to use an Integer array of 255 elements, where the Nth element is set to
the translated ASCII code for the character whose source ASCII code is N. For example, if
the ASCII code #187 must be translated as #156, you would write
<>aiCustomOutMap{187}:=156 and <>aiCustomInMap{156}:=187 in the method that
initializes the interprocess arrays used everywhere in the database. You can then send a
stream of characters with the following custom project method:

` X SEND PACKET (Text { ; Time })
For ($vlChar;1;Length($1))

$1[[vlChar]]:=Char(<>aiCustomOutMap{Ascii($1[[vlChar]])})
End for
If (Count parameters>=2)

SEND PACKET ($2;$1)
Else

SEND PACKET ($1)
End if

` X Receive packet (Text { ; Time }) -> Text
If (Count parameters>=2)

RECEIVE PACKET ($2;$1)
Else

RECEIVE PACKET ($1)
End if
$0:=$1
For ($vlChar;1;Length($1))

$0[[vlChar]]:=Char(<>aiCustomInMap{Ascii($0[[vlChar]])})
End for

In this advanced example, if a stream of characters containing NULL characters (ASCII
code zero) is sent or received, the zero element of the arrays <>aiCustomOutMap and
<>aiCustomInMap will play its role as any other element of the 255 element arrays.

See Also
Arrays.

4th Dimension Language Reference 179

Two-dimensional Arrays Arrays

version 6.0
__

Each of the array declaration commands can create or resize one-dimensional or two-
dimensional arrays. Example:

` Creates a text array composed of 100 rows of 50 columns
ARRAY TEXT (atTopics;100;50)

Two-dimensional arrays are essentially language objects; you can neither display nor print
them.

In the previous example:
• atTopics is a two-dimensional array
• atTopics{8}{5} is the 5th element (5th column...) of the 8th row
• atTopics{20} is the 20th row and is itself a one-dimensional array
• Size of array(atTopics) returns 100, which is the number of rows
• Size of array(atTopics{17}) returns 50, which the number of columns for the 17th row

In the following example, a pointer to each field of each table in the database is stored in
a two-dimensional array:

` Create as many initially empty rows as tables
ARRAY POINTER (<>apFields;Count tables;0)

` For each table
For ($vlTable;1;Size of array(<>apFields))

` Resize the row with as many columns as fields in the table
INSERT ELEMENT (<>apFields{$vlTable};1;Count fields($vlTable))

` Set the values of the elements
For ($vlField;1;Size of array(<>apFields{$vlTable}))

<>apFields{$vlTable}{$vlField}:=Field($vlTable;$vlField)
End for

End for

180 4th Dimension Language Reference

Provided that this two-dimensional array has been initialized, you can obtain the pointers
to the fields for a particular table in the following way:

` Get the pointers to the fields for the table currently displayed at the screen:
COPY ARRAY (<>apFields{Table(Current form table)};$apTheFieldsIamWorkingOn)

` Initialize Boolean and Date fields
For ($vlElem;1;Size of array($apTheFieldsIamWorkingOn))

Case of
: (Type($apTheFieldsIamWorkingOn{$vlElem}->)=Is Date)

$apTheFieldsIamWorkingOn{$vlElem}->:=Current date
: (Type($apTheFieldsIamWorkingOn{$vlElem}->)=Is Boolean)

$apTheFieldsIamWorkingOn{$vlElem}->:=True
End case

End for

Note: As this example suggests, rows of a two-dimensional arrays can be the same size or
different sizes.

See Also
Arrays.

4th Dimension Language Reference 181

Arrays and Memory Arrays

version 6.0
__

Unlike the data you store on disk using tables and records, an array is always held in
memory in its entirety.

For example, if all US zip codes were entered in the [Zip Codes] table, it would contain
about 100,000 records. In addition, that table would include several fields: the zip code
itself and the corresponding city, county, and state. If you select only the zip codes from
California, the 4D database engine creates the corresponding selection of records within
the [Zip Codes] table, and then loads the records only when they are needed (i.e., when
they are displayed or printed). In order words, you work with an ordered series of values
(of the same type for each field) that is partially loaded from the disk into the memory by
the database engine of 4D.

Doing the same thing with arrays would be prohibitive for the following reasons:
• In order to maintain the four information types (zip code, city, county, state), you
would have to maintain four large arrays in memory.
• Because an array is always held in memory in its entirety, you would have to keep all the
zip codes information in memory throughout the whole working session, even though
the data is not always in use.
• Again, because an array is always held in memory in its entirety, each time the database
is started and then quit, the four arrays would have to be loaded and then saved on the
disk, even though the data is not used or modified during the working session.

Conclusion: Arrays are intended to hold reasonable amounts of data for a short period of
time. On the other hand, because arrays are held in memory, they are easy to handle and
quick to manipulate.

However, in some circumstances, you may need to work with arrays holding hundreds or
thousands of elements. The following table lists the formulas used to calculate the
amount of memory used for each array type:

Array Type Formula for determining Memory Usage in Bytes
Boolean (31+number of elements)\8
Date (1+number of elements) * 6
String (1+number of elements) * Declared length (+1 of odd, +2 if even)
Integer (1+number of elements) * 2
Long Integer (1+number of elements) * 4
Picture (1+number of elements) * 4 + Sum of the size of each picture
Pointer (1+number of elements) * 16
Real (1+number of elements) * 8 (Windows, PPC) or * 10 (68K)
Text (1+number of elements) * 6 + Sum of the size of each text
Two-dimemsional (1+number of elements) * 12 + Sum of the size of each array

182 4th Dimension Language Reference

Note: A few additional bytes are required to keep track of the selected element, the
number of elements, and the array itself.

When working with very large arrays, the best way to handle full memory situations is to
surround the creation of the arrays with an ON ERR CALL project method. Example:

` You are going to run a batch operation the whole night
` that requires the creation of large arrays. Instead of risking
` occurrences of errors in the middle of the night, put
` the creation of the arrays at the beginning of the operation
` and test the errors at this moment:

gError:=0 ` Assume no error
ON ERR CALL ("ERROR HANDLING") ` Install a method for catching errors
ARRAY STRING (63;asThisArray;50000) ` Roughly 3125K
ARRAY REAL (arThisAnotherArray;50000) ` 488K
ON ERR CALL ("") ` No longer need to catch errors
If (gError=0)

` The arrays could be created
` and let's pursue the operation

Else
ALERT ("This operation requires more memory!")

End if
` Whatever the case, we no longer need the arrays

CLEAR VARIABLE (asThisArray)
CLEAR VARIABLE (arThisAnotherArray)

The ERROR HANDLING project method is listed here:

` ERROR HANDLING project method
gError:=Error ` Jusrt return the error code

See Also
Arrays, ON ERR CALL.

4th Dimension Language Reference 183

ARRAY INTEGER Arrays

version 3
__

ARRAY INTEGER (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY INTEGER creates and/or resizes an array of 2-byte Integer elements
in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY INTEGER to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 2-byte Integer elements:

Þ ARRAY INTEGER (aiValues;100)

2. This example creates a local array of 100 rows of 50 2-byte Integer elements:

Þ ARRAY INTEGER ($aiValues;100;50)

3. This example creates an interprocess array of 50 2-byte Integer elements, and sets each
element to its element number:

Þ ARRAY INTEGER (<>aiValues;50)
For ($vlElem;1;50)

<>aiValues{$vlElem}:=$vlElem
End for

184 4th Dimension Language Reference

ARRAY LONGINT Arrays

version 3
__

ARRAY LONGINT (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY LONGINT creates and/or resizes an array of 4-byte Long Integer
elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

When applying ARRAY LONGINT to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 4-byte Long Integer elements:

Þ ARRAY LONGINT (alValues;100)

2. This example creates a local array of 100 rows of 50 4-byte Long Integer elements:

Þ ARRAY LONGINT ($alValues;100;50)

3. This example creates an interprocess array of 50 4-byte Long Integer elements and sets
each element to its element number:

Þ ARRAY LONGINT (<>alValues;50)
For ($vlElem;1;50)

<>alValues{$vlElem}:=$vlElem
End for

4th Dimension Language Reference 185

ARRAY REAL Arrays

version 3
__

ARRAY REAL (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY REAL creates and/or resizes an array of Real elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY REAL to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Real elements:

Þ ARRAY REAL (arValues;100)

2. This example creates a local array of 100 rows of 50 Real elements:

Þ ARRAY REAL ($arValues;100;50)

3. This example creates an interprocess array of 50 Real elements and sets each element to
its element number:

Þ ARRAY REAL (<>arValues;50)
For ($vlElem;1;50)

<>arValues{$vlElem}:=$vlElem
End for

186 4th Dimension Language Reference

ARRAY STRING Arrays

version 3
__

ARRAY STRING (strLen; arrayName; size{; size2})

Parameter Type Description
strLen Number ® Length of string (1... 255)
arrayName Array ® Name of the array
size Number ® Number of elements in the array or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY STRING creates and/or resizes an array of String elements in
memory.

• The strLen parameter specifies the maximum number of characters that can be
contained in each array element in a string array. The length can be from 1 to 255
characters.
• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY STRING to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to "" (empty string).
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 31-character String elements:

Þ ARRAY STRING (31;asValues;100)

2. This example creates a local array of 100 rows of 50 63-character String elements:

Þ ARRAY STRING (63;$asValues;100;50)

4th Dimension Language Reference 187

3. This example creates an interprocess array of 50 255-character String elements and sets
each element to the value “Element #” followed by its element number:

Þ ARRAY STRING (255;<>asValues;50)
For ($vlElem;1;50)

<>asValues{$vlElem}:="Element #"+String($vlElem)
End for

188 4th Dimension Language Reference

ARRAY TEXT Arrays

version 3
__

ARRAY TEXT (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY TEXT creates and/or resizes an array of Text elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY TEXT to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to "" (empty string).
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Text elements:

Þ ARRAY TEXT (atValues;100)

2. This example creates a local array of 100 rows of 50 Text elements:

Þ ARRAY TEXT ($atValues;100;50)

3. This example creates an interprocess array of 50 Text elements and sets each element to
the value “Element #” followed by its element number:

Þ ARRAY TEXT (<>atValues;50)
For ($vlElem;1;50)

<>atValues{$vlElem}:="Element #"+String($vlElem)
End for

4th Dimension Language Reference 189

ARRAY DATE Arrays

version 3
__

ARRAY DATE (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY DATE creates and/or resizes an array of Date elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY DATE to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to the null date (!00/00/00!).
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Date elements:

Þ ARRAY DATE (adValues;100)

2. This example creates a local array of 100 rows of 50 Date elements:

Þ ARRAY DATE ($adValues;100;50)

3. This example creates an interprocess array of 50 Date elements, and sets each element
to the current date plus a number of days equal to the element number:

Þ ARRAY DATE (<>adValues;50)
For ($vlElem;1;50)

<>adValues{$vlElem}:=Current date+$vlElem
End for

190 4th Dimension Language Reference

ARRAY BOOLEAN Arrays

version 3
__

ARRAY BOOLEAN (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY BOOLEAN creates and/or resizes an array of Boolean elements in
memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY BOOLEAN to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to False.
• If you reduce the array size, the last elements deleted from the array are lost.

Tip: In some contexts, an alternative to using Boolean arrays is using an Integer array
where each element “means true” if different from zero and “means false” if equal to
zero.

Examples
1. This example creates a process array of 100 Boolean elements:

Þ ARRAY BOOLEAN (abValues;100)

2. This example creates a local array of 100 rows of 50 Boolean elements:

Þ ARRAY BOOLEAN ($abValues;100;50)

4th Dimension Language Reference 191

3. This example creates an interprocess array of 50 Boolean elements and sets each even
element to True:

Þ ARRAY BOOLEAN (<>abValues;100)
For ($vlElem;1;50)

<>abValues{$vlElem}:=(($vlElem%2)=0)
End for

192 4th Dimension Language Reference

ARRAY PICTURE Arrays

version 3
__

ARRAY PICTURE (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array, or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY PICTURE creates and/or resizes an array of Picture elements in
memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY PICTURE to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to empty pictures. This means that Picture size applied to one of
these elements will return 0.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Picture elements:

Þ ARRAY PICTURE (agValues;100)

2. This example creates a local array of 100 rows of 50 Picture elements:

Þ ARRAY PICTURE ($agValues;100;50)

4th Dimension Language Reference 193

3. This example creates an interprocess array of Picture elements and loads each picture
into one of the elements of the array. The array’s size is equal to the number of 'PICT'
resources available to the database. The array’s resource name starts with "User Intf/":

RESOURCE LIST("PICT";$aiResIDs;$asResNames)
Þ ARRAY PICTURE (<>agValues;Size of array($aiResIDs))

$vlPictElem:=0
For ($vlElem;1;Size of array(<>agValues))

If ($asResNames="User Intf/@")
$vlPictElem:=vlPictElem+1
GET PICTURE RESOURCE("PICT";$aiResIDs{$vlElem};$vgPicture)
<>agValues{$vlPictElem}:=$vgPicture

End if
End for
ARRAY PICTURE (<>agValues;$vlPictElem)

194 4th Dimension Language Reference

ARRAY POINTER Arrays

version 3
__

ARRAY POINTER (arrayName; size{; size2})

Parameter Type Description
arrayName Array ® Name of the array
size Number ® Number of elements in the array, or

Number of rows if size2 is specified
size2 Number ® Number of columns in a two-dimensional array

Description
The command ARRAY POINTER creates or resizes an array of Pointer elements in memory.

• The arrayName parameter is the name of the array.
• The size parameter is the number of elements in the array.
• The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the firt dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY POINTER to an existing array:
• If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to null pointer. This means that Nil applied to one of these
elements will return True.
• If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Pointer elements:

Þ ARRAY POINTER (apValues;100)

2. This example creates a local array of 100 rows of 50 Pointer elements:

Þ ARRAY POINTER ($apValues;100;50)

4th Dimension Language Reference 195

3. This example creates an interprocess array of Pointer elements and sets each element
pointing to the table whose number is the same as the element. The size of the array is
equal to the number of tables in the database:

Þ ARRAY POINTER (<>apValues;Count tables)
For ($vlElem;1;Size of array(<>apValues))

<>apValues{$vlElem}:=Table($vlElem)
End for

196 4th Dimension Language Reference

Size of array Arrays

version 3
__

Size of array (array) ® Number

Parameter Type Description
array Array ® Array whose size is returned

Function result Number ¬ Returns the number of elements in array

Description
The command Size of array returns the number of elements in array.

Example
1. The following example returns the size of the array anArray:

Þ vlSize:=Size of array(anArray) ` vlSize gets the size of anArray

2. The following example returns the number of rows in a two-dimensional array:

Þ vlRows:=Size of array(a2DArray) ` vlRows gets the size of a2DArray

3. The following example returns the number of columns for a row in a two-dimensional
array:

Þ vlColumns:=Size of array(a2DArray{10}) ` vlColumns gets the size of a2DArray{10}

See Also
DELETE ELEMENT, INSERT ELEMENT.

4th Dimension Language Reference 197

SORT ARRAY Arrays

version 3
__

SORT ARRAY (array{; array2; ...; arrayN}{; > or <})

Parameter Type Description
array Array ® Arrays to sort
> or < ® > to sort in Ascending order, or

< to sort in Descending order, or
Ascending order if omitted

Description
The command SORT ARRAY sorts one or more arrays into ascending or descending order.

Note: You cannot sort Pointer or Picture arrays. You can sort the elements of a two-
dimensional array (i.e., a2DArray{$vlThisElem}) but you cannot sort the two-dimensional
array itself (i.e., a2DArray).

The last parameter specifies whether to sort array in ascending or descending order. The
“greater than” symbol (>) indicates an ascending sort; the “less than” symbol (<)
indicates a descending sort. If you do not specify the sorting order, then the sort is
ascending.

If more than one array is specified, the arrays are sorted following the sort order of the
first array; no multi-level sorting is performed here. This feature is especially useful with
grouped scrollable areas in a form; SORT ARRAY maintains the synchronicity of the arrays
that sustain the scrollable areas.

Examples
1. The following example creates two arrays and then sorts them by company:

ALL RECORDS ([People])
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

Þ SORT ARRAY (asCompanies; asNames;>)

However, because SORT ARRAY does not perform multi-level sorts, you will end up with
people‘s names in random order within each company. To sort people by name within
each company, you would write:

ALL RECORDS ([People])
ORDER BY ([People];[People]Company;>;[People]Name;>)
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

198 4th Dimension Language Reference

2. You display the names from a [People] table in a floating window. When you click on
buttons present in the window, you can sort this list of names from A to Z or from Z to A
. As several people may have the same name, you also can use a [People]ID number field,
which is indexed unique. When you click in the list of names, you will retrieve the record
for the name you clicked. By maintaing a synchronized and hidden array of ID numbers,
you are sure to access the record corresponding to the name you clicked:

` asNames array object method
Case of

: (Form event=On Load)
ALL RECORDS([People])
SELECTION TO ARRAY([People]Name;asNames;[People]ID number;alIDs)

Þ SORT ARRAY(asNames;alIDs;>)
: (Form event=On Unload)

CLEAR VARIABLE(asNames)
CLEAR VARIABLE(alIDs)

: (Form event=On Clicked)
If (asNames#0)

` Use the array alIDs to get the right record
QUERY([People];[People]ID Number=alIDs{asNames})

` Do something with the record
End if

End case

` bA2Z button object method
` Sort the arrays in ascending order and keep them synchronized

Þ SORT ARRAY(asNames;alIDs;>)

` bZ2A button object method
` Sort the arrays in descending order and keep them synchronized

Þ SORT ARRAY(asNames;alIDs;<)

See Also
ORDER BY, SELECTION TO ARRAY.

4th Dimension Language Reference 199

Find in array Arrays

version 3
__

Find in array (array; value{; start}) ® Number

Parameter Type Description
array Array ® Array to search
value Expression ® Value of same type to search in the array
start Number ® Element at which to start searching

Function result Number ¬ Number of the first element in array
that matches value

Description
The command Find in array returns the number of the first element in array that matches
value.

Find in array can be used with Text, String, Numeric, Date, Pointer, and Boolean arrays.
The array and value parameters must be of the same type.

If no match is found, Find in array returns –1.

If start is specified, the command starts searching at the element number specified by
start. If start is not specified, the command starts searching at element 1.

Examples
1. The following project method deletes all empty elements from the string or text array
whose pointer is passed as parameter:

` CLEAN UP ARRAY project method
` CLEAN UP ARRAY (Pointer)
` CLEAN UP ARRAY (-> Text or String array)

C_POINTER ($1)
Repeat

Þ $vlElem:=Find in array ($1->;"")
If ($vlElem>0)

DELETE ELEMENT ($1->;$vlElem)
End if

Until ($vlElem<0)

200 4th Dimension Language Reference

After this project method is implemented in a database, you can write:

ARRAY TEXT (atSomeValues;...)
` ...
` Do plenty of things with the array
` ...
` Eliminate empty string elements

CLEAN UP ARRAY (->atSomeValues)

2. The following project method selects the first element of an array whose pointer is
passed as the first parameter that matches the value of the variable or field whose pointer
is passed as parameter:

` SELECT ELEMENT project method
` SELECT ELEMENT (Pointer ; Pointer)
` SELECT ELEMENT (-> Text or String array ; -> Text or String variable or field)

Þ $1->:=Find in array ($1->;$2->)
If ($1->=-1)

$1->:=0 ` If no element was found, set the array to no selected element
End if

After this project method is implemented in a database, you can write:

` asGender pop-up menu object method
Case of

: (Form Event=On Load)
SELECT ELEMENT (->asGender;->[People]Gender)

End case

See Also
DELETE ELEMENT, INSERT ELEMENT, Size of array.

4th Dimension Language Reference 201

INSERT ELEMENT Arrays

version 3
__

INSERT ELEMENT (array; where{; howMany})

Parameter Type Description
array Array ® Name of the array
where Number ® Where to insert the elements
howMany Number ® Number of elements to be inserted, or

1 element if omitted

Description
The command INSERT ELEMENT inserts one or more elements into the array array. The
new elements are inserted before the element specified by where, and are initialized to the
empty value for the array type. All elements beyond where are consequently moved
within the array by an offset of one or the value you pass in howMany.

If where is greater than the size of the array, the elements are added to the end of the
array.

The howMany parameter is the number of elements to insert. If howMany is not specified,
then one element is inserted. The size of the array grows by howMany.

Example
1. The following example inserts five new elements, starting at element 10:

Þ INSERT ELEMENT (anArray;10;5)

2. The following example appends an element to an array:

$vlElem:=Size of array(anArray)+1
Þ INSERT ELEMENT (anArray;$vlElem)

anArray{$vlElem}:=...

See Also
DELETE ELEMENT, Size of array.

202 4th Dimension Language Reference

DELETE ELEMENT Arrays

version 3
__

DELETE ELEMENT (array; where{; howMany})

Parameter Type Description
array Array ® Array from which to delete elements
where Number ® Element at which to begin deletion
howMany Number ® Number of elements to delete, or

1 element if omitted

Description
The command DELETE ELEMENT deletes one or more elements from array. Elements are
deleted starting at the element specified by where.

The howMany parameter is the number of elements to delete. If howMany is not specified,
then one element is deleted. The size of the array shrinks by howMany.

Examples
1. The following example deletes three elements, starting at element 5:

Þ DELETE ELEMENT (anArray; 5; 3)

2. The following example deletes the last element from an array, if it exists:

$vlElem:=Size of array(anArray)
If ($vlElem>0)

Þ DELETE ELEMENT (anArray;$vlElem)
End if

See Also
INSERT ELEMENT, Size of array.

4th Dimension Language Reference 203

COPY ARRAY Arrays

version 3
__

COPY ARRAY (source; destination)

Parameter Type Description
source Array ® Array from which to copy
destination Array ¬ Array to which to copy

Description
The command COPY ARRAY creates or overwrites the destination array destination with
the exact contents, size, and type of the source array source.

The source and destination arrays can be local, process, or interprocess arrays. When
copying arrays, the scope of the array does not matter.

Examples
The following example fills the array named C. It then creates a new array, named D, of
the same size as C and with the same contents:

ALL RECORDS ([People]) ` Select all records in People
SELECTION TO ARRAY ([People]Company; C) ` Move company field data into array C

Þ COPY ARRAY (C; D) ` Copy the array C to the array D

204 4th Dimension Language Reference

LIST TO ARRAY Arrays

version 3
Compatibility Note
Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you start using
the command Load list to work with the hierarchical lists defined in the Design
environment List Editor.

__

LIST TO ARRAY (list; array{; itemRefs})

Parameter Type Description
list String ® List from which to copy the first level items
array Array ¬ Array to which to copy the list items
itemRefs Array ¬ List item reference numbers

Description
The command LIST TO ARRAY creates or overrides the array array with the first level items
of the list list.

If you have not previously defined the array as a string or text array, LIST TO ARRAY
creates a text array by default.

The optional itemRefs parameter (a numeric array) returns the list item reference numbers.

Compatibility Note: In the previous version of 4D, this array was filled with the names of
any linked lists. If an element of the list had a linked list, the name of the linked list was
put into the array element with the same number as the list element. If there was no
linked list, then the element was the empty string. The second array was set to the same
size as array. You could use the names in this array to access the linked lists.

You can continue to use LIST TO ARRAY to build an array based on the first level items of a
hierarchical list. However, this command does not provide you with the child items, if
any. To work with hierarchical lists, use the new Hierarchical Lists commands introduced
in version 6.

Example
The following example copies the items of a list called Regions into an array called
atRegions:

Þ LIST TO ARRAY ("Regions"; atRegions)

See Also
ARRAY TO LIST, Load list, SAVE LIST.

4th Dimension Language Reference 205

ARRAY TO LIST Arrays

version 3

Compatibility Note
Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you use the
command SAVE LIST to work with the hierarchical lists defined in the Design
environment List Editor.

__

ARRAY TO LIST (array; list{; itemRefs})

Parameter Type Description
array Array ® Array from which to copy array elements
list String ® List into which to copy array elements
itemRefs Array ® Numeric array of item reference numbers

Description
The command ARRAY TO LIST creates or replaces the list list (as defined in the Design
environment List Editor) using the elements of the array array.

This command allows you to define only the first level items of the list.

The optional itemRefs parameter, if specified, must be a numeric array synchronized with
the array array. Each element, then, indicates the list item reference number for the
corresponding element in array. If you omit this parameter, 4D automatically sets the list
item reference numbers to 1, 2... N.

Compatibility Note: In the previous version of 4D, this parameter was used to link other
lists to each element in array. If an element of the links array was the name of an existing
list, then that list was attached to the corresponding item.

You can continue to use ARRAY TO LIST to build a list based on the elements of an array.
However, this command does not provide a means of working with the child items. To
work with hierarchical lists, use the new Hierarchical Lists commands introduced in
version 6.

206 4th Dimension Language Reference

Example
The following example copies the array atRegions to the list called “Regions:”

Þ ARRAY TO LIST (atRegions;"Regions")

See Also
LIST TO ARRAY, Load list, ON ERR CALL, SAVE LIST.

Error Handling
An error -9957 is generated when ARRAY TO LIST is applied to a list that is currently being
edited in the Design environment List Editor. You can catch this error using an ON ERR
CALL project method.

4th Dimension Language Reference 207

SELECTION TO ARRAY Arrays

version 3
__

SELECTION TO ARRAY (field | table; array{; field2 | table2; array2; ...; fieldN | tableN; arrayN})

Parameter Type Description
field | table Field or Table ® Field to use for retrieving data or

Table to use for retrieving record numbers
array Array ¬ Array to receive field data or record numbers

Description
The command SELECTION TO ARRAY creates one or more arrays and copies data in the
fields or record numbers from the current selection into the arrays.

The command SELECTION TO ARRAY applies to the selection for the table specified in the
first parameter. SELECTION TO ARRAY, can perform the following:
• Load values from one or several fields.
• Load Record numbers using the syntax ...;[table];Array;...
• Load values from related fields, provided that there is a Many to One automatic relation
between the tables or provided that you have previously called AUTOMATIC RELATIONS to
make manual Many to One relations automatic. In both cases, values are loaded from
tables through several levels of Many to One relations.

Each array is typed according to the field type. There are two exceptions:
• If a Text field is copied into a String array, the array will remain a String array.
• A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.

If you load record numbers, they are copied into a Long Integer array.

4D Server: The SELECTION TO ARRAY command is optimized for 4D Server. Each array is
created on the server and then sent, in its entirety, to the client machine.

208 4th Dimension Language Reference

WARNING: The SELECTION TO ARRAY command can create large arrays, depending on the
range you specify in start and end, and on the type and size of the data you are loading.
Arrays reside in memory, so it is a good idea to test the result after the command is
completed. To do so, test the size of each resulting array or cover the call to the
command, using an ON ERR CALL project method.

Note: After a call to SELECTION TO ARRAY, the current selection and current record
remain the same, but the current record is no longer loaded. If you need to use the values
of the fields in the current record, use the LOAD RECORD command after the SELECTION
TO ARRAY command.

Examples
1. In the following example, the [People] table has an automatic relation to the
[Company] table. The two arrays asLastName and asCompanyAddr are sized according to
the number of records selected in the [People] table and will contain information from
both tables:

Þ SELECTION TO ARRAY ([People]Last
Name;asLastName;[Company]Address;asCompanyAddr)

2. The following example returns the [Clients] record numbers in the array
alRecordNumbers and the [Clients]Names field values in the array asNames:

Þ SELECTION TO ARRAY([Clients];alRecordNumbers;[Clients]Names; asNames)

See Also
ARRAY TO SELECTION, AUTOMATIC RELATIONS, ON ERR CALL, SUBSELECTION TO ARRAY.

4th Dimension Language Reference 209

SELECTION RANGE TO ARRAY Arrays

version 3.5.3
__

SELECTION RANGE TO ARRAY (start; end; field | table; array{; field2 | table2; array2; ...;
fieldN | tableN; arrayN})

Parameter Type Description
start Number ® Selected record number where data retrieval
starts
end Number ® Selected record number where data retrieval
ends
field | table Field or Table ® Field to use for retrieving data or

Table to use for retrieving record numbers
array Array ¬ Array to receive field data or record numbers

Description
SELECTION RANGE TO ARRAY creates one or more arrays and copies data from the fields or
record numbers from the current selection into the arrays.

Unlike SELECTION TO ARRAY, which applies to the current selection in its entirety,
SELECTION RANGE TO ARRAY only applies to the range of selected records specified by the
parameters start and end.

The command expects you to pass in start and end the selected record numbers
complying with the formula 1 <= start <= end <= Records in selection ([...]).

If you pass 1 <= start = end < Records in selection ([...]), you will load fields or get the
record number from the record whose selected record is start = end.

If you pass incorrect selected record numbers, the command does the following:
• If end > Records in selection ([...]), it returns values from the selected record specified by
start to the last selected record.
• If start > end, it returns values from the record whose selected record is start only.

210 4th Dimension Language Reference

• If both parameters are inconsistent with the size of the selection, it returns empty
arrays.

Like SELECTION TO ARRAY, the SELECTION RANGE TO ARRAY command applies to the
selection for the table specified in the first parameter.

Also like SELECTION TO ARRAY, SELECTION RANGE TO ARRAY can perform the following:
• Load values from one or several fields.
• Load Record numbers using the syntax ...;[table];Array;...
• Load values from related fields, if there is a Many to One automatic relation between the
tables or if you have previously called AUTOMATIC RELATIONS to change manual Many to
One relations to automatic. In both cases, values can be loaded from tables through
several levels of Many to One relations.

Each array is typed according to the field type. There are two exceptions:
• If a Text field is copied into a String array. In this case, the array will remain a String
array.
• A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.

If you load record numbers, they are copied into a Long Integer array.

4D Server: SELECTION RANGE TO ARRAY is optimized for 4D Server. Each array is created
on the server and then sent, in its entirety, to the client machine.

WARNING: SELECTION RANGE TO ARRAY can create large arrays, depending on the range
you specify in start and end, and on the type and size of the data you are loading. Arrays
reside in memory, so it is a good idea to test the result after the command is completed.
To do so, test the size of each resulting array or cover the call to the command, using an
ON ERR CALL project method.

If the command is successful, the size of each resulting array is equal to (end-start)+1,
except if the end parameter exceeded the number of records in the selection. In such a
case, each resulting array contains (Records in selection([...])-start)+1 elements.

4th Dimension Language Reference 211

Examples
1. The following code addresses the first 50 records from the current selection for the
[Invoices] table. It loads the values from the [Invoices]Invoice ID field and the
[Customers]Customer ID related field.

Þ SELECTION RANGE TO ARRAY(1;50;[Invoices]Invoice
ID;alInvoID;[Customers]Customer ID;alCustID)

2. The following code addresses the last 50 records from the current selection for the
[Invoices] table. It loads the record numbers of the [Invoices] records as well as those of the
[Customers] related records:

lSelSize := Records in selection ([Invoices])
Þ SELECTION RANGE TO ARRAY (lSelSize-
49;lSelSize;[Invoices];alInvRecN;[Customers];alCustRecN)

3. The following code process, in sequential “chunks”of 1000 records, a large selection
that could not be downloaded in its entirety into arrays:

lMaxPage := 1000
lSelSize := Records in selection ([Phone Directory])
For ($lPage ; 1; 1+((lSelSize-1)\lMaxPage))

` Load the values and/or record numbers
Þ SELECTION RANGE TO ARRAY (1+(lMaxPage*($lPage-
1));lMaxPage*$lPage;...;...;...;...;...;...)

` Do something with the arrays
End for

See Also
AUTOMATIC RELATIONS, ON ERR CALL, SELECTION TO ARRAY.

212 4th Dimension Language Reference

ARRAY TO SELECTION Arrays

version 3
__

ARRAY TO SELECTION (array; field{; array2; field2; ...; arrayN; fieldN})

Parameter Type Description
array Array ® Array to copy to the selection
field Field ¬ Field to receive the array data

Description
The command ARRAY TO SELECTION copies one or more arrays into a selection of records.
All fields listed must belong to the same table.

If a selection exists at the time of the call, the elements of the array are put into the
records, based on the order of the array and the order of the records. If there are more
elements than records, new records are created. The records, whether new or existing, are
automatically saved.

If the arrays are of different sizes, the first array is used to determine how many elements
to copy. Any additional arrays are moved into the field that follows each array name.

This command does the reverse of SELECTION TO ARRAY. However, the ARRAY TO
SELECTION command does not allow fields from different tables, including related tables,
even when an automatic relation exists.

WARNING: Use ARRAY TO SELECTION with caution, because it overwrites information in
existing records. If a record is locked by another process during the execution of ARRAY
TO SELECTION, that record is not modified. Any locked records are put into the process set
called LockedSet. After ARRAY TO SELECTION has executed, you can test the set LockedSet
to see if any records were locked.

4D Server: The command is optimized for 4D Server. Arrays are sent by the client
machine to the server, and the records are modified or created on the server machine. As
such a request is handled synchronously, the client machine must wait for the operation
to be completed successfully. In the multi-user or multi-process environment, any records
that are locked will not be overwritten.

4th Dimension Language Reference 213

Example
In the following example, the two arrays asLastNames and asCompanies place data in the
[People] table. The values from the array asLastNames area placed in the field [People]Last
Name and the values from the array asCompanies are placed in the field [People]Company:

Þ ARRAY TO SELECTION (asLastNames;[People]Last
Name;asCompanies;[People]Company)

See Also
SELECTION TO ARRAY.

214 4th Dimension Language Reference

DISTINCT VALUES Arrays

version 6.0 (Modified)
__

DISTINCT VALUES (field; array)

Parameter Type Description
field Field or Subfield ® Field or subfield to use for data
array Array ¬ Array to receive indexed field data

Description
The command DISTINCT VALUES creates and populates the array array with non-repeated
(unique) values coming from the field field for the current selection of the table to which
the field or subfield belongs.

In the previous version of 4D, you could only pass alphanumeric fields to this command.
Starting with version 6, you can pass any indexed field or subfield. Note however that the
command does nothing when applied to an indexed Boolean field.

If you pass the field of a table, DISTINCT VALUES browses and retains the non-repeated
values present only in the currently selected records. However, if you pass a subfield,
DISTINCT VALUES browses all the subrecords present in each currently selected record.

If you create the array prior to the call, DISTINCT VALUES expects an array type compatible
with the field or subfield you pass. Otherwise, in interpreted mode, DISTINCT VALUES will
create an array of the proper type. However, if the field or subfield is of type Time, the
command expects or creates a LongInt array.

After the call, the size of the array is equal to the number of distinct values found in the
selection. The command does not change the current selection or the current record. The
DISTINCT VALUES command uses the index of the field, so the elements in array are
returned sorted in ascending order. If this is the order you need, you do not need to call
SORT ARRAY after using DISTINCT VALUES.

WARNING: DISTINCT VALUES can create large arrays depending on the size of the
selection and the number of different values in the records. Arrays reside in memory,
therefore it is a good idea to test the result after the completion of the command. To do
so, test the size of the resulting array or cover the call to the command, using an ON ERR
CALL project method.

4D Server: The command is optimized for 4D Server. The array is created and the values
are calculated on the server machine; the array is then sent, in its entirety, to the client.

4th Dimension Language Reference 215

Examples
1. The following example creates a list of cities from the current selection and tells the
user the number of cities in which the firm has stores:

ALL RECORDS([Retail Outlets]) ` Create a selection of records
Þ DISTINCT VALUES([Retail Outlets]City;asCities)

ALERT("The firm has stores in " +String(Size of array(asCities))+" cities.")

2. The following example returns in asKeywords all the keywords that are attached (using
a subtable) to the 4D Write documents stored in the table [Documentation] and whose
theme is “Economy”:

QUERY ([Documentation];[Documentation]Theme="Economy")
Þ DISTINCT VALUES([Documentation]Keywords'Keyword;asKeywords)

After this array has been built, you can reuse it to quickly locate all the documents
associated with the selected keyword:

QUERY ([Documentation];[Documentation]Keywords'Keyword=
asKeywords{asKeywords})

SELECTION TO ARRAY ([Documentation]Subject;asSubjects)
` ...

See Also
ON ERR CALL, SELECTION TO ARRAY, SUBSELECTION TO ARRAY.

216 4th Dimension Language Reference

5 BLOB

4th Dimension Language Reference 217

218 4th Dimension Language Reference

BLOB Commands BLOB

version 6.0
__

Definition
4th Dimension version 6 introduces the BLOB (Binary Large OBjects) data type.

You can define BLOB fields and BLOB variables:
• To create a BLOB field, select BLOB in the Field type drop-down-list within the Field
Properties window.
• To create a BLOB variable, use the compiler declaration command C_BLOB. You can
create local, process, and interprocess variables of type BLOB.

Note: There is no array for BLOBs.

Within 4th Dimension, a BLOB is a contiguous series of variable length bytes, which can
be treated as one whole object or whose bytes can be addressed individually. A BLOB can
be empty (null length) or can contain up to 2,147,483,647 bytes (2 GB).

BLOBs and Memory
A BLOB is loaded into memory in its entirety. A BLOB variable is held and exists in
memory only. A BLOB field is loaded into memory from the disk, like the rest of the
record to which it belongs.

Like the other field types that can retain a large amount of data (Picture and subtable field
types), BLOB fields are not duplicated in memory when you modify a record.
Consequently, the result returned by the commands Old and Modified is not significant
when applied to a BLOB field.

Displaying BLOBs
A BLOB can retain any type of data, so it has no default representation on the screen. If
you display a BLOB field or variable in a form, it will always appear blank, whatever its
contents.

BLOB fields
You can use BLOB fields to store any kind of data, up to 2 GB. You cannot index a BLOB
field, so you must use a formula in order to search records on values stored in a BLOB
field. Do not use BLOB fields for storing data that you want to retrieve quickly with a
search operation. For example, do not store keywords in a BLOB field; instead, use a subfile
in which you can index the keyword subfield.

4th Dimension Language Reference 219

Parameter passing, Pointers and function results
4th Dimension BLOBs can be passed as parameters to 4D commands or 4D Extensions
routines that expect a BLOB parameters. On the other hand, they cannot be passed as
parameters to a user method. A BLOB cannot be returned as a function result.

To pass a BLOB to your own methods, define a pointer to the BLOB and pass the pointer
as parameter.

Examples:
` Declare a variable of type BLOB

C_BLOB (anyBlobVar)
` The BLOB is passed as parameter to a 4D command

SET BLOB SIZE (anyBlobVar;1024*1024)
` The BLOB is passed as parameter to an external routine

$errCode:= Do Something With This BLOB (anyBlobVar)
` A pointer to the BLOB is passed as parameter to a user method

COMPUTE BLOB (->anyBlobVar)
` Declare a variable of type Pointer

C_POINTER (aPointer)
` Define a pointer to the BLOB

aPointer := ->anyBlobVar
` A pointer to the BLOB is passed as parameter to a user method

COMPUTE BLOB (aPointer)

Note for 4D Extensions developers: A BLOB parameter is declared as “&O” (the letter “O”,
not the digit “0”).

Assignment
You can assign BLOBs to each other.

Example:
` Declare two variables of type BLOB

C_BLOB (vBlobA;vBlobB)
` Set the size of the first BLOB to 10K

SET BLOB SIZE (vBlobA;10*1024)
` Assign the first BLOB to the second one

vBlobB:=vBlobA

However, no operator can be applied to BLOBs; there is no expression of type BLOB.

220 4th Dimension Language Reference

Addressing BLOB contents
You can address each byte of a BLOB individually using the curly brackets symbols {...}.
Within a BLOB, bytes are numbered from 0 to N-1, where N is the size of the BLOB.
Example:

` Declare a variable of type BLOB
C_BLOB (vBlob)

` Set the size of the BLOB to 256 bytes
SET BLOB SIZE (vBlob;256)

` The loop below initializes the 256 bytes of the BLOB to zero
For (vByte ; 0 ; BLOB size (vBlob)-1)

vBlob{vByte}:=0
End for

Because you can address all the bytes of a BLOB individually, you can actually store
whatever you want in a BLOB field or variable.

BLOBs 4th Dimension commands
4th Dimension provides the following commands for working BLOBS:

• SET BLOB SIZE resizes a BLOB field or variable.
• BLOB size returns the size of a BLOB.
• DOCUMENT TO BLOB and BLOB TO DOCUMENT enable you to load and write a whole
document to and from a BLOB (optionally, the data and resource forks on Macintosh).
• VARIABLE TO BLOB and BLOB TO VARIABLE as well as LIST TO BLOB and BLOB to list allow
you to store and retrieve 4D variables in BLOBs.
• COMPRESS BLOB, EXPAND BLOB and BLOB PROPERTIES allow you to work with
compressed BLOBs
• The commands BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO
BLOB, LONGINT TO BLOB, REAL TO BLOB and TEXT TO BLOB enable you to manipulate
any structured data coming from disk, resources, OS, and so on.
• DELETE FROM BLOB, INSERT IN BLOB and COPY BLOB allow quick handling of large
chunks of data within BLOBs.

These commands are described in this chapter.

In addition:

• C_BLOB declares a variable of type BLOB. Refer to the Compiler chapter for more
information.
• GET CLIPBOARD and APPEND CLIPBOARD enable you to deal with any data type stored
in the Clipboard. Refer to the Clipboard chapter for more information.
• GET RESOURCE and SET RESOURCE enable you to work with any type stored of resource
stored on disk. Refer to the Resources chapter for more information.

4th Dimension Language Reference 221

SET BLOB SIZE BLOB

version 6.0
__

SET BLOB SIZE (blob; size{; filler})

Parameter Type Description
blob BLOB ® BLOB field or variable
size Number ® New size of the BLOB
filler Number ® ASCII code of filler character

Description
SET BLOB SIZE resizes the BLOB blob according to the value passed in size.

By default, new allocated bytes (if any) for the BLOB are initialized to 0x00. If you want
to have those bytes initialized to another value, pass the value (0..255) into the optional
filler parameter.

Examples
1. When you are through with a large process or interprocess BLOB, it is good idea to free
the memory it occupies. To do so, write:

Þ SET BLOB SIZE(aProcessBLOB;0)
Þ SET BLOB SIZE(<>anInterprocessBLOB;0)

2. The following example creates a BLOB of 16K filled of 0xFF:
C_BLOB(vxData)

Þ SET BLOB SIZE(vxData;16*1024;0xFF)

See Also
BLOB size.

Error Handling
If you cannot resize a BLOB due to insufficient memory, the error -108 is generated. You
can trap this error using an ON ERR CALL interruption method.

222 4th Dimension Language Reference

BLOB size BLOB

version 6.0
__

BLOB size (blob) ® Number

Parameter Type Description
blob BLOB ® BLOB field or variable

Function result Number ¬ Size in bytes of the BLOB

Description
BLOB size returns the size of blob expressed in bytes.

Examples
The line of code adds 100 bytes to the BLOB myBlob:

Þ SET BLOB SIZE (BLOB size(myBlob)+100)

See Also
SET BLOB SIZE.

4th Dimension Language Reference 223

COMPRESS BLOB BLOB

version 6.0
__

COMPRESS BLOB (blob{; compression})

Parameter Type Description
blob BLOB ® BLOB to compress
compression Number ® If not omitted:

1, compress as compact as possible
2, compress as fast as possible

Description
The COMPRESS BLOB command compresses the BLOB blob using the internal
4th Dimension compression algorithm. This command only compresses BLOB whose
size is over 255 bytes.

The optional compression parameter allows to set the way the BLOB will be compressed:
• If you pass 1, the BLOB is compressed as much as possible, at the expanse of the speed of
compression and decompression operations.
• If you pass 2, the BLOB is compressed as fast as possible (and will be decompressed as fast
as possible), at the expense of the compression ratio (the compressed BLOB will be bigger).
• If you pass another value or if you omit the parameter, the BLOB is compressed as much
as possible, using the compression mode 1.

4th Dimension provides the following predefined constants:

Constant Type Value
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

After the call, the OK variable is set to 1 if the BLOB has been successfully compressed. If
the compression could not be performed, the OK variable is set to 0; for example, if there
is not enough memory to compress a BLOB.

After a BLOB has been compressed, you can expand it using the EXPAND BLOB command.

To detect if a BLOB has been compressed, use the BLOB PROPERTIES command.

WARNING: A compressed BLOB is still a BLOB, so there is nothing to stop you from
modifying its contents. However, if you do so, the EXPAND BLOB command will not be
able to decompress the BLOB properly.

224 4th Dimension Language Reference

Examples
1. This example tests if the BLOB vxMyBlob is compressed, and, if it is not, compresses it:

BLOB PROPERTIES (vxMyBlob;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlCompressed=Is not compressed)

Þ COMPRESS BLOB (vxMyBlob)
End if

Note however, that if you apply COMPRESS BLOB to an already compressed BLOB, the
command detects it and does nothing.

2. This example allows you to select a document and then compress it:
$vhDocRef := Open document ("")
If (OK=1)

CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)

Þ COMPRESS BLOB (vxBlob)
If (OK=1)

BLOB TO DOCUMENT (Document;vxBlob)
End if

End if
End if

See Also
BLOB PROPERTIES, EXPAND BLOB.

System Variables or Sets
The OK variable is set to 1 if the BLOB has been successfully compressed; otherwise, it is
set to 0.

4th Dimension Language Reference 225

EXPAND BLOB BLOB

version 6.0
__

EXPAND BLOB (blob)

Parameter Type Description
blob BLOB ® BLOB to expand

Description
The EXPAND BLOB command expands the BLOB blob that was previously compressed
using the COMPRESS BLOB command.

After the call, the OK variable is set to 1 if the BLOB has been compressed (or if the BLOB
was not compressed originally). If the expansion could not be performed, the OK variable
is set to 0; for example, if there was not enough memory.

To detect if a BLOB has been compressed, use the BLOB PROPERTIES command.

Examples
1. This example tests if the BLOB vxMyBlob is compressed and, if so, expands it:

BLOB PROPERTIES (vxMyBlob;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlCompressed#Is not compressed)

Þ EXPAND BLOB (vxMyBlob)
End if

Note however, that if you apply EXPAND BLOB to an uncompressed BLOB, the command
detects this and does nothing.

2. This example allows you to select a document and then expand it, if it is compressed:
$vhDocRef := Open document ("")
If (OK=1)

CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)

BLOB PROPERTIES (vxBlob;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlCompressed#Is not compressed)

Þ EXPAND BLOB (vxBlob)
If (OK=1)

BLOB TO DOCUMENT (Document;vxBlob)
End if

End if
End if

End if

226 4th Dimension Language Reference

See Also
BLOB PROPERTIES, COMPRESS BLOB.

System Variables or Sets
The OK variable is set to 1 if the BLOB has been successfully expanded, otherwise it is set
to 0.

4th Dimension Language Reference 227

BLOB PROPERTIES BLOB

version 6.0
__

BLOB PROPERTIES (blob; compressed{; expandedSize{; currentSize}})

Parameter Type Description
blob BLOB ® BLOB for which to get information
compressed Number ¬ 0 = BLOB is not compressed

1 = BLOB compressed compact
2 = BLOB compressed fast

expandedSize Number ¬ Size of BLOB (in bytes) when not compressed
currentSize Number ¬ Current size of BLOB (in bytes)

Description
The BLOB PROPERTIES command returns information about the BLOB blob.

• The compressed parameter tells whether or not the BLOB is compressed, and returns one
of the following values. Note: 4th Dimension provides the predefined constants.

Constant Type Value
Is not compressed Long Integer 0
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

• Whatever the compression status of the BLOB, the expandedSize parameter returns the
size of the BLOB when it is not compressed.

• The parameter currentSize returns the current size of the BLOB. If the BLOB is
compressed, you will usually obtain currentSize less than expandedSize. If the BLOB is not
compressed, you will always obtain currentSize equal to expandedSize.

228 4th Dimension Language Reference

Examples
1. See examples for the commands COMPRESS BLOB and EXPAND BLOB.

2. After a BLOB has been compressed, the following project method obtains the
percentage of space saved by the compression:

` Space saved by compression project method
` Space saved by compression (Pointer {; Pointer }) -> Long
` Space saved by compression (-> BLOB {; -> savedBytes }) -> Percentage

C_POINTER ($1;$2)
C_LONGINT ($0;$vlCompressed;$vlExpandedSize;$vlCurrentSize)

Þ BLOB PROPERTIES ($1->;$vlCompressed;$vlExpandedSize;$vlCurrentSize)
If ($vlExpandedSize=0)

$0:=0
If (Count parameters>=2)

$2->:=0
End if

Else
$0:=100-(($vlCurrentSize/$vlExpandedSize)*100)
If (Count parameters>=2)

$2->:=$vlExpandedSize-$vlCurrentSize
End if

End if

After this method has been added to your application, you can use it this way:
` ...

COMPRESS BLOB (vxBlob)
$vlPercent:=Space saved by compression (->vxBlob;->vlBlobSize)
ALERT ("The compression saved "+String (vlBlobSize)+" bytes, so "+String

($vlPercent;"#0%")+
" of space.")

See Also
COMPRESS BLOB, EXPAND BLOB.

4th Dimension Language Reference 229

DOCUMENT TO BLOB BLOB

version 6.0
__

DOCUMENT TO BLOB (document; blob{; *})

Parameter Type Description
document String ® Name of the document
blob BLOB ® BLOB field or variable to receive the document

¬ Document contents
* * ® On Macintosh only:

Resource fork is loaded if * is passed
otherwise Data fork is loaded

Description
DOCUMENT TO BLOB loads the whole contents of document into blob. You must pass the
name of an existing document that is not already open, otherwise an error will be
generated. To let the user choose the document to be loaded into the BLOB, use the
command Open document and the process variable document (see Example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command DOCUMENT TO BLOB loads
the Data fork of the document. To load the Resource fork of the document instead, pass
the optional * parameter. On Windows, the optional * parameter is ignored. Note that the
4D environment provides the equivalent of MacOS resource forks on Windows. For
example, the data fork of a 4D database is stored in a file with the file extension .4DB; the
resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example
You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button that allows you to load a document
into a BLOB field. The method for this button could be:

$vhDocRef:=Open document("") ` Select the document of your choice
If (OK=1) ` If a document has been chosen

CLOSE DOCUMENT($vhDocRef) ` We don't need to keep it open
Þ DOCUMENT TO BLOB (Document;[YourTable]YourBLOBField)

If (OK=0)
` Handle error

End if
End if

230 4th Dimension Language Reference

See Also
BLOB TO DOCUMENT, Open document.

System Variables
OK is set to 1 if the document is correctly loaded, otherwise OK is set to 0 and an error is
generated.

Error Handling
• If you try to load (into a BLOB) a document that does not exist or that is already open
by another process or application, the appropriate File Manager error is generated.
• An I/O error can occur if the document is locked, located on a locked volume, or if there
is problem in reading the document.
• If there is not enough memory to load the document, an error -108 is generated.

In each case, you can trap the error using an ON ERR CALL interruption method.

4th Dimension Language Reference 231

BLOB TO DOCUMENT BLOB

version 6.0
__

BLOB TO DOCUMENT (document; blob{; *})

Parameter Type Description
document String ® Name of the document
blob BLOB ® New contents for the document
* * ® On Macintosh only:

Resource fork is written if * is passed
otherwise Data fork is written

Description
BLOB TO DOCUMENT rewrites the whole contents of document using the data stored in
blob. You must pass the name of an existing document that is not already open,
otherwise an error will be generated. If you want to let the user choose the document, use
the commands Open document or Create document and use the process variable document
(see example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command BLOB TO DOCUMENT rewrites
the Data fork of the document. To rewrite the Resource fork of the document instead,
pass the optional * parameter. On Windows, the optional * parameter is ignored. Note
that the 4D environment provides the equivalent of MacOS resource forks on Windows.
For example, the data fork of a 4D database is stored in a file with the file extension .4DB;
the resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example
You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button which allows you to save a
document that will contain the data previously loaded into a BLOB field. The method for
this button could be:

$vhDocRef:=Create document("") ` Save the document of your choice
If (OK=1) ` If a document has been created

CLOSE DOCUMENT($vhDocRef) ` We don't need to keep it open
Þ BLOB TO DOCUMENT (Document;[YourTable]YourBLOBField)

If (OK=0)
` Handle error

End if
End if

232 4th Dimension Language Reference

See Also
Create document, DOCUMENT TO BLOB, Open document.

System Variables
OK is set to 1 if the document is correctly written, otherwise OK is set to 0 and an error is
generated.

Error Handling
• If you try to rewrite a document that does not exist or that is already open by another
process or application, the appropriate File Manager error is generated.
• The disk space may be insufficient for writing the new contents of the document.
• I/O errors can occur while writing the document.
In all cases, you can trap the error using an ON ERR CALL interruption method.

4th Dimension Language Reference 233

VARIABLE TO BLOB BLOB

version 6.0
__

VARIABLE TO BLOB (variable; blob{; *})

Parameter Type Description
variable Variable ® Variable to store in the BLOB
blob BLOB ® BLOB to receive the variable
* Character ® * to append the value

Description
The command VARIABLE TO BLOB stores the variable variable in the BLOB blob.

If you specify the * optional parameter, the variable is appended to the BLOB and the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of variables or lists (see other BLOB commands) in a BLOB, as long as
the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the
variable is stored at the beginning of the BLOB, overriding its previous contents; the size
of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the variable is written at the offset (starting from
zero) within the BLOB. No matter where you write the variable, the size of the BLOB is
increased according to the location you passed (plus the size of the variable, if necessary).
Newly allocated bytes, other than the ones you are writing, are initialized to zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another variable or list.

VARIABLE TO BLOB accepts any type of variable (including other BLOBs), except the
following:
• Pointer
• Array of pointers
• Two-dimensional arrays

However, if you store a Long Integer variable that is a reference to a hierarchical list
(ListRef), VARIABLE TO BLOB will store the Long Integer variable, not the list. To store and
retrieve hierarchical lists in and from a BLOB, use the commands LIST TO BLOB
and BLOB to list.

234 4th Dimension Language Reference

WARNING: If you use a BLOB for storing variables, you must later use the command
BLOB TO VARIABLE for reading back the contents of the BLOB, because variables are stored
in BLOBs using a 4D internal format.

After the call, if the variable has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to 0; for example, there was not
enough memory.

Note regarding Platform Independence: VARIABLE TO BLOB and BLOB TO VARIABLE use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Examples
1. The two following project methods allow you to quickly store and retrieve arrays into
and from documents on disk:

` SAVE ARRAY project method
` SAVE ARRAY (String ; Pointer)
` SAVE ARRAY (Document ; -> Array)

C_STRING (255;$1)
C_POINTER ($2)
C_BLOB ($vxArrayData)

Þ VARIABLE TO BLOB ($2->;$vxArrayData) ` Store the array into the BLOB
COMPRESS BLOB ($vxArrayData) ` Compress the BLOB
BLOB TO DOCUMENT ($1;$vxArrayData) ` Save the BLOB on disk

` LOAD ARRAY project method
` LOAD ARRAY (String ; Pointer)
` LOAD ARRAY (Document ; -> Array)

C_STRING (255;$1)
C_POINTER ($2)
C_BLOB ($vxArrayData)
DOCUMENT TO BLOB ($1;$vxArrayData) ` Load the BLOB from the disk
EXPAND BLOB ($vxArrayData) ` Expand the BLOB

Þ BLOB TO VARIABLE ($vxArrayData;$2->) ` Retrieve the array from the BLOB

After these methods have been added to your application, you can write:
ARRAY STRING (...;asAnyArray;...)

` ...
SAVE ARRAY ($vsDocName;->asAnyArray)

` ...
LOAD ARRAY ($vsDocName;->asAnyArray)

4th Dimension Language Reference 235

2. The two following project methods allow you to quickly store and retrieve any set of
variables into and from a BLOB:

` STORE VARIABLES INTO BLOB project method
` STORE VARIABLES INTO BLOB (Pointer { ; Pointer ... { ; Pointer } })
` STORE VARIABLES INTO BLOB (BLOB { ; Var1 ... { ; Var2 } })

C_POINTER (${1})
C_LONGINT ($vlParam)

SET BLOB SIZE ($1->;0)
For ($vlParam;2;Count parameters)

Þ VARIABLE TO BLOB (${$vlParam}->;$1->;*)
End for

` RETRIEVE VARIABLES FROM BLOB project method
` RETRIEVE VARIABLES FROM BLOB (Pointer { ; Pointer ... { ; Pointer } })
` RETRIEVE VARIABLES FROM BLOB (BLOB { ; Var1 ... { ; Var2 } })

C_POINTER (${1})
C_LONGINT ($vlParam;$vlOffset)

$vlOffset:=0
For ($vlParam;2;Count parameters)

Þ BLOB TO VARIABLE ($1->;${$vlParam}->;$vlOffset)
End for

After these methods have been added to your application, you can write:
STORE VARIABLES INTO BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

` ...
RETRIEVE VARIABLES FROM BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

See Also
BLOB to list, BLOB TO VARIABLE, LIST TO BLOB.

System Variables or Sets
The OK variable is set to 1 if the variable has been successfully stored; otherwise, it is
set to 0.

236 4th Dimension Language Reference

BLOB TO VARIABLE BLOB

version 6.0
__

BLOB TO VARIABLE (blob; variable{; offset})

Parameter Type Description
blob BLOB ® BLOB containing 4D variables
variable Variable ¬ Variable to write with BLOB contents
offset Number ® Position of variable within BLOB

¬ Position of following variable within BLOB

Description
The command BLOB TO VARIABLE rewrites the variable variable with the data stored within
the BLOB blob at the byte offset (starting at zero) specified by offset.

The BLOB data must be consistent with the destination variable. Typically, you will use
BLOBs that you previously filled out using the command VARIABLE TO BLOB.

If you do not specify the optional offset parameter, the variable data is read starting from
the beginning of the BLOB. If you deal with a BLOB in which several variables have been
stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the variable has been successfully rewritten, the OK variable is set to 1. If
the operation could not be performed, the OK variable is set to 0; for example, if there
was not enough memory.

Note regarding Platform Independence: BLOB TO VARIABLE and VARIABLE TO BLOB use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Example
See the examples for the command VARIABLE TO BLOB.

See Also
VARIABLE TO BLOB.

System Variables or Sets
The OK variable is set to 1 if the variable has been successfully rewritten, otherwise it is set
to 0.

4th Dimension Language Reference 237

LIST TO BLOB BLOB

version 6.0
__

LIST TO BLOB (list; blob{; *})

Parameter Type Description
list ListRef ® Hierarchical list to store in the BLOB
blob BLOB ® BLOB to receive the Hierarchical list
* * ® * to append the value

Description
The command LIST TO BLOB stores the hierarchical list list in the BLOB blob.

If you specify the * optional parameter, the hierarchical list is appended to the BLOB and
the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of variables or lists (see other BLOB commands) in a BLOB,
as long as the BLOB fits into memory.

If you do not specify the * optional parameter, the hierarchical list is stored at the
beginning of the BLOB, overriding its previous contents; the size of the BLOB is adjusted
accordingly.

WARNING: If you use a BLOB for storing lists, you must later use the command BLOB to
list for reading back the contents of the BLOB, because lists are stored in BLOBs using a
4D internal format.

After the call, if the list has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to 0; for example, if there was
not enough memory.

Note regarding Platform Independence: LIST TO BLOB and BLOB to list use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those commands can be reused on Macintosh, and vice-
versa.

238 4th Dimension Language Reference

Examples
See example for the command BLOB to list.

See Also
BLOB to list, BLOB TO VARIABLE, VARIABLE TO BLOB.

4th Dimension Language Reference 239

BLOB to list BLOB

version 6.0
__

BLOB to list (blob{; offset}) ® ListRef

Parameter Type Description
blob BLOB ® BLOB containing a hierarchical list
offset Number ® Offset within the BLOB (expressed in bytes)

¬ New offset after reading

Function result ListRef ¬ Reference to newly created list

Description
The command BLOB to list creates a new hierarchical list with the data stored within the
BLOB blob at the byte offset (starting at zero) specified by offset and returns a List
Reference number for that new list.

The BLOB data must be consistent with the command. Typically, you will use BLOBs that
you previously filled out using the command LIST TO BLOB.

If you do not specify the optional offset parameter, the list data is read starting from the
beginning of the BLOB. If you deal with a BLOB in which several variables or lists have
been stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the hierarchical list has been successfully created, the OK variable is set to
1. If the operation could not be performed, the OK variable is set to 0; for example, if
there was not enough memory.

Note regarding Platform Independence: BLOB to list and LIST TO BLOB use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those two commands can be reused on Macintosh and
vice-versa.

240 4th Dimension Language Reference

Example
In this example, the form method for a data entry form extracts a list from a BLOB field
before the form appears on the screen, and stores it back to the BLOB field if the data
entry is validated:

` [Things To Do];"Input" Form Method

Case of

: (Form event=On Load)
Þ hList:=BLOB to list([Things To Do]Other Crazy Ideas)

If (OK=0)
hList:=New list

 End if

: (Form event=On Unload)
CLEAR LIST(hList;*)

: (bValidate=1)
Þ LIST TO BLOB(hList;[Things To Do]Other Crazy Ideas)

End case

See Also
LIST TO BLOB.

System Variables and Sets
The OK variable is set to 1 if the list has been successfully created, otherwise it is set to 0.

4th Dimension Language Reference 241

INTEGER TO BLOB BLOB

version 6.0
__

INTEGER TO BLOB (integer; blob; byteOrder{; offset | *})

Parameter Type Description
integer Number ® Integer value to write into the BLOB
blob BLOB ® BLOB to receive the Integer value
byteOrder Number ® 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset | * Variable | * ¬ New offset after writing if not *

Description
The command INTEGER TO BLOB writes the 2-byte Integer value integer into the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be written.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between the Macintosh
and PC platforms, it is up to you to manage byte swapping issues when using this
command.

If you specify the * optional parameter, the 2-byte Integer value is appended to the BLOB
and the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of Integer, Long Integer, Real or Text values (see other BLOB
commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the 2-byte
Integer value is stored at the beginning of the BLOB, overriding its previous contents; the
size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 2-byte Integer value is written at the byte
offset (starting from zero) within the BLOB. No matter where you write the 2-byte
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 2 bytes, if necessary). Newly allocated bytes, other than the ones you are writing,
are initialized to zero.

242 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

Þ INTEGER TO BLOB (0x0206;vxBlob;Native byte ordering)

• The size of vxBlob is 2 bytes
• On Macintosh vxBLOB{0} = $02 and vxBLOB{1} = $06
• On PC vxBLOB{0} = $06 and vxBLOB{1} = $02

2. After executing this code:

Þ INTEGER TO BLOB (0x0206;vxBlob;Macintosh byte ordering)

• The size of vxBlob is 2 bytes
• On all platforms vxBLOB{0} = $02 and vxBLOB{1} = $06

3. After executing this code:

Þ INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering)

• The size of vxBlob is 2 bytes
• On all platforms vxBLOB{0} = $06 and vxBLOB{1} = $02

4. After executing this code:
SET BLOB SIZE (vxBlob;100)

Þ INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering;*)

• The size of vxBlob is 102 bytes
• On all platforms vxBLOB{100} = $06 and vxBLOB{101} = $02
• The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vlOffset:=50

Þ INTEGER TO BLOB (518;vxBlob;Macintosh byte ordering;vlOffset)

• The size of vxBlob is 100 bytes
• On all platforms vxBLOB{50} = $02 and vxBLOB{51} = $06
• The other bytes of the BLOB are left unchanged
• The variable vlOffset has been incremented by 2 (and is now equal to 52)

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, LONGINT TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 243

LONGINT TO BLOB BLOB

version 6.0
__

LONGINT TO BLOB (longInt; blob; byteOrder{; offset | *})

Parameter Type Description
longInt Number ® Long Integer value to write into the BLOB
blob BLOB ® BLOB to receive the Long Integer value
byteOrder Number ® 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset | * Variable | * ® Offset within the BLOB (expressed in bytes)
or * to append the value

¬ New offset after writing if not *

Description
The command LONGINT TO BLOB writes the 4-byte Long Integer value integer into the
BLOB blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
written. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the * optional parameter, the 4-byte Long Integer value is appended to the
BLOB and the size of the BLOB is extended accordingly. Using the * optional parameter,
you can sequentially store any number of Integer, Long Integer, Real or Text values (see
other BLOB commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the 4-
byte Long Integer value is stored at the beginning of the BLOB, overriding its previous
contents; the size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 4-byte Long Integer value is written at the
offset (starting from zero) within the BLOB. No matter where you write the 4-byte Long
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 4 bytes, if necessary). New allocated bytes, other than the ones you are writing, are
initialized to zero.

244 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

Þ LONGINT TO BLOB (0x01020304;vxBlob;Native byte ordering)

• The size of vxBlob is 4 bytes
• On Macintosh vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=$03, vxBLOB{3}=$04
• On PC vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=$01

2. After executing this code:

Þ LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering)

• The size of vxBlob is 4 bytes
• On all platforms vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=$03, vxBLOB{3}=$04

3. After executing this code:

Þ LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering)

• The size of vxBlob is 4 bytes
• On all platforms vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=$01

4. After executing this code:
SET BLOB SIZE (vxBlob;100)

Þ LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering;*)

• The size of vxBlob is 104 bytes
• On all platforms vxBLOB{100}=$04, vxBLOB{101}=$03, vxBLOB{102}=$02,
vxBLOB{103}=$01
• The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vlOffset:=50

Þ LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering;vlOffset)

• The size of vxBlob is 100 bytes
• On all platforms vxBLOB{50}=$01, vxBLOB{51}=$02, vxBLOB{52}=$03, vxBLOB{53}=$04
• The other bytes of the BLOB are left unchanged
• The variable vlOffset has been incremented by 4 (and is now equal to 54)

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 245

REAL TO BLOB BLOB

version 6.0
__

REAL TO BLOB (real; blob; realFormat{; offset | *})

Parameter Type Description
real Number ® Real value to write into the BLOB
blob BLOB ® BLOB to receive the Real value
realFormat Number ® 0 Native real format

1 Extended real format
2 Macintosh Double real format
3 Windows Double real format

offset | * Variable | * ® Offset within the BLOB (expressed in bytes)
or * to append the value

¬ New offset after writing if not *

Description
The command REAL TO BLOB writes the Real value real into the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be written. You pass one of the following predefined constants provided by 4th
Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Platform Independence Note: If you exchange BLOBs between Macintosh and PC
platforms, it is up to you to manage real formats and byte swapping issues when using
this command.

If you specify the * optional parameter, the Real value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the Real
value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

246 4th Dimension Language Reference

If you pass the offset variable parameter, the Real value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Real value, the size of the
BLOB is increased according to the location you passed (plus up to 8 or 10 bytes, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

C_REAL (vrValue)
vrValue := ...

Þ REAL TO BLOB (vrValue;vxBlob;Native real format)

• On PC and Power Macintosh, the size of vxBlob is 8 bytes
• On Macintosh 68K, the size of vxBlob is 10 bytes

2. After executing this code:
C_REAL (vrValue)
vrValue := ...

Þ REAL TO BLOB (vrValue;vxBlob;Extended real format)

• On all platforms, the size of vxBlob is 10 bytes

3. After executing this code:
C_REAL (vrValue)
vrValue := ...

Þ REAL TO BLOB (vrValue;vxBlob;Macintosh Double real format) ` or Windows double
real format

• On all platforms, the size of vxBlob is 8 bytes

4. After executing this code:
SET BLOB SIZE (vxBlob;100)
C_REAL (vrValue)
vrValue := ...

Þ INTEGER TO BLOB (vrValue;vxBlob;Windows Double real format) ` or Macintosh
double real format

• On all platforms, the size of vxBlob is 8 bytes

4th Dimension Language Reference 247

5. After executing this code:
SET BLOB SIZE (vxBlob;100)

Þ REAL TO BLOB (vrValue;vxBlob;Extended real format;*)

• On all platforms, the size of vxBlob is 110 bytes
• On all platforms, the real value is stored at the bytes #100 to #109
• The other bytes of the BLOB are left unchanged

6. After executing this code:
SET BLOB SIZE (vxBlob;100)
C_REAL (vrValue)
vrValue := ...
vlOffset:=50

Þ REAL TO BLOB (vrValue;vxBlob;Windows Double real format;vlOffset) ` or Macintosh
double real format

• On all platforms, the size of vxBlob is 100 bytes
• On all platforms, the real value is stored in the bytes #50 to #57
• The other bytes of the BLOB are left unchanged
• The variable vlOffset has been incremented by 8 (and is now equal to 58)

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, TEXT TO BLOB.

248 4th Dimension Language Reference

TEXT TO BLOB BLOB

version 6.0
__

TEXT TO BLOB (text; blob; textFormat{; offset | *})

Parameter Type Description
text String ® Text value to write into the BLOB
blob BLOB ® BLOB to receive the text value
textFormat Number ® 0 C String

1 Pascal String
2 Text with length
3 Text without length

offset | * Variable | * ® Offset within the BLOB (expressed in bytes)
or * to append the value

¬ New offset after writing if not *

Description
The command TEXT TO BLOB writes the Text value text into the BLOB blob.

The textFormat parameter fixes the internal format of the text value to be written. You
pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
C string Long Integer 0
Pascal string Long Integer 1
Text with length Long Integer 2
Text without length Long Integer 3

The following table describes each of these formats:

Text format Description and Examples
C string The text is ended by a NULL character (ASCII code $00)

"" ® $00

"Hello World!" ® $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00

Pascal string The text is preceded by a 1-byte length

"" ® $00

"Hello World!" ® $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Text with length The text is preceded by a 2-byte length

"" ® $00 00

"Hello World!" ® $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 249

Text without length The text is composed only of its characters.

"" ® No data

"Hello World!" ® $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Note: The command accepts both Text (declared with C_TEXT) and String (declared with
C_STRING) expressions. Remember that a Text variable can contain up to 32,000
characters and a String variable can contain up to the number of characters in its
declaration, with a maximum of 255 characters.

If you specify the * optional parameter, the Text value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the Text
value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the Text value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Text value, the size of the
BLOB is, increased according to the location you passed (plus up to the size of the text, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therfore, you can reuse that same variable with another
BLOB writing command to write another value.

Example
After executing this code:

SET BLOB SIZE (vxBlob;0)
C_TEXT (vtValue)
vtValue := "Hello World!" ` Length of vtValue is 12 bytes

Þ TEXT TO BLOB (vtValue;vxBlob;C string) ` Size of BLOB becomes 13 bytes
Þ TEXT TO BLOB (vtValue;vxBlob;Pascal string) ` Size of BLOB becomes 13 bytes
Þ TEXT TO BLOB (vtValue;vxBlob;Text with length) ` Size of BLOB becomes 14 bytes
Þ TEXT TO BLOB (vtValue;vxBlob;Text without length) ` Size of BLOB becomes 12 bytes

See Also
BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, REAL TO BLOB.

250 4th Dimension Language Reference

BLOB to integer BLOB

version 6.0
__

BLOB to integer (blob; byteOrder{; offset}) ® Number

Parameter Type Description
blob BLOB ® BLOB from which to get the integer value
byteOrder Number ® 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset Variable ® Offset within the BLOB (expressed in bytes)
¬ New offset after reading

Function result Number ¬ 2-byte Integer value

Description
The command BLOB to integer returns a 2-byte Integer value read from the BLOB blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be read.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues when using this command.

 If you specify the optional offset variable parameter, the 2-byte Integer value is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first two bytes of the BLOB are read.

Note: You should pass an offset (in bytes) value between 0 (zero) and the size of the BLOB
minus 2. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read, Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 251

Example
The following example reads 20 Integer values from a BLOB, starting at the offset 0x200:

$vlOffset:=0x200
For ($viLoop;0;19)

Þ $viValue:=BLOB to integer(vxSomeBlob;PC byte ordering;$vlOffset)
` Do something with $viValue

End for

See Also
BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

252 4th Dimension Language Reference

BLOB to longint BLOB

version 6.0
__

BLOB to longint (blob; byteOrder{; offset}) ® Number

Parameter Type Description
blob BLOB ® BLOB from which to get

the Long Integer value
byteOrder Number ® 0 Native byte ordering

1 Macintosh byte ordering
2 PC byte ordering

offset Variable ® Offset within the BLOB (expressed in bytes)
¬ New offset after reading

Function result Number ¬ 4-byte Long Integer value

Description
The command BLOB to longint returns a 4-byte Long Integer value read from the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the optional offset variable parameter, the 4-byte Long Integer is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first four bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 4.
If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 253

Example
The following example reads 20 Long Integer values from a BLOB, starting at the offset
0x200:

$vlOffset:=0x200
For ($viLoop;0;19)

Þ $vlValue:=BLOB to longint(vxSomeBlob;PC byte ordering;$vlOffset)
` Do something with $vlValue

End for

See Also
BLOB to integer, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

254 4th Dimension Language Reference

BLOB to real BLOB

version 6.0
__

BLOB to real (blob; realFormat{; offset})

Parameter Type Description
blob BLOB ® BLOB from which to get the Real value
realFormat Number ® 0 Native real format

1 Extended real format
2 Macintosh Double real format
3 Windows Double real format

offset Variable ® Offset within the BLOB (expressed in bytes)
¬ New offset after reading

Description
The command BLOB to real returns a Real value read from the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage real formats and byte swapping issues while using
this command.

If you specify the optional offset variable parameter, the Read value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the first 8 or 10 bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 8
or 10. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 255

Example
The following example reads 20 Real values from a BLOB, starting at the offset 0x200:

$vlOffset:=0x200
For ($viLoop;0;19)

Þ $vrValue:=BLOB to real(vxSomeBlob;PC byte ordering;$vlOffset)
` Do something with $vrValue

End for

See Also
BLOB to integer, BLOB to longint, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB,
REAL TO BLOB, TEXT TO BLOB.

256 4th Dimension Language Reference

BLOB to text BLOB

version 6.0
__

BLOB to text (blob; textFormat{; offset{; textLength}})

Parameter Type Description
blob BLOB ® BLOB from which to get the Text value
textFormat Number ® 0 C String

1 Pascal String
2 Text with length
3 Text without length

offset Variable ® Offset within the BLOB (expressed in bytes)
¬ New offset after reading

textLength Number ® Number of characters to be read

Description
The command BLOB to text returns a Text value read from the BLOB blob. The textFormat
parameter fixes the internal format of the text value to be read. You pass one of the
following predefined constants provided by 4th Dimension:

Constant Type Value
C string Long Integer 0
Pascal string Long Integer 1
Text with length Long Integer 2
Text without length Long Integer 3

The following table describes each of these formats:

Text format Description & Examples
C string The text is ended by a NULL character (ASCII code $00)

"" ® $00

"Hello World!" ® $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00
Pascal string The text is preceded a 1-byte length

"" ® $00

"Hello World!" ® $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
Text with length The text is preceded by a 2-byte length

"" ® $00 00

"Hello World!" ® $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
Text without length The text is only composed of its characters.

"" ® No data

"Hello World!" ® $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 257

WARNING: The number of characters to be read is determined by the textFormat
parameter, EXCEPT for the format Text without length, for which you MUST specify the
number of characters to be read in the parameter textLength. For the other formats,
textLength is ignored and you can omit it.

Remember that a Text variable can contain up to 32,000 characters and a String variable
can contain up to the number of characters in its declaration, with a maximum of 255
characters. If you try to read more data than a variable can hold, 4D will truncate the
result of the command when placing it into the variable.

If you specify the optional offset variable parameter, the Text value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the beginning of the BLOB is read according to the value you pass in
textFormat. Note that you must pass the offset variable parameter when you are reading
text without length.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus
the size of the text to be read. If you do not do so, the function result is unpredictable.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

Example
The following example reads an hypothetical MacOS-based resource whose internal
format is identical to that of the 'STR#' resources:

GET RESOURCE ("ABCD";viResID;vxResData;viMyResFile)
vlSize:=BLOB Size(vxResData)
If (vlSize>0)

` The resource starts with a 2-byte integer specifying the number of strings
vlOffset:=0
viNbEntries:=BLOB to integer(vxResData;Macintosh Byte Ordering;vlOffset)

` Then the resource contains concatenated, not padded, Pascal strings
For (viEntry;1;viNbEntries)

If (vlOffset<vlSize)
Þ vsEntry:=BLOB to text(vxResData;Pascal string;vlOffset)

` Do something with vsEntry
Else

` Resource data is invalid, get out of the loop
viEntry:=viNbEntries+1

End if
End for

End if

See Also
BLOB to integer, BLOB to longint, BLOB to real, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

258 4th Dimension Language Reference

INSERT IN BLOB BLOB

version 6.0
__

INSERT IN BLOB (blob; offset; len{; filler})

Parameter Type Description
blob BLOB ® BLOB into which bytes will be inserted
offset Variable ® Starting position where bytes will be inserted
len Number ® Number of bytes to be inserted
filler Number ® Default byte value (0x00..0xFF)

0x00 if omitted

Description
The command INSERT IN BLOB inserts the number of bytes specified by len into the BLOB
blob at the position specified by offset. The BLOB then becomes len bytes larger.

If you do not specify the optional filler parameter, the bytes inserted into the BLOB are set
to 0x00. Otherwise, the bytes are set to the value you pass in filler (modulo 256 — 0..255).

Before the call, you pass in the offset variable parameter the position of the insertion
relative to the beginning of the BLOB. After the call, the offset variable parameter returns
the position just after the insertion.

See Also
DELETE FROM BLOB.

4th Dimension Language Reference 259

DELETE FROM BLOB BLOB

version 6.0
__

DELETE FROM BLOB (blob; offset; len)

Parameter Type Description
blob BLOB ® BLOB from which to delete bytes
offset Number ® Starting offset where bytes will be deleted
len Number ® Number of bytes to be deleted

Description
The command DELETE FROM BLOB deletes the number of bytes specified by len from the
BLOB blob at the position specified by offset (expressed relative to the beginning of the
BLOB). The BLOB then becomes len bytes smaller.

See Also
INSERT IN BLOB.

260 4th Dimension Language Reference

COPY BLOB BLOB

version 6.0
__

COPY BLOB (srcBLOB; dstBLOB; srcOffset; dstOffset; len)

Parameter Type Description
srcBLOB BLOB ® Source BLOB
dstBLOB BLOB ® Destination BLOB
srcOffset Variable ® Source position for the copy
dstOffset Variable ® Destination position for the copy
len Number ® Number of bytes to be copied

Description
The COPY BLOB command copies the number of bytes specified by len from the BLOB
srcBLOB to the BLOB dstBLOB.

The copy starts at the position (expressed relative to the beginning of the source BLOB)
specified by srcOffset and takes place at the position (expressed relative to the beginning
of the destination BLOB) specified by dstOffset.

Note: The destination BLOB can be resized if necessary.

After the call, the variables srcOffset and dstOffset return the positions within the source
and destination BLOBs, respectively, just after the copy.

See Also
DELETE FROM BLOB, INSERT IN BLOB.

4th Dimension Language Reference 261

262 4th Dimension Language Reference

6 Boolean

4th Dimension Language Reference 263

264 4th Dimension Language Reference

Boolean Commands Boolean

version 6.0
__

4D includes Boolean functions, are used for Boolean calculations:

True
False
Not

Examples
This example sets a Boolean variable based on the value of a button. It returns True in
myBoolean if the myButton button was clicked and False if the button was not clicked.
When a button is clicked, the button variable is set to 1.

If (myButton=1) ` If the button was clicked
 myBoolean:=True ` myBoolean is set to True

Else ` If the button was not clicked,
myBoolean:=False ` myBoolean is set to False

End if

The previous example can be simplified into one line.

myBoolean:=(myButton=1)

See Also
False, Logical Operators, Not, True.

In addition, the following 4D commands return a Boolean result: Activated, After, Before,
Before selection, Before subselection, Caps lock down, Compiled application, Deactivated,
During, End selection, End subselection, In break, In footer, In header, In transaction, Is a list,
Is a variable, Is in set, Is user deleted, Locked, Macintosh command down, Macintosh control
down, Macintosh option down, Modified, Modified record, Nil, Outside call, Read only state,
Semaphore, Shift down, True, Undefined, User in group, Windows Alt down, Windows Ctrl
down.

4th Dimension Language Reference 265

True Boolean

version 3
__

True ® Boolean

Parameter Type Description
This command does not require any parameters

Description
True returns the Boolean value True.

Example
The following example sets the variable vbOptions to True:

Þ vbOptions:=True

See Also
False, Not.

266 4th Dimension Language Reference

False Boolean

version 3
__

False ® Boolean

Parameter Type Description
This command does not require any parameters

Description
False returns the Boolean value False.

Example
The following example sets the variable vbOptions to False:

Þ vbOptions:=False

See Also
Not, True.

4th Dimension Language Reference 267

Not Boolean

version 3
__

Not (boolean) ® Boolean

Parameter Type Description
boolean Boolean ® Boolean value to negate

Description
The Not function returns the negation of boolean, changing True to False or False to True.

Example
This example first assigns True to a variable, then changes the variable value to False, and
then back to True.

vResult:=True ` vResult is set to True
Þ vResult:=Not(vResult) ` vResult is set to False
Þ vResult:=Not(vResult) ` vResult is set to True

268 4th Dimension Language Reference

7 Clipboard

4th Dimension Language Reference 269

270 4th Dimension Language Reference

APPEND TO CLIPBOARD Clipboard

version 6.0
__

APPEND TO CLIPBOARD (dataType; data)

Parameter Type Description
dataType String ® 4-character data type string
data BLOB ® Data to append to the Clipboard

Description
The APPEND TO CLIPBOARD command appends to the Clipboard the data contained in
the BLOB data under the data type specified in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the BLOB data is correctly appended to the Clipboard, the OK variable is set to 1.
Otherwise the OK variable is set to 0 and an error may be generated.

Usually, you will use the APPEND TO CLIPBOARD command to append multiple instances
of the same data to the Clipboard or to append data that is not of type TEXT or PICT. To
append new data to the Clipboard, you must first clear the Clipboard using the
CLEAR CLIPBOARD command.

If you want to clear and append:
• text to the Clipboard, use the SET TEXT TO CLIPBOARD command,
• a picture to the Clipboard, use the SET PICTURE TO CLIPBOARD command.

However, note that if a BLOB actually contains some text or a picture, you can use the
APPEND TO CLIPBOARD command to append a text or a picture to the Clipboard.

Example
Using Clipboard commands and BLOBs, you can build sophisticated Cut/Copy/Paste
schemes that deal with structured data rather than a unique piece of data. In the
following example, the two project methods SET RECORD TO CLIPBOARD and GET
RECORD FROM CLIPBOARD enable you to treat a whole record as one piece of data to be
copied to or from the Clipboard.

4th Dimension Language Reference 271

` SET RECORD TO CLIPBOARD project method
` SET RECORD TO CLIPBOARD (Number)
` SET RECORD TO CLIPBOARD (Table number)

C_LONGINT($1;$vlField;$vlFieldType)
C_POINTER($vpTable;$vpField)
C_STRING(255;$vsDocName)
C_TEXT($vtRecordData;$vtFieldData)
C_BLOB($vxRecordData)

` Clear the Clipboard (it will stay empty if there is no current record)
Þ CLEAR CLIPBOARD

` Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)

` If there is a current record for that table
If ((Record number($vpTable->)>=0) | (Record number($vpTable->)=-3))

` Initialize the text variable that will hold the text image of the record
$vtRecordData:=""

` For each field of the record:
For ($vlField;1;Count fields($1))

` Get the type of the field
GET FIELD PROPERTIES($1;$vlField;$vlFieldType)

` Get a pointer to the field
$vpField:=Field($1;$vlField)

` Depending on the type of the field, copy (or not) its data
` in the appropriate manner

Case of
: (($vlFieldType=Is Alpha field) | ($vlFieldType=Is Text))

$vtFieldData:=$vpField->
: (($vlFieldType=Is Real) | ($vlFieldType=Is Integer) |

($vlFieldType=Is LongInt) | ($vlFieldType=Is Date) | ($vlFieldType=Is Time))
$vtFieldData:=String($vpField->)

: ($vlFieldType=Is Boolean)
$vtFieldData:=String(Num($vpField->);"Yes;;No")

Else
` Skip and ignore other field data types

$vtFieldData:=""
End case

` Accumulate the field data into the text variable holding
` the text image of the record

$vtRecordData:=$vtRecordData+Field name($1;$vlField)+":"+Char(9)
+$vtFieldData+CR

` Note: The method CR returns Char(13) on Macintosh
` and Char(13)+Char(10) on Windows

End for
` Put the text image of the record into the clipboard

SET TEXT TO CLIPBOARD($vtRecordData)

272 4th Dimension Language Reference

` Name for scrap file in Temporary folder
$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))

` Delete the scrap file if it exists (error should be tested here)
DELETE DOCUMENT($vsDocName)

` Create scrap file
SET CHANNEL(10;$vsDocName)

` Send the whole record into the scrap file
SEND RECORD($vpTable->)

` Close the scrap file
SET CHANNEL(11)

` Load the scrap file into a BLOB
DOCUMENT TO BLOB($vsDocName;$vxRecordData)

` We longer need the scrap file
DELETE DOCUMENT($vsDocName)

` Append the full image of the record into the Clipboard
` Note: We use arbitrarily "4Drc" as data type

Þ APPEND TO CLIPBOARD("4Drc";$vxRecordData)
` At this point, the clipboard contains:
` (1) A text image of the record (as shown in the screen shots below)
` (2) A whole image of the record (Picture, Subfile and BLOB fields included)

End if

While entering the following record:

4th Dimension Language Reference 273

If you apply the method SET RECORD TO CLIPBOARD to the [Employees] table, the
Clipboard will contain the text image of the record, as shown, and also the whole image
of the record.

You can paste this image of the record to another record, using the method GET RECORD
FROM CLIPBOARD, as follows:

` GET RECORD FROM CLIPBOARD method
` GET RECORD FROM CLIPBOARD (Number)
` GET RECORD FROM CLIPBOARD (Table number)

C_LONGINT($1;$vlField;$vlFieldType;$vlPosCR;$vlPosColon)
C_POINTER($vpTable;$vpField)
C_STRING(255;$vsDocName)
C_BLOB($vxClipboardData)
C_TEXT($vtClipboardData;$vtFieldData)

` Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)

` If there is a current record
If ((Record number($vpTable->)>=0) | (Record number($vpTable->)=-3))

Case of
` Does the clipboard contain a full image record?

: (Test clipboard("4Drc")>0)
` If so, extract the clipboard contents

GET CLIPBOARD("4Drc";$vxClipboardData)
` Name for scrap file in Temporary folder

$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))
` Delete the scrap file if it exists (error should be tested here)

DELETE DOCUMENT($vsDocName)
` Save the BLOB into the scrap file

BLOB TO DOCUMENT($vsDocName;$vxClipboardData)

274 4th Dimension Language Reference

` Open the scrap file
SET CHANNEL(10;$vsDocName)

` Receive the whole record from the scrap file
RECEIVE RECORD($vpTable->)

` Close the scrap file
SET CHANNEL(11)

` We longer need the scrap file
DELETE DOCUMENT($vsDocName)

` Does the clipboard contain TEXT?
: (Test clipboard("TEXT")>0)

` Extract the text from the clipboard
$vtClipboardData:=Get text from clipboard

` Initialize field number to be increment
$vlField:=0
Repeat

` Look for the next field line in the text
$vlPosCR:=Position(CR ;$vtClipboardData)
If ($vlPosCR>0)

` Extract the field line
$vtFieldData:=Substring($vtClipboardData;1;$vlPosCR-1)

` If there is a colon ":"
$vlPosColon:=Position(":";$vtFieldData)
If ($vlPosColon>0)

` Take only the field data (eliminate field name)
$vtFieldData:=Substring($vtFieldData;$vlPosColon+2)

End if
` Increment field number

$vlField:=$vlField+1
` Clipboard may contain more data than we need...

If ($vlField<=Count fields($vpTable))
` Get the type of the field

GET FIELD PROPERTIES($1;$vlField;$vlFieldType)
` Get a pointer to the field

$vpField:=Field($1;$vlField)
` Depending on the type of the field,
` copy (or not) the text in the appropriate manner

Case of
: (($vlFieldType=Is Alpha field) | ($vlFieldType=Is Text))

$vpField->:=$vtFieldData
: (($vlFieldType=Is Real) |

($vlFieldType=Is Integer) | ($vlFieldType=Is LongInt))
$vpField->:=Num($vtFieldData)

: ($vlFieldType=Is Date)
$vpField->:=Date($vtFieldData)

: ($vlFieldType=Is Time)
$vpField->:=Time($vtFieldData)

4th Dimension Language Reference 275

: ($vlFieldType=Is Boolean)
$vpField->:=($vtFieldData="Yes")

Else
` Skip and ignore other field data types

End case
Else

` All fields have been assigned, get out of the loop
$vtClipboardData:=""

End if
` Eliminate text that has just been extracted

$vtClipboardData:=Substring($vtClipboardData;$vlPosCR+Length(CR))
Else

` No delimiter found, get out of the loop
$vtClipboardData:=""

End if
` Repeat as long as we have data

Until (Length($vtClipboardData)=0)
Else

ALERT("The Clipboard does not any data that can be pasted as a record.")
End case

End if

See Also
CLEAR CLIPBOARD, SET PICTURE TO CLIPBOARD, SET TEXT TO CLIPBOARD.

System Variables
If the BLOB data is correctly appended to the clipboard, OK is set to 1; otherwise OK is set
to 0 and an error may be generated.

Error Handling
If there is not enough memory to append the BLOB data to the clipboard, an error -108 is
generated.

276 4th Dimension Language Reference

CLEAR CLIPBOARD Clipboard

version 6.0
__

CLEAR CLIPBOARD

Parameter Type Description
This command does not require any parameters

Description
The CLEAR CLIPBOARD command clears the Clipboard of its contents. If the Clipboard
contains multiple instances of the same data, all instances are cleared. After a call to
CLEAR CLIPBOARD, the Clipboard becomes empty.

You must call CLEAR CLIPBOARD once before appending new data to the Clipboard using
the command APPEND TO CLIPBOARD, because this latter command does not clear the
Clipboard before appending the new data.

Calling CLEAR CLIPBOARD once and then calling APPEND TO CLIPBOARD several times
enables you to Cut or Copy the same data under different formats.

On the other hand, the commands SET TEXT TO CLIPBOARD and SET PICTURE TO
CLIPBOARD automatically clear the Clipboard before appending the TEXT or PICT data to
it.

Example
(1) The following code clears and then appends data to the clipboard:

Þ CLEAR CLIPBOARD ` Make sure the clipboard becomes empty
APPEND TO CLIPBOARD('XWKZ';$vxSomeData) ` Append some data of type 'XWKZ'
APPEND TO CLIPBOARD('SYLK';$vxSylkData) ` Append same data but as Sylk data

(2) See example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD.

4th Dimension Language Reference 277

GET CLIPBOARD Clipboard

version 6.0
__

GET CLIPBOARD (dataType; data)

Parameter Type Description
dataType String ® 4-character string data type
data BLOB ¬ Requested data extracted from the clipboard

Description
The GET CLIPBOARD command returns into the BLOB field or into the variable data the
data present in the Clipboard and whose type you pass in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the data is correctly extracted from the clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contains any data of the specified type, the
command returns an empty BLOB, sets the OK variable to 0 and generates an error -102.
If there is not enough memory to extract the data from the clipboard,the command sets
the OK variable to 0 and generates an error -108.

Example
The following object methods for two buttons copy from and paste data to the array
asOptions (pop-up menu, drop-downlist,...) located in a form:

` bCopyasOptions object method
If (Size of array(asOptions)>0) ` Is there something to copy?

` Accumulate the array elements in a BLOB
VARIABLE TO BLOB (asOptions;$vxClipData)
CLEAR CLIPBOARD ` Empty the clipboard
APPEND TO CLIPBOARD ("artx";asOptions) ` Note the data type arbitrarily chosen

End if

` bPasteasOptions object method
If (Test clipboard ("artx")>0) ` Is there some "artx" data in the clipboard?

Þ GET CLIPBOARD ("artx";$vxClipData) ` Extract the data from the clipboard
` Populate the array with the BLOB data

BLOB TO VARIABLE ($vxClipData;asOptions)
asOptions:=0 ` Reset the selected element for the array

End if

278 4th Dimension Language Reference

See Also
APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

System Variables
If the data is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling
• If there is not enough memory to extract the data, an error -108 is generated.
• If there is no data of the requested type in the clipboard, an error -102 is generated.

4th Dimension Language Reference 279

GET PICTURE FROM CLIPBOARD Clipboard

version 6.0
__

GET PICTURE FROM CLIPBOARD (picture)

Parameter Type Description
picture Picture ¬ Picture extracted from the Clipboard

Description
GET PICTURE FROM CLIPBOARD returns the picture present in the Clipboard into the
picture field or variable picture.

If the picture is correctly extracted from the Clipboard, the command sets the OK variable
to 1. If the Clipboard is empty or does not contain a picture, the command returns an
empty picture, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the picture from the Clipboard, the command sets the OK
variable to 0 and generates an error -108.

Examples
The following button’s object method assigns the picture present in the Clipboard (if
any) to the field [Employees]Photo:

If (Test clipboard ("PICT")>0)
Þ GET PICTURE FROM CLIPBOARD ([Employees]Photo)

Else
ALERT ("The clipboard does not contain any picture.")

End if

See Also
GET CLIPBOARD, Get text from clipboard, Test clipboard.

System Variables
If the picture is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling
• If there is not enough memory to extract the picture, an error -108 is generated.
• If there is no picture in the Clipboard, an error -102 is generated.

280 4th Dimension Language Reference

Get text from clipboard Clipboard

version 6.0
__

Get text from clipboard ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Returns the text (if any) present
in the Clipboard

Description
Get text from clipboard returns the text present in the clipboard.

If the text is correctly extracted from the Clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contain any text, the command returns an
empty string, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the text from the Clipboard, the command sets the OK
variable to 0 and generates an error -108.

4th Dimension text fields and variables can contain up to 32,000 characters. If there are
more than 32,000 characters in the Clipboard, the result returned by Get text from
clipboard will be truncated when placed into the field or variable receiving the value. To
handle very large Clipboard text contents, first test the size of the data using the
command Test clipboard. Then, if the text exceeds 32,000 characters, use the command
GET CLIPBOARD instead of Get text from clipboard.

Examples
The following example tests the for the presence of text in the Clipboard, then,
depending on the size of the data, extracts the text from the Clipboard as text or as a
BLOB:

$vlSize:=Test clipboard ("TEXT")
Case of

: ($vlSize<=0)
ALERT ("There is no text in the clipboard.")

: ($vlSize<=32000)
Þ $vtClipData:=Get text from clipboard

If (OK=1)
` Do something with the text

End if

4th Dimension Language Reference 281

: ($vlSize>32000)
GET CLIPBOARD ("TEXT";$vxClipData)
If (OK=1)

` Do something with the BLOB
End if

End case

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Test clipboard.

System Variables
If the text is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling
• If there is not enough memory to extract the text, an error -108 is generated.
• If there is no text in the Clipboard, an error -102 is generated.

282 4th Dimension Language Reference

SET PICTURE TO CLIPBOARD Clipboard

version 6.0
__

SET PICTURE TO CLIPBOARD (picture)

Parameter Type Description
picture Picture ® Picture whose copy is to be put into the
Clipboard

Description
SET PICTURE TO CLIPBOARD clears the Clipboard and puts a copy of the picture you passed
in picture into the Clipboard.

After you have put a picture into the Clipboard, you can retrieve it using the command
GET PICTURE FROM CLIPBOARD or by calling GET CLIPBOARD ("PICT";...).

If the picture is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the picture into the Clipboard, the OK variable is set to
0, but no error is generated.

Example
Using a floating window, you display a form that contains the array asEmployeeName,
which lists the names of the employees from an [Employees] table. Each time you click
on a name, you want to copy the employee's picture to the Clipboard. In the object
method for the array, you write:

If (asEmployeeName#0)
QUERY ([Employees];[Employees]Last name=asEmployeeName{asEmployeeName})
If (Picture size ([Employees]Photo)>0)

Þ SET PICTURE TO CLIPBOARD ([Employees]Photo) ` Copy the employee's photo
Else

CLEAR CLIPBOARD ` No photo or no record found
End if

End if

See Also
APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD.

System Variables or Sets
If a copy of the picture is correctly put into the Clipboard, the OK variable is set to 1.

4th Dimension Language Reference 283

SET TEXT TO CLIPBOARD Clipboard

version 6.0
__

SET TEXT TO CLIPBOARD (text)

Parameter Type Description
text String ® Text whose copy is to be put into the
Clipboard

Description
SET TEXT TO CLIPBOARD clears the clipboard and then puts a copy of the text you passed
in text into the Clipboard.

After you have put some text into the Clipboard, you can retrieve it using the Get text
from clipboard command or by calling GET CLIPBOARD ("TEXT";...).

If the text is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the text into the Clipboard, the OK variable is set to 0,
but no error is generated.

4th Dimension text expressions can contain up to 32,000 characters. To copy larger text
values, accumulate the text into a BLOB, call CLEAR CLIPBOARD, then call APPEND TO
CLIPBOARD ("TEXT";...).

Example
See the example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD, Get text from clipboard.

System Variables or Sets
If a copy of the text is correctly put into the Clipboard, the OK variable is set to 1.

284 4th Dimension Language Reference

Test clipboard Clipboard

version 6.0
__

Test clipboard (dataType) ® Number

Parameter Type Description
dataType String ® 4-character data type string

Function result Number ¬ Size (in bytes) of data stored in Clipboard
or error code result

Description
The Test clipboard command allows you to test if there is data of the type you passed in
dataType present in the Clipboard.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the Clipboard is empty or does not contain any data of the specified type, the
command returns an error -102 (see the table of predefined constants). If the Clipboard
contains data of the specified type, the command returns the size of this data, expressed
in bytes.

After you have detected that the Clipboard contains data of the type in which you are
interested, you can extract that data from the Clipboard using one the following
commands:
• If the Clipboard contains type TEXT data, you can obtain that data using the
Get text from clipboard command, which returns a text value, or the GET CLIPBOARD
command, which returns the text into a BLOB.
• If the Clipboard contains type PICT data, you can obtain that data using the
GET PICTURE FROM CLIPBOARD command, which returns the picture into a picture field
or variable, or the GET CLIPBOARD command, which returns the picture into a BLOB.
• For any other data type, use the GET CLIPBOARD command, which returns the data into
a BLOB.

4th Dimension provides the following predefined constants:
Constant Type Value
No such data in clipboard Long Integer -102
Text data String TEXT
Picture data String PICT

4th Dimension Language Reference 285

Examples
(1) The following code tests whether the Clipboard contains a picture and, if so, copies
that picture into a 4D variable:

Þ If (Test clipboard (Picture data) > 0) ` Is there a picture in the clipboard?
GET PICTURE FROM CLIPBOARD ($vPicVariable) ` If so, extract the picture from

the clipboard
Else

ALERT("There is no picture in the clipboard.")
End if

(2) Usually, applications cut and copy data of type TEXT or PICT into the Clipboard,
because most applications recognize two standard data types. However, an application can
append to the Clipboard several instances of the same data in different formats. For
example, each time you cut or copy a part of a spreadsheet, the spreadsheet application
could append the data under the hypothetical ‘SPSH’ format, as well as in SYLK and TEXT
formats. The ‘SPSH’ instance would contain the data formatted using the application’s
data structure. The SYLK form would contain the same data, but using the SYLK format
recognized by most of the other spreadsheet programs. Finally, the TEXT format would
contain the same data, without the extra information included in the SYLK or the
hypothetical ‘SPSH’ format. At this point, while writing Cut/Copy/Paste routines between
4th Dimension and that hypothetical spreadsheet application, assuming you know the
description of the ‘SPSH’ format and that you are ready to parse SYLK data, you could
write something like:

Case of
` First, check whether the clipboard contains data
` from the hypothetical spreadsheet application

Þ : (Test clipboard ('SPSH') > 0)
` ...
` Second, check whether the clipboard contains Sylk data

Þ : (Test clipboard ('SYLK') > 0)
` ...
` Finally check whether the clipboard contains Text data

Þ : (Test clipboard ('TEXT') > 0)
` ...

End case

In other words, you try to extract from the Clipboard the instance of the data that carries
most of the original information.

(3) See the example for the APPEND TO CLIPBOARD command.

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

286 4th Dimension Language Reference

8 Communications

4th Dimension Language Reference 287

288 4th Dimension Language Reference

SET CHANNEL Communications

version 3
__

SET CHANNEL (port | operation{; settings | document})

Parameter Type Description
port | operation Number ® Serial port number, or

Document operation to perform
settings | document Number | String ® Serial port settings, or

Document name

Description
The SET CHANNEL command opens a serial port or a document. You can open only one
serial port or one document at a time with this command.

Historical Note: This command was originally the first 4D command used for working
with serial ports and documents on disks. Since that time, new commands have been
added. Today, you will typically work with documents on disk using the commands Open
document, Create document and Append document. With these commands, you can read
and write characters to and from documents using SEND PACKET or RECEIVE PACKET
(these commands work with SET CHANNEL, too). However, if you want to use the
commands SEND VARIABLE, RECEIVE VARIABLE, SEND RECORD and RECEIVE RECORD, you
must use SET CHANNEL to access the document on disk.

The description of SET CHANNEL is composed of two sections:
• Working with Serial Ports
• Working with Documents

Working with Serial Ports - SET CHANNEL (port;settings)
__

The first form of the SET CHANNEL command opens a serial port, setting the protocol and
other port information. Data can be sent with SEND PACKET, SEND RECORD or SEND
VARIABLE, and received with RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD or RECEIVE
VARIABLE.

The port Parameter
The first parameter, port, selects the port and the protocol.

4th Dimension Language Reference 289

On Windows:
You can address up to 99 serial ports (one at a time). The following table lists the values
for port:

Range Description
101 to 199 Serial communication with no protocol
201 to 299 Serial communication with software protocol such as XON/XOFF
301 to 399 Serial communication with hardware protocol such as RTS/CTS

Important: The value you pass in port must refer to an existing serial COM port
recognized by the Windows session. For example, in order to be able to use the values
101, 103 and 125, the serial ports COM1, COM3 and COM25 must have been set up
correctly.

On Macintosh:
You determine the value for port by adding the serial port and protocol values as listed in
the following table.

Value to accumulate Description
in port parameter

Serial Port 0 Macintosh Printer Port (or Windows COM2)
1 Macintosh Modem Port (or Windows

COM1)
Protocol 0 None

20 XON/XOFF
30 DTR

For example, to use XON/XOFF with the modem port, you would add 1 + 20 = 21. You
would then use 21 as the value of the port parameter. For code compatibility across
platforms, the port values as used on Macintosh are redirected as follows on Windows:

port value Description
0 COM2
1 COM1
20 COM2 (with software protocol such as XON/XOFF)
21 COM1 (with software protocol such as XON/XOFF)
30 COM2 (with hardware protocol such as RTS/CTS)
31 COM1 (with hardware protocol such as RTS/CTS)

290 4th Dimension Language Reference

The settings Parameter
The settings parameter sets the speed, number of data bits, number of stop bits, and
parity. You determine the value for settings by adding the speed, data bits, stop bits, and
parity values as listed in the following table. For example, to set 1200 baud, 8 data bits, 1
stop bit, and no parity, you would add 94 + 3072 + 16384 + 0 = 27742. You would then
use 27742 as the value of the setup parameter.

Value to accumulate Description
in settings parameter

Speed 380 300
(in baud) 189 600

94 1200
62 1800
46 2400
30 3600
22 4800
14 7200
10 9600
4 19200
0 57600
1022 115200
1021 230400

Data bits 0 5
2048 6
1024 7
3072 8

Stop bits 16384 1
–32768 1.5
–16384 2

Parity 0 None
4096 Odd
12288 Even

Tip: The various numeric values to be accumulated and passed in port and settings (but
not including the values for COM1...COM99) are available as predefined constants in the
theme Communications within the Design environment Explorer windows. For
COM1...COM99, use numeric literals.

4th Dimension Language Reference 291

Working with Documents on Disk - SET CHANNEL(operation;document)
__

The second form of the SET CHANNEL command allows you to create, open, and close a
document. Unlike the System documents commands, it can open only one document at a
time. The document can be read from or written to.

The operation parameter specifies the operation to be performed on the document
specified by document. The following table lists the values of operation and the resulting
operation with different values for document. The first column lists the allowed values for
operation. The second column lists the allowed values for document. The third column
lists the resulting operation.
For example, to display an Open File dialog box to open a text file, you would use the
following line:

Þ SET CHANNEL (13; "")

Operation Document Result
10 String Opens the document specified by String.

If the document doesn’t exist, the document
is opened and created.

10 "" (empty string) Displays the Open File dialog box to open a file.
All file types are displayed.

11 none Closes an open file.
12 "" (empty string) Displays the Save File dialog box to create a new file.
13 "" (empty string) Displays the Open File dialog box to open a file.

Only text file types are displayed.

All of the operations in this table set the Document system variable if appropriate. They
also set the OK system variable to 1 if the operation was successful. Otherwise, the OK
system variable is set to 0.

Examples
See examples for the commands RECEIVE BUFFER, SET TIMEOUT and RECEIVE RECORD.

See Also
Append document, Create document, Open document, RECEIVE BUFFER, RECEIVE PACKET,
RECEIVE RECORD, RECEIVE VARIABLE, SEND PACKET, SEND RECORD, SEND VARIABLE, SET
TIMEOUT.

292 4th Dimension Language Reference

SET TIMEOUT Communications

version 3
__

SET TIMEOUT (seconds)

Parameter Type Description
seconds Number ® Seconds until the timeout

Description
SET TIMEOUT specifies how much time a serial port command has to complete. If the
serial port command does not complete within the specified time, seconds, the serial port
command is canceled, an error -9990 is generated, and the OK system variable is set to 0.
You can catch the error with an error-handling method installed using ON ERR CALL.

Note that the time is the total time allowed for the command to execute, not the time
between characters received. To cancel a previous setting and stop monitoring serial port
communication, use a setting of 0 for seconds.

The commands that are affected by the timeout setting are:
• RECEIVE PACKET
• RECEIVE RECORD
• RECEIVE VARIABLE

Example
The following example sets the serial port to receive data. It then sets a time-out. The data
is read with RECEIVE PACKET. If the data is not received in time, an error occurs:

SET CHANNEL (MacOS Serial Port; Speed 9600 +
Data Bits 8 + Stop Bits One + Parity None) ` Open Serial Port

Þ SET TIMEOUT (10) ` Set the timeout for 10 seconds
ON ERR CALL ("CATCH COM ERRORS") ` Do not let the method being interrupted
RECEIVE PACKET (vtBuffer; Char (13)) ` Read until a carriage return is met
If (OK=0)

ALERT ("Error receiving data.")
Else

[People]Name:=vtBuffer ` Save received data in a field
End if
ON ERR CALL("")

See Also
ON ERR CALL, RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE.

4th Dimension Language Reference 293

USE ASCII MAP Communications

version 3
__

USE ASCII MAP (map | *{; mapInOut})

Parameter Type Description
map | * String | * ® Document name of the map to use, or

* to reset to default ASCII map
mapInOut Number ® 0 = Output map

1 = Input map
If omitted, output map

Description
USE ASCII MAP has two forms. The first form loads the ASCII map named map from disk
and uses that ASCII map. If mapInOut is 0, the map is loaded as the output map. If
mapInOut is 1, the map is loaded as the input map.

The ASCII map must have been previously created with the ASCII map dialog box in the
User environment. After an ASCII map is loaded, 4th Dimension uses the map during
transfer of data between the database and a document or a serial port. Transfer operations
include the import and export of text (ASCII), DIF, and SYLK files. An ASCII map also
works on data transferred with SEND PACKET, RECEIVE PACKET, and RECEIVE BUFFER. It has
no effect on transfers of data done with SEND RECORD, SEND VARIABLE, RECEIVE RECORD,
and RECEIVE VARIABLE.

If you give an empty string for map, USE ASCII MAP displays a standard Open File dialog
box so that the user can specify an ASCII map document. Whenever you execute USE
ASCII MAP, the OK system variable is set to 1 if the map is successfully loaded, and to 0 if
it is not.

The second form of USE ASCII MAP, with the asterisk (*) parameter instead of map, restores
the default ASCII map. If mapInOut is 0, the map is reset for output. If mapInOut is 1, the
map is reset for input. The default ASCII map has no translation between characters.

Example
The following example loads a special ASCII map from disk. It then exports data. Finally,
the default ASCII map is restored:

Þ USE ASCII MAP ("MactoPC"; 0) ` Load an alternative ASCII map
EXPORT TEXT ([MyTable]; "MyText") ` Export data through the map

Þ USE ASCII MAP (*; 0) ` Restore the default map

See Also
EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, Mac
to Win, RECEIVE BUFFER, RECEIVE PACKET, SEND PACKET, Win to Mac.

294 4th Dimension Language Reference

SEND PACKET Communications

version 3
__

SEND PACKET ({docRef; }packet)

Parameter Type Description
docRef DocRef ® Document reference number, or

Current channel (serial port or document)
packet String ® String or Text to be sent

Description
SEND PACKET sends a packet to a serial port or to a document. If docRef is specified, the
packet is written to the document referenced by docRef. If docRef is not specified, the
packet is written to the serial port or document previously opened by the SET CHANNEL
command. A packet is just a piece of data, generally a string of characters.

Before you use SEND PACKET, you must open a serial port or a document with SET
CHANNEL, or open a document with one of the document commands.

When writing to a document, the first SEND PACKET begins writing at the beginning of
the document unless the document was opened with Append document. Until the
document is closed, each subsequent packet is appended to any previously sent packets.

Version 6 Note: This command is still useful for a document opened with SET CHANNEL.
On the other hand, for a document opened with Open document, Create document and
Append document, you can now use the new commands Get document position and SET
DOCUMENT POSITION to get and change the location in the document where the next
writing (SEND PACKET) or reading (RECEIVE PACKET) will occur.

Important: SEND PACKET writes Windows ASCII data on Windows and Macintosh ASCII
data on Macintosh. Each of these uses eight bits. Standard ASCII uses only the lower
seven bits. Many devices do not use the eighth bit in the same way as does
Windows/Macintosh. If the string to be sent contains data that uses the eighth bit, be
sure to create an ASCII map to translate the ASCII characters, and execute USE ASCII MAP
before using SEND PACKET. Protocols like XON/XOFF use some low ASCII codes to
establish communication between machines. Be careful to not send such ASCII codes, as
this may interfere with the protocol or even break communication.

4th Dimension Language Reference 295

Example
The following example writes data from fields to a document. It writes the fields as fixed-
length fields. Fixed-length fields are always of a specific length. If a field is shorter than
the specified length, the field is padded with spaces. (That is, spaces are added to make up
the specified length.) Although the use of fixed-length fields is an inefficient method of
storing data, some computer systems and applications still use them:

$vhDocRef := Create document ("") ` Create a document
If (OK=1) ` Was the document created?

For ($vlRecord; 1; Records in selection ([People])) ` Loop once for each record
` Send a packet. Create the packet from a string of 15 spaces
` containing the first name field

Þ SEND PACKET ($vhDocRef; Change string(15 * Char(Space); [People]First;1))
` Send a second packet. Create the packet from a string of 15 spaces
` containing the last name field
` This could be in the first SEND PACKET, but is separated for clarity

Þ SEND PACKET ($vhDocRef; Change string (15 * Char(Space); [People]Last; 1))
NEXT RECORD([People])

End for
` Send a Char(26), which is used as an end-of-file marker for some computers

Þ SEND PACKET ($vhDocRef; Char(SUB ASCII Code))
CLOSE DOCUMENT ($vhDocRef) ` Close the document

End if

See Also
Get document position, RECEIVE PACKET, SET DOCUMENT POSITION.

296 4th Dimension Language Reference

RECEIVE PACKET Communications

version 3
__

RECEIVE PACKET ({docRef; }receiveVar; stopChar | numChars)

Parameter Type Description
docRef DocRef ® Document reference number, or

Current channel (serial port or document)
receiveVar Variable ® Variable to receive data
stopChar | numChars String | Number ® Character at which to stop receiving, or

Number of characters to receive

Description
RECEIVE PACKET reads characters from a serial port or from a document.

If docRef is specified, this command reads characters from a document opened using Open
document, Create document or Append document. If docRef is omitted, this command
reads characters from the serial port or the document opened using SET CHANNEL.

Whatever the source, the characters read are returned in receiveVar, which must be a Text
or String variable. To read a particular number of characters, pass this number in
numChars. To read characters until a particular character is encountered, pass this
character in stopChar (the stop character is not returned in receiveVar).

When reading a document, if stopChar | numChars is not specified, RECEIVE PACKET will
stop reading at the end of the document. However, remember that while a string variable
has a fixed length, a text variable accepts up to 32000 characters. When reading from a
serial port, RECEIVE PACKET will attempt to wait indefinitely until the timeout (if any) has
elapsed (see SET TIMEOUT) or until the user interrupts the reception (see below).

During execution of RECEIVE PACKET, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL. Usually, you will only have to handle interruption of a reception
when communicating over a serial port.

When reading a document, the first RECEIVE PACKET begins reading at the beginning of
the document. The reading of each subsequent packet begins at the character following
the last character read.

4th Dimension Language Reference 297

Version 6 Note: This command is still useful for document opened with SET CHANNEL. On
the other hand, for a document opened with Open document, Create document and
Append document, you can now use the new commands Get document position and SET
DOCUMENT POSITION to get and change the location in the document where the next
writing (SEND PACKET) or reading (RECEIVE PACKET) will occur.

When attempting to read past the end of a file, RECEIVE PACKET will return with the data
read up to that point and the variable OK will be set to 1. Then, the next RECEIVE PACKET
will return an empty string and set the OK variable to zero.

Examples
1. The following example reads 20 characters from a serial port into the variable
getTwenty:

Þ RECEIVE PACKET (getTwenty; 20)

2. The following example reads data from the document referenced by the variable
myDoc into the variable vData. It reads until it encounters a carriage return:

Þ RECEIVE PACKET (myDoc;vData;Char (Carriage Return))

3. The following example reads data from a document into fields. The data is stored as
fixed-length fields. The method calls a subroutine to strip any trailing spaces (spaces at the
end of the string). The subroutine follows the method:

$vhDocRef := Open document ("";"TEXT") ` Open a TEXT document
If (OK=1) ` If the document was opened

Repeat ` Loop until no more data
Þ RECEIVE PACKET ($vhDocRef; $Var1; 15) ` Read 15 characters
Þ RECEIVE PACKET ($vhDocRef; $Var2; 15) ` Do same as above for second field

If (OK = 1) ` If we are not beyond the end of the document
CREATE RECORD([People]) ` Create a new record
[People]First := Strip ($Var1) ` Save the first name
[People]Last := Strip ($Var2) ` Save the last name
SAVE RECORD([People]) ` Save the record

End if
Until (OK =0)
CLOSE DOCUMENT ($vhDocRef) ` Close the document

End if

298 4th Dimension Language Reference

The spaces at the end of the data are stripped by the following method, called Strip:
For ($i; Length ($1); 1; –1) ` Loop from end of string to start

If ($1[[$i]] # " ") ` If it is not a space…
$i := -$i ` Force the loop to end

End if
End for
$0 := Delete string ($1; –$i; Length ($1)) ` Delete the spaces

See Also
Get document position, RECEIVE PACKET, SEND PACKET, SET DOCUMENT POSITION, SET
TIMEOUT.

System Variables or Sets
After a call to RECEIVE PACKET, the OK system variable is set to 1 if the packet is received
without error. Otherwise, the OK system variable is set to 0.

4th Dimension Language Reference 299

RECEIVE BUFFER Communications

version 3
__

RECEIVE BUFFER (receiveVar)

Parameter Type Description
receiveVar Variable ® Variable to receive data

Description
RECEIVE BUFFER reads the serial port that was previously opened with SET CHANNEL. The
serial port has a buffer that fills with characters until a command reads from the buffer.
RECEIVE BUFFER gets the characters from the serial buffer, put them into receiveVar then
clears the buffer. If there are no characters in the buffer, then receiveVar will contain
nothing.

On Windows:
The Windows serial port buffer is limited in size. This means that the buffer can overflow.
When it is full and new characters are received, the new characters replace the oldest
characters. The old characters are lost; therefore, it is essential that the buffer is read
quickly when new characters are received.

On Macintosh
The Macintosh serial port buffer is 64 characters in size. This means that the buffer can
hold 64 characters before it overflows. When it is full and new characters are received, the
new characters replace the oldest characters. The old characters are lost; therefore, it is
essential that the buffer is read quickly when new characters are received.

Note: There are 4D plug-ins that enable you to increase the size of the serial buffer.

RECEIVE BUFFER is different from RECEIVE PACKET in that it takes whatever is in the buffer
and then immediately returns. RECEIVE PACKET waits until it finds a specific character or
until a given number of characters are in the buffer.

During the execution of RECEIVE BUFFER, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL.

300 4th Dimension Language Reference

Example
The project method LISTEN TO SERIAL PORT uses RECEIVE BUFFER to get text from the
serial port and accumulate it into a an interprocess variable:

` LISTEN TO SERIAL PORT
While (<>IP_Listen_Serial_Port)

RECEIVE BUFFER($vtBuffer)
If ((Length($vtBuffer)+Length(<>vtBuffer))>MAXTEXTLEN)

<>vtBuffer:=""
End if
<>vtBuffer:=<>vtBuffer+$Buffer

End while

This method can be executed as a process method for a local process:

` Start listening to the serial port
SET CHANNEL (201; Speed 9600 + Data Bits 8 + Stop Bits One

+ Parity None) ` Open Serial Port
<>IP_Listen_Serial_Port:=True
$vlSerialPID:=New process("LISTEN TO SERIAL PORT";16*1024;"$Serial Port Listener")

At this point, any other process can read the interprocess <>vtBuffer to work with the data
coming from the serial port.

To stop listening to the serial port, just execute:

` Stop listening to the serial port
<>IP_Listen_Serial_Port:=False

Note that access to the interprocess <>vtBuffer variable should be protected by a
semaphore, so that processes will not conflict. See the command Semaphore for more
information.

See Also
ON ERR CALL, RECEIVE PACKET, Semaphore, SET CHANNEL, Variables.

4th Dimension Language Reference 301

SEND VARIABLE Communications

version 3
__

SEND VARIABLE (variable)

Parameter Type Description
variable Variable ® Variable to send

Description
SEND VARIABLE sends variable to the document or serial port previously opened by SET
CHANNEL. The variable is sent with a special internal format that can be read only by
RECEIVE VARIABLE. SEND VARIABLE sends the complete variable (including its type and
value).

Notes
1. If you send a variable to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND VARIABLE with a
document opened with Open document, Append document or Create document.
2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in
version 6.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND RECORD, SET CHANNEL.

302 4th Dimension Language Reference

RECEIVE VARIABLE Communications

version 3
__

RECEIVE VARIABLE (variable)

Parameter Type Description
variable Variable ® Variable in which to receive

Description
RECEIVE VARIABLE receives variable, which was previously sent by SEND VARIABLE from the
document or serial port previously opened by SET CHANNEL.

In interpreted mode, if the variable does not exist prior to the call to RECEIVE VARIABLE,
the variable is created, typed and assigned according to what has been received. In
compiled mode, the variable must be of the same type as what is received. In both cases,
the contents of the variable are replaced with what is received.

Notes
1. If you receive a variable from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE VARIABLE
with a document opened with Open document, Append document or Create document.
2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in version
6.
3. During the execution of RECEIVE VARIABLE, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example
See example for the command RECEIVE RECORD.

See Also
ON ERR CALL, RECEIVE RECORD, SEND RECORD, SEND VARIABLE.

System Variables or Sets
The OK system variable is set to 1 if the variable is received. Otherwise, the OK system
variable is set to 0.

4th Dimension Language Reference 303

SEND RECORD Communications

version 3
__

SEND RECORD {(table)}

Parameter Type Description
table Table ® Table from which to send the current record,
or

Default table, if omitted

Description
SEND RECORD sends the current record of table to the serial port or document opened by
the SET CHANNEL command. The record is sent with a special internal format that can be
read only by RECEIVE RECORD. If no current record exists, SEND RECORD has no effect.

The complete record is sent. This means that all subrecords, pictures and BLOBs stored in
the record are also sent.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Note: If you send a record to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND RECORD with a
document opened with Open document, Append document or Create document.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND VARIABLE.

304 4th Dimension Language Reference

RECEIVE RECORD Communications

version 3
__

RECEIVE RECORD {(table)}

Parameter Type Description
table Table ® Table into which to receive the record, or

Default table, if omitted

Description
RECEIVE RECORD receives a record into table from the serial port or document opened by
the SET CHANNEL command. The record must have been sent with SEND RECORD. When
you execute RECEIVE RECORD, a new record is automatically created for table. If the record
is received correctly, you must then use SAVE RECORD to save the new record.

The complete record is received. This means that all subrecords, pictures and BLOBs stored
in the record are also received.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Notes
1. If you receive a record from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE RECORD
with a document opened with Open document, Append document or Create document.
2. During the execution of RECEIVE RECORD, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example
A combined use of SEND VARIABLE, SEND RECORD, RECEIVE VARIABLE and RECEIVE RECORD
is ideal for archiving data or for exchanging data between identical single-user databases
used in different places. You can exchange data between 4D databases using the
import/export commands such as EXPORT TEXT and IMPORT TEXT. However, if your data
contains graphics, subtables and/or related tables, using SEND RECORD and RECEIVE
RECORD is far more convenient.

4th Dimension Language Reference 305

For instance, the documentation you are currently reading has been created using 4D and
4D Write. Because several writers in different locations wordwide were working on it, we
needed a simple way to exchange data between the different databases. Here is a
simplified view of the database structure:

The table [Commands] contains the description of each command or topic. The tables [CM
US Params] and [CM FR Params] respectivily contain the parameter list for each command
in English and in French. The table [CM See Also] contains the commands listed as
reference (See Also section) for each command. Exchanging documentation between
databases therefore consists in sending the [Commands] records and their related records.
To do so, we use SEND RECORD and RECEIVE RECORD. In addition, we use SEND VARIABLE
and RECEIVE VARIABLE in order to mark the import/export document with tags.

Here is the (simplified) project method for exporting the documentation:

` CM_EXPORT_SEL project method
` This method works with the current selection of the [Commands] table

Þ SET CHANNEL(12;"") ` Let's the user create an open a channel document
If (OK=1)

` Tag the document with a variable that indicates its contents
` Note: the BUILD_LANG process variable indicates
` if US (English) or FR (French) data is sent

$vsTag:="4DV6COMMAND"+BUILD_LANG
Þ SEND VARIABLE($vsTag)

` Send a variable indicationg how many [Commands] are sent
 $vlNbCmd:=Records in selection([Commands])
Þ SEND VARIABLE($vlNbCmd)
 FIRST RECORD([Commands])

306 4th Dimension Language Reference

` For each command
For ($vlCmd;1;$vlNbCmd)

` Send the [Commands] record
Þ SEND RECORD([Commands])

` Select all the related records
RELATE MANY([Commands])

` Depending on the language, send a variable indicating
` the number of parameters that will follow

Case of
: (BUILD_LANG="US")

$vlNbParm:=Records in selection([CM US Params])
: (BUILD_LANG="FR")

$vlNbParm:=Records in selection([CM FR Params])
End case

Þ SEND VARIABLE($vlNbParm)
` Send the parameter records (if any)

For ($vlParm;1;$vlNbParm)
Case of

: (BUILD_LANG="US")
Þ SEND RECORD([CM US Params])

NEXT RECORD([CM US Params])
: (BUILD_LANG="FR")

Þ SEND RECORD([CM FR Params])
NEXT RECORD([CM FR Params])

 End case
End for

` Send a variable indicating how many “See Also” will follow
$vlNbSee:=Records in selection([CM See Also])

Þ SEND VARIABLE($vlNbSee)
` Send the [See Also] records (if any)

For ($vlSee;1;$vlNbSee)
Þ SEND RECORD([CM See Also])

NEXT RECORD([CM See Also])
End for

` Go to the next [Commands] record and continue the export
NEXT RECORD([Commands])

End for
Þ SET CHANNEL(11) ` Close the document

End if

4th Dimension Language Reference 307

Here is the (simplified) project method for importing the documentation:

` CM_IMPORT_SEL project method

Þ SET CHANNEL(10;"") ` Let's user open an existing document
If (OK=1) ` If a document was open

Þ RECEIVE VARIABLE($vsTag) ` Try receiving the expected tag variable
If ($vsTag="4DV6COMMAND@") ` Did we get the right tag?

` Extract language from the tag
$CurLang:=Substring($vsTag;Length($vsTag)-1)
If (($CurLang="US") | ($CurLang="FR")) ` Did we get a valid language

` How many commands are there in this document?
Þ RECEIVE VARIABLE($vlNbCmd)

If ($vlNbCmd>0) ` If at least one
For ($vlCmd;1;$vlNbCmd) ` For each archived [Commands] record

` Receive the record
Þ RECEIVE RECORD([Commands])

` Call a subroutine that saves the new record or copies its values
` into an already existing record

CM_IMP_CMD ($CurLang)
` Receive the number of parameters (if any)

Þ RECEIVE VARIABLE($vlNbParm)
If ($vlNbParm>=0)

` Call a subroutine that calls RECEIVE RECORD then saves
` the new records or copies them into already existing records

CM_IMP_PARM ($vlNbParm;$CurLang)
End if

` Receive the number of “See Also” (if any)
Þ RECEIVE VARIABLE($vlNbSee)

If ($vlNbSee>0)
` Call a subroutine that calls RECEIVE RECORD then saves
` the new records or copies them into already existing records

CM_IMP_SEEA ($vlNbSee;$CurLang)
End if

End for
Else

ALERT("The number of commands in this export document is invalid.")
End if

Else
ALERT("The language of this export document is unkown.")

End if
Else

ALERT("This document is NOT a Commands export document.")
End if

Þ SET CHANNEL(11) ` Close document
End if

308 4th Dimension Language Reference

Note that we do not test the OK variable while receiving the data nor try to catch the
errors. However, because we stored variables in the document that describes the document
itself, if these variables, once received, made sense, the probability for an error is very low.
If for instance a user opens a wrong document, the first test stops the operation right
away.

See Also
RECEIVE VARIABLE, SEND RECORD, SEND VARIABLE.

System Variables or Sets
The OK system variable is set to 1 if the record is received. Otherwise, the OK system
variable is set to 0.

4th Dimension Language Reference 309

310 4th Dimension Language Reference

9 Compiler

4th Dimension Language Reference 311

312 4th Dimension Language Reference

Compiler Commands Compiler

version 6.0
__

4D Compiler translates your database applications into assembly level instructions. The
advantages of 4D Compiler are:

• Speed: Your database can run from 3 to 1,000 times faster.

• Code checking: Your database application is scanned for the consistency of code. Both
logical and syntactical conflicts are detected.

• Protection: A compiled database is functionally identical to the original, except that the
structure and procedures cannot be viewed or modified, deliberately or inadvertently.
Compiling a database ensures security.

• Stand-alone double-clickable applications: 4D Compiler creates stand-alone applications
(.EXE files) with their own custom icons.

The commands in this theme relate to the use of the compiler. They enable you to
normalize data types throughout your database. The IDLE command is specifically used in
compiled databases.

C_BLOB C_INTEGER C_REAL IDLE
C_BOOLEAN C_LONGINT C_STRING
C_DATE C_PICTURE C_TEXT
C_GRAPH C_POINTER C_TIME

These commands, except IDLE, declare variables and cast them as a specified data type.
Declaring variables resolves ambiguities concerning a variable’s data type. If a variable is
not declared with one of these commands, the compiler attempts to determine a
variable’s data type. The data type of a variable used in a form is often difficult for the
compiler to determine. Therefore, it is especially important that you use these commands
to declare a variable used in a form.

Numeric operations on long integer and integer variables are usually much faster than
operations on the default numeric type (real).

General rules about writing code that will be compiled

• Variable indirection as used in 4th Dimension version 1 is not allowed. You cannot use
alpha indirection, with the section symbol (§), to indirectly reference variables. Nor can
you use numeric indirection, with the curly braces ({...}), for this purpose. Curly braces
can only be used when accessing specific elements of an array that has been declared.
However, you can use parameter indirection, as described in the documentation for 4D
Compiler.

4th Dimension Language Reference 313

• You can’t change the data type of any variable or array.

• You can’t change a one-dimensional array to a two-dimensional array, or change a two-
dimensional array to a one-dimensional array.

• You can’t change the length of string variables or of elements in string arrays.

• Although 4D Compiler will type the variable for you, you should specify the data type
of a variable by using compiler directives where the data type is ambiguous, such as in a
form.

• Another reason to explicitly type your variables is to optimize your code. This rule
applies especially to any variable used as a counter. Use variables of a long integer data
type for maximum performance.

• To clear a variable (initialize it to null), use CLEAR VARIABLE with the name of the
variable. Do not use a string to represent the name of the variable in the CLEAR VARIABLE
command.

• The Undefined function will always return False. Variables are always defined.

Examples

(1) The following are some basic variable declarations for 4D Compiler:

` The process variable vxMyBlob is declared as a variable of type BLOB
Þ C_BLOB(vxMyBlob)

` The interprocess variable <>OnWindows is declared as a variable of type Boolean
Þ C_BOOLEAN(<>OnWindows)

` The local variable $vdCurDate is declared as a variable of type Date
Þ C_DATE($vdCurDate)

` The 3 process variables vg1, vg2 and vg3 are declared as variables of type Graph
Þ C_GRAPH(vg1;vg2;vg3)

(2) In the following example, the project method OneMethodAmongOthers declares 3
parameters:

` OneMethodAmongOthers Project Method
` OneMethodAmongOthers (Real ; Integer { ; Long })
` OneMethodAmongOthers (Amount ; Percentage { ; Ratio })

Þ C_REAL($1) ` 1st parameter is of type Real
Þ C_INTEGER($2) ` 2nd parameter is of type Integer
Þ C_LONGINT($3) ` 3rd parameter is of type Long Integer

` ...

314 4th Dimension Language Reference

(3) In the following example, the project method Capitalize accepts a string parameter and
returns a string result:

` Capitalize Project Method
` Capitalize (String) -> String
` Capitalize (Source string) -> Capitalized string

Þ C_STRING(255;$0;$1)
$0:=Uppercase(Substring($1;1;1))+Lowercase(Substring($1;2))

(4) In the following example, the project method SEND PACKETS accepts a time parameter
followed by a variable number of text parameters:

` SEND PACKETS Project Method
` SEND PACKETS (Time ; Text { ; Text2... ; TextN })
` SEND PACKETS (docRef ; Data { ; Data2... ; DataN })

Þ C_TIME ($1)
Þ C_TEXT (${2})
Þ C_LONGINT ($vlPacket)

For ($vlPacket;2;Count parameters)
SEND PACKET ($1;${$vlPacket})

End for

(5) In the following example, the project method COMPILER_Param_Predeclare28
predeclares the syntax of other project methods for 4D Compiler

` COMPILER_Param_Predeclare28 Project Method

` OneMethodAmongOthers (Real ; Integer { ; Long })
Þ C_REAL(OneMethodAmongOthers;$1)
Þ C_INTEGER(OneMethodAmongOthers;$2) ` ...
Þ C_LONGINT(OneMethodAmongOthers;$3) ` ...

` Capitalize (String) -> String
Þ C_STRING(Capitalize;255;$0;$1)

` SEND PACKETS (Time ; Text { ; Text2... ; TextN })
Þ C_TIME(SEND PACKETS;$1)
Þ C_TEXT(SEND PACKETS;${2}) ` ...

See Also
C_BLOB, C_BOOLEAN, C_DATE, C_GRAPH, C_INTEGER, C_LONGINT, C_PICTURE,
C_POINTER, C_REAL, C_STRING, C_TEXT, C_TIME, IDLE.

4th Dimension Language Reference 315

C_BLOB Compiler

version 6.0
__

C_BLOB ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
C_BLOB casts each specified variable as a BLOB variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_BLOB(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_BLOB(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands.

316 4th Dimension Language Reference

C_BOOLEAN Compiler

version 3
__

C_BOOLEAN ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_BOOLEAN casts each specified variable as a Boolean variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_BOOLEAN(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_BOOLEAN(${5}) tells 4D and 4D Compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

4th Dimension Language Reference 317

C_DATE Compiler

version 3
__

C_DATE ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_DATE casts each specified variable as a Date variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_DATE(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_DATE(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

318 4th Dimension Language Reference

C_GRAPH Compiler

version 3
__

C_GRAPH ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method String ® Name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_GRAPH casts each specified variable as a Graph variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_GRAPH(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_GRAPH(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands.

4th Dimension Language Reference 319

C_INTEGER Compiler

version 3
__

C_INTEGER ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The C_INTEGER command casts each specified variable as an Integer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_INTEGER(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_INTEGER(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters, C_LONGINT, C_REAL.

320 4th Dimension Language Reference

C_LONGINT Compiler

version 3
__

C_LONGINT ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The C_LONGINT command casts each specified variable as a Long Integer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_LONGINT(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_LONGINT(${5}) tells 4D and 4D Compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_INTEGER, C_REAL.

4th Dimension Language Reference 321

C_PICTURE Compiler

version 3
__

C_PICTURE ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_PICTURE casts each specified variable as a Picture variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_PICTURE(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_PICTURE(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters.

322 4th Dimension Language Reference

C_POINTER Compiler

version 3
__

C_POINTER ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_POINTER casts each specified variable as a Pointer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_POINTER(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_POINTER(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

4th Dimension Language Reference 323

C_REAL Compiler

version 3
__

C_REAL ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_REAL casts each specified variable as a Real variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_REAL(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_REAL(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_INTEGER, C_LONGINT.

324 4th Dimension Language Reference

C_STRING Compiler

version 3
__

C_STRING ({method; }size; variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
size Number ® Size of the string
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_STRING casts each specified variable as a String variable.

The size parameter specifies the maximum length of the strings that the variable can
contain. Strings are limited to 255 characters. If speed is a concern, use string variables
rather than text variables wherever possible.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_STRING(...;${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_STRING(...;${5}) tells 4D and 4D Compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters, C_TEXT.

4th Dimension Language Reference 325

C_TEXT Compiler

version 3
__

C_TEXT ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_TEXT casts each specified variable as a Text variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_TEXT(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_TEXT(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_STRING.

326 4th Dimension Language Reference

C_TIME Compiler

version 3
__

C_TIME ({method; }variable{; variable2; ...; variableN})

Parameter Type Description
method Method ® Optional name of method
variable Variable or ${...} ® Name of variable(s) to declare

Description
The command C_TIME casts each specified variable as a Time variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_TIME(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_TIME(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters.

4th Dimension Language Reference 327

IDLE Compiler

version 3
__

IDLE

Parameter Type Description
This command does not require any parameters

Description
The IDLE command is designed only for 4D Compiler. This command is only used in
compiled databases in which user-defined methods are written so that no calls are made
back to the 4th Dimension engine. For example, if a procedure has a For loop in which no
4th Dimension commands are executed, the loop could not be interrupted by a process
installed with ON SERIAL PORT CALL or ON EVENT CALL, nor could a user switch to
another application. In this case, you should insert IDLE to allow 4th Dimension to trap
events. If you do not want any interruptions, omit IDLE.

Examples
In the following example, the loop would never terminate in a compiled database without
the call to IDLE:

` Do Something Project Method
ON EVENT CALL ("EVENT METHOD")
<>vbWeStop:=False
MESSAGE ("Processing..."+Char(13)+"Type any key to interrupt...")
Repeat

` Do some processing that doesn’t involve a 4D command
Þ IDLE

Until (<>vbWeStop)
ON EVENT CALL ("")

with:
` EVENT METHOD Project Method

If (Undefined(KeyCode))
KeyCode:=0

End if
If (KeyCode#0)

CONFIRM ("Do you really want to stop this operation?")
If (OK=1)

<>vbWeStop:=True
End if

End if

See Also
Compiler commands, ON EVENT CALL, ON SERIAL PORT CALL.

328 4th Dimension Language Reference

10 Database Methods

4th Dimension Language Reference 329

330 4th Dimension Language Reference

Database Methods Database Methods

version 6.0
__

Database methods are methods that are automatically executed by 4th Dimension when a
general session event occurs.

To create or open and edit a database method:
1. Open the Explorer window.
2. Select the Methods tab.
3. Expand the Database Methods theme.
4. Double click on the method.
or:
1. Select the method.
2. Click Edit or press Enter or Return.

You edit a database method in the same way as any other method.

You cannot call a database method from another method. Database methods are
automatically invoked by 4th Dimension at certain points in a working session. The
following table summarizes execution of database methods:

Database Method 4th Dimension 4D Server 4D Client
On Startup Yes, Once No Yes, Once
On Exit Yes, Once No Yes, Once
On Web Connection Yes, Multiple Yes, Multiple No
On Server Startup No Yes, Once No
On Server Shutdown No Yes, Once No
On Server Open Connection No Yes, Multiple No
On Server Close Connection No Yes, Multiple No

4th Dimension Language Reference 331

For detailed information about each of the database methods, see the following sections:
• On Startup Database Method
• On Exit Database Method
• On Web Connection Database Method
• On Server Startup Database Method (4D Server Reference manual)
• On Server Shutdown Database Method (4D Server Reference manual)
• On Server Open Connection Database Method (4D Server Reference manual)
• On Server Close Connection Database Method (4D Server Reference manual)

See Also
Methods.

332 4th Dimension Language Reference

On Startup Database Method Database Methods

version 6.0
__

The On Startup Database Method is called once when you open a database.

This occurs in the following 4D environments:
• 4th Dimension
• 4D Client (on the client side, after the connection has been accepted by 4D Server)
• 4D Runtime
• 4D application compiled and merged with 4D Compiler and 4D Engine

Note: The On Startup Database Method is NOT invoked by 4D Server.

The On Startup Database Method is automatically invoked by 4D; unlike project methods,
you cannot call this database method yourself. To call and perform tasks from within the
On Startup Database Method, as well as from project methods later on, use subroutines.

The On Startup Database Method is the perfect place to:
• Initialize interprocess variables that you will use during the whole working session.
• Start processes automatically when a database is opened.
• Load Preferences or Settings saved for this purpose during the previous working session.
• Prevent the opening of the database if a condition is not met (i.e., missing system
resources) by explicitly calling QUIT 4D.
• Perform any other actions that you want to be performed automatically each time a
database is opened.

4th Dimension Language Reference 333

Compatibility with previous versions of 4D
Database methods are a new type of method introduced in version 6. In previous versions
of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you have
converted a version 3 database to version 6, and if you want to take advantage of the new
On Startup Database Method capability, you must deselect the Use Old Startup Method
property in the Database Properties dialog box (shown in this section). This property
only affects the STARTUP/On Startup Database Method alternative. If you do not deselect
this property and add, for instance, an On Exit Database Method, this latter will be
invoked by 4D.

Example
See the example in the section On Exit Database Method.

See Also
Database Methods, Methods, On Exit Database Method, QUIT 4D.

334 4th Dimension Language Reference

On Exit Database Method Database Methods

version 6.0
__

The On Exit Database Method is called once when you quit a database.

This method is used in the following 4D environments:
• 4th Dimension
• 4D Client (on the client side)
• 4D Runtime
• 4D application compiled and merged with 4D Compiler and 4D Engine

Note: The On Exit Database Method is NOT invoked by 4D Server.

The On Exit Database Method is automatically invoked by 4D; unlike project methods, you
cannot call this database method yourself. To call and perform tasks from within the On
Startup Database Method, as well as from project methods, use subroutines.

A database can be exited if any of the following occur:
• The user selects the menu command Quit from the User or Design Environment File
menu
• A call to the QUIT 4D command is issued
• A 4D Plug-in issues a call to the QUIT 4D entry point

No matter how the exit from the database was initiated, 4D performs the following
actions:
• If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction. If the user is performing data entry, the records will be cancelled and
not saved.

• If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. You can therefore use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop
executing. Note that 4D will eventually quit—the On Exit Database Method can perform
all the cleanup or closing operations you want, but it cannot refuse the quit, and will at
some point end.

The On Exit Database Method is the perfect place to:
• Stop processes automatically started when the database was opened
• Save (locally, on disk) Preferences or Settings to be reused at the beginning of the next
session in the On Startup Database Method
• Perform any other actions that you want to be done automatically each time a database
is exited

4th Dimension Language Reference 335

Example
The following example covers all the methods used in a database that tracks the
significant events that occur during a working session and writes a description in a text
document called “Journal.”

• The On Startup Database Method initializes the interprocess variable <>vbQuit4D, which
tells all the use processes whether or not the database is being exited. It also creates the
journal file, if it does not already exist.

` On Startup Database Method
C_TEXT(<>vtIPMessage)
C_BOOLEAN(<>vbQuit4D)
<>vbQuit4D:=False

If (Test path name("Journal") # Is a document)
$vhDocRef:=Create document("Journal")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
End if

End if
WRITE JOURNAL ("Opening Session")

• The project method WRITE JOURNAL, used as subroutine by the other methods, writes
the information it receives, in the journal file:

` WRITE JOURNAL Project Method
` WRITE JOURNAL (Text)
` WRITE JOURNAL (Event description)

C_TEXT($1)
C_TIME($vhDocRef)

While (Semaphore("$Journal"))
DELAY PROCESS(Current process;1)

End while
$vhDocRef:=Append document("Journal")
If (OK=1)

PROCESS PROPERTIES(Current process;$vsProcessName;$vlState;
$vlElapsedTime;$vbVisible)

SEND PACKET($vhDocRef;String(Current date)+Char(9)
+String(Current time)+Char(9)+String(Current process)+Char(9)

+$vsProcessName+Char(9)+$1+Char(13))
CLOSE DOCUMENT($vhDocRef)

End if
CLEAR SEMAPHORE("$Journal")

336 4th Dimension Language Reference

Note that the document is open and closed each time. Also note the use of a semaphore
as “access protection” to the document—we do not want two processes trying to access
the journal file at the same time.

• The M_ADD_RECORDS project method is executed when a menu item Add Record is
chosen in Custom menus:

` M_ADD_RECORDS Project Method

MENU BAR(1)
Repeat

ADD RECORD([Table1];*)
If (OK=1)

WRITE JOURNAL ("Adding record #"+String(Record number([Table1]))
+" in Table1")

End if
Until ((OK=0) | <>vbQuit4D)

This method loops until the user cancels the last data entry or exits the database.

• The input form for [Table 1] includes the treatment of the On Outside Call events. So,
even if a process is in data entry, it can be exited smoothly, with the user either saving (or
not saving) the current data entry:

` [Table1];"Input" Form Method
Case of

: (Form event=On Outside Call)
If (<>vtIPMessage="QUIT")

CONFIRM("Do you want to save the changes made to this record?")
If (OK=1)

ACCEPT
Else

CANCEL
End if

End if
End case

• The M_QUIT project method is executed when Quit is chosen from the File menu in the
Custom Menus environment:

` M_QUIT Project Method
$vlProcessID:=New process("DO_QUIT";32*1024;"$DO_QUIT")

The method uses a trick. When QUIT 4D is called, the command has an immediate effect.
Therefore, the process from which the call is issued is in “stop mode” until the database is
actually exited. Since this process can be one of the processes in which data entry occurs,
the call to QUIT 4D is made in a local process that is started only for this purpose.

4th Dimension Language Reference 337

Here is the DO_QUIT method:

` DO_QUIT Project Method
CONFIRM("Are you sure you want to quit?")
If (OK=1)

WRITE JOURNAL ("Quitting Database")
QUIT 4D

` QUIT 4D has an immediate effect, any line of code below will never be executed
` ...

End if

• Finally, here is the On Exit Database Method which tells all open user processes “It's time
to get out of here!” It sets <>vbQuit4D to True and sends interprocess messages to the user
processes that are performing data entry:

` On Exit Database Method
<>vbQuit4D:=True
Repeat

$vbDone:=True
For ($vlProcess;1;Count tasks)

PROCESS PROPERTIES($vlProcess;$vsProcessName;$vlState;
$vlElapsedTime;$vbVisible)

If (((($vsProcessName="ML_@") | ($vsProcessName="M_@"))) & ($vlState>=0))
$vbDone:=False
<>vtIPMessage:="QUIT"
BRING TO FRONT($vlProcess)
CALL PROCESS($vlProcess)
$vhStart:=Current time
Repeat

DELAY PROCESS(Current process;60)
Until ((Process state($vlProcess)<0) |

((Current time-$vhStart)>=?00:01:00?))
End if

End for
Until ($vbDone)
WRITE JOURNAL ("Closing session")

Note: Processes that have names beginning with "ML_..." or "M_..." are started by menu
commands for which the Start a New Process property has been selected. In this
example, these are the processes started when the menu command Add record was
chosen.

The test (Current time-$vhStart)>=?00:01:00? allows the database method to get out of the
“waiting the other process” Repeat loop if the other process does not act immediately.

338 4th Dimension Language Reference

• The following is a typical example of the Journal file produced by the database:

2/6/97 15:47:25 1 User/Custom Menus process Opening Session
2/6/97 15:55:43 5 ML_1 Adding record #23 in Table1
2/6/97 15:55:46 5 ML_1 Adding record #24 in Table1
2/6/97 15:55:54 6 $DO_QUIT Quitting Database
2/6/97 15:55:58 7 $xx Closing session

Note: The name $xx is the name of the local process started by 4D in order to execute the
On Exit Database Method.

See Also
On Startup Database Method, QUIT 4D.

4th Dimension Language Reference 339

340 4th Dimension Language Reference

11 Data Entry

4th Dimension Language Reference 341

342 4th Dimension Language Reference

ADD RECORD Data Entry

version 3
__

ADD RECORD ({table}{; }{*})

Parameter Type Description
table Table ® Table to use for data entry, or

Default table, if omitted
* ® Hide scroll bars

Description
The command ADD RECORD lets the user add a new record to the database for the table
table or for the default table, if you omit the table parameter.

ADD RECORD creates a new record, makes the new record the current record for the
current process, and displays the current input form. In the Custom Menus environment,
after the user has accepted the new record, the new record is the only record in the
current selection.

The following figure shows a typical data entry form.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

ADD RECORD displays the form until the user accepts or cancels the record. If the user is
adding several records, the command must be executed once for each new record.

The record is saved (accepted) if the user clicks an Accept button or presses the Enter key
(numeric keypad), or if the ACCEPT command is executed.

4th Dimension Language Reference 343

The record is not saved (canceled) if the user clicks a Cancel button or presses the cancel
key combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to ADD RECORD, OK is set to 1 if the record is accepted, to 0 if canceled.

Note: Even when canceled, the record remains in memory and can be saved if SAVE
RECORD is executed before the current record pointer is changed.

Examples
1. The following example is a loop commonly used to add new records to a database:

INPUT FORM ([Customers];"Std Input") ` Set input form for [Customers] table
Repeat ` Loop until the user cancels

Þ ADD RECORD ([Customers];*) ` Add a record to the [Customers] table
Until (OK=0) ` Until the user cancels

2. The following example queries the database for a customer. Depending on the results of
the search, one of two things may happen. If no customer is found, then the user is
allowed to add a new customer with ADD RECORD. If at least one customer is found, the
user is presented with the first record found, which can be modified with MODIFY
RECORD:

READ WRITE([Customers])
INPUT FORM([Customers];"Input") ` Set the input form
vlCustNum:=Num(Request ("Enter Customer Number:")) ` Get the customer number
If (OK=1)

QUERY ([Customers];[Customers]CustNo=vlCustNum) ` Look for the customer
If (Records in selection([Customers])=0) ` If no customer is found…

Þ ADD RECORD([Customers]) ` Add a new customer
Else

If(Not(Locked([Customers])))
MODIFY RECORD([Customers]) ` Modify the record
UNLOAD RECORD([Customers])

Else
ALERT("The record is currently being used.")

End if
End if

End if

See Also
ACCEPT, CANCEL, CREATE RECORD, MODIFY RECORD, SAVE RECORD.

System Variables or Sets
Accepting the record sets the OK system variable to 1; canceling it sets the OK system
variable to 0. The OK system variable is set only after the record is accepted or canceled.

344 4th Dimension Language Reference

MODIFY RECORD Data Entry

version 3
__

MODIFY RECORD ({table}{; }{*})

Parameter Type Description
table Table ® Table to use for data entry, or

Default table, if omitted
* ® Hide scroll bars

Description
The command MODIFY RECORD lets the user modifies the current record for the table
table or for the default table if you omit the table parameter. MODIFY RECORD loads the
record, if it is not already loaded for the current process, and displays the current input
form. If there is no current record, then MODIFY RECORD does nothing. MODIFY
RECORD does not affect the current selection.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

To use MODIFY RECORD, the current record must have read-write access and should not
be locked.
If the form contains buttons for moving within the selection of records, MODIFY
RECORD lets the user click the buttons to modify records and move to other records.

The record is saved (accepted) if the user clicks an Accept button or presses the Enter key
(numeric key pad), or if the ACCEPT command is executed.

The record is not saved (canceled) if the user clicks a Cancel button or presses the cancel
key combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed. Even when canceled, the record remains in memory and
can be saved if SAVE RECORD is executed before the current record pointer is changed.

After a call to MODIFY RECORD, OK is set to 1 if the record is accepted, to 0 if canceled.

Note: Even when canceled, the record remains in memory and can be saved if SAVE
RECORD is executed before the current record pointer is changed.

If you are using MODIFY RECORD and the user does not change any of the data in the
record, the record is not considered to be modified, and accepting the record does not
cause it to be saved again. Actions such as changing variables, checking check boxes, and
selecting radio buttons do not qualify as modifications. Only changing data in a field,
either through data entry or through a method, causes the record to be saved.

4th Dimension Language Reference 345

Example
See example for the command ADD RECORD.

See Also
ADD RECORD, Locked, Modified record, READ WRITE, UNLOAD RECORD.

System Variables or Sets
Accepting the record sets the OK system variable to 1; canceling it sets the OK system
variable to 0. The OK system variable is set only after the record is accepted or canceled.

346 4th Dimension Language Reference

ADD SUBRECORD Data Entry

version 3
__

ADD SUBRECORD (subtable; form{; *})

Parameter Type Description
subtable Subtable ® Subtable to use for data entry
form String ® Form to use for data entry
* ® Hide scroll bars

Description
The command ADD SUBRECORD lets the user add a new subrecord to subtable, using the
form form. ADD SUBRECORD creates a new subrecord in memory, makes it the current
subrecord, and displays form. A current record for the parent table must exist. If a current
parent record does not exist for the process, ADD SUBRECORD has no effect. The form
must belong to subtable.

The subrecord is kept in memory (accepted) if the user clicks an Accept button or presses
the Enter key (numeric pad), or if the ACCEPT command is executed. After the subrecord
has been added, the parent record must be explicitly saved in order for the subrecord to be
saved.

The subrecord is not saved if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to ADD SUBRECORD, OK is set to 1 if the subrecord is accepted, to 0 if
canceled.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

4th Dimension Language Reference 347

Example
The following example is part of a method. It adds a subrecord for a new child to an
employee’s record. The data for the children is stored in a subtable named
[Employees]Children. Note that the [Employees] record must be saved in order for the new
subrecord to be saved:

Þ ADD SUBRECORD([Employees]Children;"Add Child")
If (OK=1) ` If the user accepted the subrecord

SAVE RECORD ([Employees]) ` save the employee’s record
End if

See Also
ACCEPT, CANCEL, MODIFY SUBRECORD, SAVE RECORD.

System Variables or Sets
Accepting the subrecord sets the OK system variable to 1; canceling it sets the OK system
variable to 0.

348 4th Dimension Language Reference

MODIFY SUBRECORD Data Entry

version 3
__

MODIFY SUBRECORD (subtable; form{; *})

Parameter Type Description
subtable Subtable ® Subtable to use for data entry
form ® Form to use for data entry
* ® Hide scroll bars

Description
The command MODIFY SUBRECORD displays the current subrecord of subtable for
modification using the form form. The form must belong to subtable.

A current record for the parent table must exist. If a current parent record does not exist
for the process, MODIFY SUBRECORD has no effect. In addition, if there is no current
subrecord, then MODIFY SUBRECORD does nothing.

The subrecord is kept in memory (accepted) if the user clicks an Accept button or presses
the Enter key (numeric pad), or if the ACCEPT command is executed. After the subrecord
has been modified, the parent record must be explicitly saved in order for the subrecord
to be saved.

The subrecord is not modified if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to MODIFY SUBRECORD, OK is set to 1 if the subrecord modifications are
accepted, to 0 if canceled.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

See Also
ACCEPT, ADD SUBRECORD, CANCEL, SAVE RECORD.

System Variables or Sets
Accepting the subrecord modifications sets the OK system variable to 1; canceling it sets
the OK system variable to 0.

4th Dimension Language Reference 349

DIALOG Data Entry

version 3
__

DIALOG ({table; }form)

Parameter Type Description
table Table ® Table owning the form or

Default table if omitted
form Form ® Form to display as dialog

Description
The command DIALOG presents the form form to the user. This command is often used to
get information from the user through the use of variables, or to present information to
the user, such as options for performing an operation.

It is common to display the form inside a modal window created with the Open window
command.

Here is a typical example of a dialog:

In a dialog, data entry can be performed only by using variables. Fields can be displayed
with the current values, but are not enterable.

Tip: Sometimes dialogs can be simulated by ADD RECORD, if you need the capabilities
provided by field data entry. In this case, if the form is accepted, a record is added to the
table.

Tip: Conversely, data entry can be performed using the DIALOG command. In this case,
you must create and save the record. DIALOG does not manipulate records.

Use DIALOG instead of ALERT, CONFIRM, or Request when the information that must be
presented or gathered is more complex than those commands can manage.

350 4th Dimension Language Reference

Unlike ADD RECORD or MODIFY RECORD, DIALOG does not use the current input form.
You must specify the form to be used in the form parameter. Also, the default button
panel is not used if buttons are omitted. Instead the OK and Cancel buttons are
automatically created. Adding any custom button removes the default OK and Cancel
buttons.

The dialog is accepted if the user clicks an Accept button or presses the Enter key
(numeric key pad), or if the ACCEPT command is executed.

The dialog is canceled if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to DIALOG, if the dialog is accepted, OK is set to 1; if it is canceled, OK is set to
0.

Example
The following example shows the use of DIALOG to specify search criteria. A custom form
containing the variables vName and vState is displayed so the user can enter the search
criteria.

Open window (10;40;370;220) ` Open a modal window
Þ DIALOG([Company];"Search Dialog") ` Display a custom search dialog

CLOSE WINDOW ` No longer need the modal window
If (OK=1) ` If the dialog is accepted

QUERY ([Company];[Company]Name=vName;*)
QUERY ([Company];&;[Company]State=vState)

End if

See Also
ACCEPT, ADD RECORD, CANCEL, Open window.

System Variables or Sets
After a call to DIALOG, if the dialog is accepted, OK is set to 1; if it is canceled, OK is set to
0.

4th Dimension Language Reference 351

Modified Data Entry

version 3
__

Modified (field) ® Boolean

Parameter Type Description
field Field ® Field to test

Function result Boolean ¬ True if the field has been assigned a new value,
otherwise False

Description
Modified returns True if field has been programmatically assigned a value or has been
edited during data entry.

During data entry, a field is considered modified if the user has edited the field (whether
or not the original value is changed) and then left it by going to another field or by
clicking on a control. Note that just tabbing out of a field does not set Modified to True.
The field must have been edited in order for Modified to be True.

When executing a method, a field is considered to be modified if it has been assigned a
value (different or not).

In both cases, use the Old command to detect if the field value has been actually changed.

Note: Although modified can be applied to any type of field, if you use it in combination
with the old command, be aware of the restrictions that apply to the old command. For
details, see the description of the Old command.

During data entry, it is usually easier to perform operations in object methods than to use
Modified in form methods. Since an object method is sent an On Data Change event
whenever a field is modified, the use of an object method is equivalent to using Modified
in a form method.

Examples
1. The following example tests if either the [Orders]Quantity field or the [Orders]Price field
has changed. If either has been changed, then the [Orders]Total field is recalculated.

Þ If ((Modified ([Orders]Quantity) | (Modified ([Orders]Price))
[Orders]Total :=[Orders]Quantity*[Orders]Price

End if

Note that the same thing could be accomplished by using the second line as a subroutine
called by the object methods for the [Orders]Quantity field and the [Orders]Price field.

352 4th Dimension Language Reference

2. You select a record for the table [anyTable], then you call multiple subroutines that may
modify the field [anyTable]Important field, but do not save the record. At the end of the
main method, you can use the Modified command to detect if you must save the record:

` Here the record has been selected as current record
` Then you perform actions using subroutines

DO SOMETHING
DO SOMETHING ELSE
DO NOT FORGET TO DO THAT

` ...
` At then you test the field to detect if the record has to be saved

Þ If (Modified([anyTable]Important field))
SAVE RECORD([anyTable])

End if

See Also
Old.

4th Dimension Language Reference 353

Old Data Entry

version 3
__

Old (field) ® Expression

Parameter Type Description
field Field ® Field for which to return old value

Function result Expression ¬ Original field value

Description
The command Old returns the value held in field before the field was programmatically
assigned a value or modified in data entry.

Each time you change the current record for a table, 4D creates and maintains in memory
a duplicated “image” of the new current record when it is loaded in memory. (For
optimization, 4D disregards Text, Picture and BLOB fields.) When modifying a record, you
work with the actual image of the record, not this duplicated image. This image is then
discarded when you change the current record again.

Old returns the value from the duplicated image. In other words, for an existing record, it
returns the value of the field as it is stored on disk. If a record is new, Old returns the
default empty value for field according to its type. For example, if field is an Alpha field,
Old returns an empty string. If field is a numeric field, Old returns zero (0), and so on.

Old works on field whether the field has been modified by a method or by the user during
data entry.

Old cannot be applied to Text, Picture or BLOB fields. It can be applied to all other field
types, including subfields, but has no meaning when applied to a subtable field itself.

To restore the original value of a field, assign it the value returned by Old.

See Also
Modified.

354 4th Dimension Language Reference

12 Date and Time

4th Dimension Language Reference 355

356 4th Dimension Language Reference

Current date Date and Time

version 3
__

Current date {(*)} ® Date

Parameter Type Description
* ® Returns the current date from the server

Function result Date ¬ Current date

Description
The command Current date returns the current date as kept by the system clock.

4D Server: If you use the asterisk (*) parameter when executing this function on a 4D
Client machine, it returns the current date from the server.

Examples
1. The following example displays an alert box containing the current date:

Þ ALERT("The date is " + String(Current date)+".")

2. If you write an application for the international market, you may need to know if the
version of 4D that you run works with dates formatted as MM/DD/YYYY (US version) or
DD/MM/YYYY (French version). This is useful to know for customizing data entry fields.

The following project method allows you to do so:

` Sys date format global function
` Sys date format -> String
` Sys date format -> Default 4D data format

C_STRING(31;$0;$vsDate;$vsMDY;$vsMonth;$vsDay;$vsYear)
C_LONGINT($1;$vlPos)
C_DATE($vdDate)

` Get a Date value where the month, day and year values are all different

Þ $vdDate:=Current date
Repeat

$vsMonth:=String(Month of($vdDate))
$vsDay:=String(Day of($vdDate))
$vsYear:=String(Year of($vdDate)%100)

4th Dimension Language Reference 357

If (($vsMonth=$vsDay) | ($vsMonth=$vsYear) | ($vsDay=$vsYear))
vOK:=0
$vdDate:=$vdDate+1

Else
vOK:=1

End if
Until (vOK=1)
$0:="" ` Initialize function result
$vsDate:=String($vdDate)
$vlPos:=Position("/";$vsDate) ` Find the first / separator in the string ../../..
$vsMDY:=Substring($vsDate;1;$vlPos-1) ` Extract the first digits from the date

` Eliminate the first digits as well as the first / separator
$vsDate:=Substring($vsDate;$vlPos+1)
Case of

: ($vsMDY=$vsMonth) ` The digits express the month
$0:="MM"

: ($vsMDY=$vsDay) ` The digits express the day
$0:="DD"

: ($vsMDY=$vsYear) ` The digits express the year
$0:="YYYY"

End case
$0:=$0+"/" ` Start building the function result
$vlPos:=Position("/";$vsDate) ` Find the second separator in the string ../..
$vsMDY:=Substring($vsDate;1;$vlPos-1) ` Extract the next digits from the date

` Reduce the string to the last digits from the date
$vsDate:=Substring($vsDate;$vlPos+1)
Case of

: ($vsMDY=$vsMonth) ` The digits express the month
$0:=$0+"MM"

: ($vsMDY=$vsDay) ` The digits express the day
$0:=$0+"DD"

: ($vsMDY=$vsYear) ` The digits express the year
$0:=$0+"YYYY"

End case
$0:=$0+"/" ` Pursue building the function result
Case of

: ($vsDate=$vsMonth) ` The digits express the month
$0:=$0+"MM"

: ($vsDate=$vsDay) ` The digits express the day
$0:=$0+"DD"

: ($vsDate=$vsYear) ` The digits express the year
$0:=$0+"YYYY"

End case
` At this point $0 is equal to MM/DD/YYYY or DD/MM/YYYY or...

See Also
Date Operators, Day of, Month of, Year of.

358 4th Dimension Language Reference

Day of Date and Time

version 3
__

Day of (date) ® Number

Parameter Type Description
date Date ® Date for which to return the day

Function result Number ¬ Day of the month of date

Description
The command Day of returns the day of the month of date.

Note: Day of returns a value between 1 and 31. To get the day of the week for a date, use
the command Day number.

Examples
1. The following example illustrates the use of Day of. The results are assigned to the
variable vResult. The comments describe what is put in vResult:

Þ vResult := Day of (!12/25/92!) ` vResult gets 25
Þ vResult := Day of (Current date) ` vResult gets day of current date

2. See the example for the command Current date.

See Also
Day number, Month of, Year of.

4th Dimension Language Reference 359

Month of Date and Time

version 3
__

Month of (date) ® Number

Parameter Type Description
date Date ® Date for which to return the month

Function result Number ¬ Number indicating the month of date

Description
The command Month of returns the month of date.

Note: Month of returns the number of the month, not the name (see Example 1).

4th Dimension provides the following predefined constants:

Constants Type Value
January Long Integer 1
February Long Integer 2
March Long Integer 3
April Long Integer 4
May Long Integer 5
June Long Integer 6
July Long Integer 7
August Long Integer 8
September Long Integer 9
October Long Integer 10
November Long Integer 11
December Long Integer 12

Examples
1. The following example illustrates the use of Month of. The results are assigned to the
variable vResult. The comments describe what is put in vResult:

Þ vResult := Month of (!12/25/92!) ` vResult gets 12
Þ vResult := Month of (Current date) ` vResult gets month of current date

2. See example for the command Current date.

360 4th Dimension Language Reference

3. 4th Dimension's 'STR#' ID=11 resource includes the names of the months localized for
the current country:

The following project method returns the name of the month for a date:

` Month name of project method
` Month name of (Date) -> String
` Month name of (Date) -> Name of the month

Þ $0:=Get indexed string(11;12+Month of ($1))

The following project method returns the abbreviation of the month for a date:

` Month abbr of project method
` Month abbr of (Date) -> String
` Month abbr of (Date) -> Name of the month

Þ $0:=Get indexed string(11;Month of ($1))

See Also
Day of, Year of.

4th Dimension Language Reference 361

Year of Date and Time

version 3
__

Year of (date) ® Number

Parameter Type Description
date Date ® Date for which to return the year

Function result Number ¬ Number indicating the year of date

Description
The command Year of returns the year of date.

Examples
1. The following example illustrates the use of Year of. The results are assigned to the
variable vResult.

Þ vResult := Year of (!12/25/92!) ` vResult gets 1992
Þ vResult := Year of (!12/25/1992!) ` vResult gets 1992
Þ vResult := Year of (!12/25/1892!) ` vResult gets 1892
Þ vResult := Year of (!12/25/2092!) ` vResult gets 2092
Þ vResult := Year of (Current date) ` vResult gets year of current date

2. See example for the command Current date.

See Also
Day of, Month of.

362 4th Dimension Language Reference

Day number Date and Time

version 3
__

Day number (date) ® Number

Parameter Type Description
date Date ® Date for which to return the number

Function result Number ¬ Number representing the weekday on which
date falls

Description
The command Day number returns a number representing the weekday on which date
falls.

Note: Day number returns 2 for null dates.

4th Dimension provides the following predefined constants:

Constants Type Value
Monday Long Integer 2
Tuesday Long Integer 3
Wednesday Long Integer 4
Thursday Long Integer 5
Friday Long Integer 6
Saturday Long Integer 7
Sunday Long Integer 1

Note: Day number of returns a value between 1 and 7. To get the day number within the
month for a date, use the command Day of.

4th Dimension Language Reference 363

Example
The following example is a function that returns the current day as a string:

Þ $viDay := Day number (Current date) ` $viDay gets the current day number
 Case of

: ($viDay = 1)
$0 := "Sunday"
: ($viDay = 2)
$0 := "Monday"
: ($viDay = 3)
$0 := "Tuesday"
: ($viDay = 4)
$0 := "Wednesday"
: ($viDay = 5)
$0 := "Thursday"
: ($viDay = 6)
$0 := "Friday"
: ($viDay = 7)
$0 := "Saturday"

End case

See Also
Day of.

364 4th Dimension Language Reference

Add to date Date and Time

version 6.0
__

Add to date (date; years; months; days) ® Date

Parameter Type Description
date Date ® Date to which to add days, months, and years
years Number ® Number of years to add to the date
months Number ® Number of months to add to the date
days Number ® Number of days to add to the date

Function result Date ¬ Resulting date

Description
The command Add to date adds years, months, and days to the date you pass in date, then
returns the result.

Although you can use the Date Operators to add days to a date, Add to date allows you to
quickly add months and years without having to deal with the number of days per
month or leap years (as you would when using the + date operator).

Examples

` This line calculates the date in one year, same day
$vdInOneYear:=Add to date(Current date;1;0;0)

` This line calculates the date next month, same day
$vdNextMonth:=Add to date(Current date;0;1;0)

` This line does the same thing as $vdTomorrow:=Current date+1
$vdTomorrow:=Add to date(Current date;0;1;0)

See Also
Date Operators.

4th Dimension Language Reference 365

Date Date and Time

version 3
__

Date (dateString) ® Date

Parameter Type Description
dateString String ® String representing the date to be returned

Function result Date ¬ Date

Description
The command Date evaluates dateString and returns a date.

The dateString parameter must follow the normal rules for the date format.

In the US version of 4D, the date must be in the order MM/DD/YY (month, day, year).
The month and day can be one or two digits. The year can be two or four digits. If the
year is two digits, then Date adds 19 to the beginning of the year, unless you have
change this default using the command SET DEFAULT CENTURY. The following characters
are valid date separators: slash (/), space, period (.), and hyphen (-).

Date does not check whether or not dateString is a valid date. If an invalid date (such as
"13/35/94") is passed, Date will return the invalid date. However, if dateString could not
possibly be interpreted as a date (for example, "aa/12/94"), the null date value (!00/00/00!)
is returned.

It is your responsibility to verify that dateString is a valid date.

Examples
1. The following example uses a request box to prompt the user for a date. The string
entered by the user is converted to a date and stored in the reqDate variable:

Þ vdRequestedDate:=Date(Request ("Please enter the date:";String(Current date)))
If (OK=1)

` Do something with the date now stored in vdRequestedDate
End if

2. The following example returns the string "12/12/94" as a date:

Þ vdDate:=Date("12/12/94")

366 4th Dimension Language Reference

Current time Date and Time

version 3
__

Current time {(*)} ® Time

Parameter Type Description
* ® Returns the current time from the server

Function result Time ¬ Current time

Description
The command Current time returns the current time from the system clock.

The current time is always between 00:00:00 and 23:59:59. Use String or Time string to
obtain the string form of the time expression returned by Current time.

4D Server: If you use the asterisk (*) parameter when executing this function on a 4D
Client machine, it returns the current time from the server.

Examples
1. The following example shows you how to time the length of an operation. Here,
LongOperation is a method that needs to be timed:

Þ $vhStartTime:=Current time ` Save the start time
LongOperation ` Perform the operation

Þ ALERT ("The operation took "+String(Current time–$vhStartTime)) ` Display how long
it took

2. The following example extracts the hours, minutes, and seconds from the current time:

Þ $vhNow:=Current time
ALERT("Current hour is: "+String($vhNow\3600))
ALERT("Current minute is: "+String(($vhNow\60)%60))
ALERT("Current second is: "+String($vhNow%60))

See Also
Milliseconds, String, Tickcount, Time Operators.

4th Dimension Language Reference 367

Time string Date and Time

version 3
__

Time string (seconds) ® String

Parameter Type Description
seconds Number ® Seconds from midnight

Function result String ¬ Time as a string in 24-hour format

Description
The command Time string returns the string form of the time expression you pass in
seconds.

The string is in the HH:MM:SS format.

If you go beyond the number of seconds in a day (86,400), Time string continues to add
hours, minutes, and seconds. For example, Time string (86401) returns 24:00:01.

Note: If you need the string form of a time expression in a variety of formats, use String.

Example
The following example displays an alert box with the message, “46800 seconds is
13:00:00.”

Þ ALERT("46800 seconds is "+Time string(46800))

See Also
String, Time.

368 4th Dimension Language Reference

Time Date and Time

version 3
__

Time (timeString) ® Time

Parameter Type Description
timeString Time ® Time for which to return number of seconds

Function result Time ¬ Time specified by timeString

Description
The command Time returns a time expression equivalent to the time specified as a string
by timeString.

The timeString parameter must follow the HH:MM:SS format and be in 24-hour format.

Example
The following example displays an alert box with the message “1:00 P.M. = 13 hours 0
minute”:

Þ ALERT ("1:00 P.M. = "+String(Time("13:00:00");Hour Min))

See Also
String, Time string.

4th Dimension Language Reference 369

Tickcount Date and Time

version 6.0
__

Tickcount ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of ticks (60th of a second) elapsed
since the machine was started

Description
Tickcount returns the number of ticks (60th of a second) elapsed since the machine was
started.

Note: Tickcount returns a value of type Long Integer.

Example
See example for the command Milliseconds.

See Also
Current time, Milliseconds.

370 4th Dimension Language Reference

Milliseconds Date and Time

version 6.0
__

Milliseconds ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of milliseconds elasped
since the machine was started

Description
Milliseconds returns the number of milliseconds (1000th of a second) elapsed since the
machine was started.

Note: Milliseconds returns a value of type Real.

Example
The following code displays the “Chronometer” window for one minute::

Open window (100;100;300;200;0;"Chronometer")
$vhTimeStart:=Current time
$vlTicksStart:=Tickcount

Þ $vrMillisecondsStart:=Milliseconds
Repeat

GOTO XY (2;1)
MESSAGE ("Time...........:"+String (Current time -$vhTimeStart))
GOTO XY (2;3)
MESSAGE ("Ticks..........:"+String (Tickcount -$vlTicksStart))
GOTO XY (2;5)

Þ MESSAGE ("Milliseconds...:"+String (Milliseconds -$vrMillisecondsStart))
Until ((Current time -$vhTimeStart)>=†00:01:00†)
CLOSE WINDOW

See Also
Current time, Tickcount.

4th Dimension Language Reference 371

SET DEFAULT CENTURY Date and Time

version 6.0
__

SET DEFAULT CENTURY (century{; pivotYear})

Parameter Type Description
century Number ® Default century (minus one)

for entry of date with two-digit year
pivotYear Number ® Pivot year for entry of date with two-digit year

Description
The command SET DEFAULT CENTURY allows you to specify the default century used by
4D when you enter a date with only two digits for the year.

By default, 4D sets the century to be the 20th century. For example:
• 01/25/97 means January 25, 1997
• 01/25/07 means January 25, 1907

To change this default, pass the new default century minus one in century.
For example, after the call:

SET DEFAULT CENTURY(20) ` Switch to 21st century for default century

• 01/25/97 means January 25, 2097
• 01/25/07 means January 25, 2007

In addition, if you specify the optional pivotYear parameter, 4D will interpret data entry
of a date with a two-digit year as follows:
• If the year is greater than or equal to the pivot year, 4D uses the current default century.
• If the year is less than the pivot year, 4D uses the next century (relative to the current
default).

For example, after this call, in which the pivot year is 1995:

SET DEFAULT CENTURY(19;95) ` Switch to 21st century for default century if year
is less than

• 01/25/97 means January 25, 1997
• 01/25/07 means January 25, 2007

Note: This command only affects how 4D interprets dates entered with a two-digit year.

372 4th Dimension Language Reference

In all cases:
• 01/25/1997 means January 25, 1997
• 01/25/2097 means January 25, 2097
• 01/25/1907 means January 25, 1907
• 01/25/2007 means January 25, 2007

This command only affects data entry. It has no effect on date storage, computation, and
so on.

The effect of SET DEFAULT CENTURY is immediate.

4th Dimension Language Reference 373

374 4th Dimension Language Reference

13 Debugging

4th Dimension Language Reference 375

376 4th Dimension Language Reference

Why a Debugger? Debugging

version 6.0
__

When developing and testing your methods, it is important that you find and fix the
errors they may contain.

There are several types of errors you can make when using the language: typing errors,
syntax errors, environmental errors, design or logic errors, and runtime errors.

Typing Errors
__

Typing errors are detected by the Method editor and are marked with bullets (•). The
following window shows a typing error:

Note: The comments have been manually inserted for the purpose of this manual. 4D
only inserts the (•) at the location of the error.

When this occurs, fix the typing error and type Enter (on the numeric pad) to validate
the fix. For more information about the Method editor, refer to the 4th Dimension Design
Reference.

4th Dimension Language Reference 377

Syntax Error
__

Syntax errors are caught when you execute the method. The Syntax Error window is
displayed when a syntax error occurs. For example:

In this window, the error is that a table name is passed to the Uppercase command, which
expects a text expression. To learn about this window and its button, see the section
Syntax Error window.

Environmental Error
__

Occasionally, there there may not be enough memory to create an array or a BLOB.
When you access a document on disk, the document may not exist or may already open
by another application. In such cases, the Error window appears, describing the error and
the action that could not be performed. For example:

These errors do not directly occur because of your code or the way you wrote it; they
occur because sometimes “bad things just happen.” Most of the time, these errors are easy
to treat with an error catching method installed using the command ON ERR CALL. For
more information, see the description of ON ERR CALL.

378 4th Dimension Language Reference

Design or Logic Error
__

These are generally the most difficult type of error to find—use the Debugger to detect
them. Note that, other than typing errors, all the previous error types are to a certain
extent covered by the expression “Design or logic error.” For example:

• A syntax error may occur because you try to use a variable that has not yet been
initialized.
• An environmental error may occur because you try to open a document whose name is
received by a subroutine which does not get the right value in the parameter. Note that
in this example, the piece of code that actually “breaks” may be different than the code
that is actually the origin of the problem.

Design or logic errors also include such situations as:

• A record is not properly updated because, while calling SAVE RECORD, you forgot to first
test whether or not the record was locked.
• A method does not do exactly what you expect, because the presence of an optional
parameter is not tested.

Runtime Error
__

In compiled mode, you can obtain errors that you never saw in interpreted mode. Here is
an example:

This says “You are trying to access a character whose position is beyond the length of a
string.” To quickly find the origin of the problem, note the name of the method and the
line number, reopen the interpreted version of the structure file, and go to that method
at the indicated line.

4th Dimension Language Reference 379

What To Do When an Error Occurs?
__

Errors are common. It would be unusual to write a substantial number of lines of code
(let’s say several hundred) without generating any errors. Conversely, treating and/or
fixing errors is normal, too!

With its multi-tasking environment, 4D enables you to quickly edit/run methods by
simply switching windows. You will discover how quickly you can fix mistakes and errors
when you do not have to rerun the whole thing each time. You will also discover how
quickly you can track errors if you use the Debugger.

A common beginner mistake in dealing with error detection is to click Abort in the
Syntax Error Window, go back to the Method Editor, and try to figure out what's going
by looking at the code. Do not do that! You will save plenty of time and energy by
always using the Debugger.

• If an unexpecting syntax error occurs, use the Debugger.
• If an environmental error occurs, use the Debugger.
• If any other type of error occurs, use the Debugger.

In 99% of the cases, the Debugger displays the information you need in order to
understand why an error occurred. Once you have this information, you know how to fix
the error.

Tip: A few hours spent in learning and experimenting with the Debugger can save days
and weeks in the future when you have to track down errors.

Another reason to use the Debugger is for developing code. Sometimes you may write an
algorithm that is more complex than usual. Despite all feelings of accomplishment, you
are not totally sure that your coding is correct, even before trying it. Instead of running it
“blind,” use the TRACE command at the beginning of your code. Then, execute it step by
step to control what happens and to check whether your suspicion was correct or not. A
purist may dislike this method, but somethimes pragmatism pays off more quickly.
Anyway... use the Debugger.

General Conclusion
Use the Debugger.

See Also
Break List Window, Debugger, Debugger Shortcuts, ON ERR CALL, Syntax Error Window,
Tracing a Process not visible or not executing code.

380 4th Dimension Language Reference

Syntax Error Window Debugging

version 6.0
__

The Syntax Error Window is displayed when method execution is halted. Method
execution can be halted for either of two reasons:

• 4th Dimension halts execution because there is a syntax error preventing further
method execution.
• You generate a user interrupt by pressing Alt+Click (Windows) or Option+Click
(Macintosh) while a method is executing.

The Syntax Error window is shown here:

The upper text area of the Syntax Error window displays a message describing the error.
The lower text area shows the line that was executing when the error occurred; the area
where the error occurred is highlighted.

There are four option buttons at the bottom of the window: Abort, Trace, Continue, and
Edit.

• Abort: The method is halted, and you return to where you were before you started
executing the method. If a form or object method is executing in response to an event, it
is stopped and you return to the form. If the method is executing from within the
Custom Menu environment, you return to the Custom Menu environment.

• Trace: You enter Trace/Debugger mode, and the Debugger window is displayed. If the
current line has been partially executed, you may have to click the Trace button several
times. Once the line finishes, you end up in the Debugger window.

4th Dimension Language Reference 381

• Continue: Execution continues. The line with the error may be partially executed,
depending on where the error was. Continue with caution—the error may prevent the
remainder of your method from executing properly. Usually, you do not want to
continue. You can click Continue if the error is in a trivial call, such as SET WINDOW
TITLE, which does not prevent executing and testing the rest of your code. You can thus
concentrate on more important code, and fix a minor error later.

• Edit: All method execution is halted. 4th Dimension switches to the Design
environment. The method in which the error occurred is opened in the Method editor,
allowing you to correct the error. Use this option when you immediately recognize the
mistake and can fix it without further investigation.

See Also
Debugger, ON ERR CALL, Why a Debugger?.

382 4th Dimension Language Reference

Debugger Debugging

version 6.0
__

The term Debugger comes from the term bug. A bug in a method is a mistake that you
want to eliminate. When an error has occurred, or when you need to monitor the
execution of your methods, you use the debugger. A debugger helps you find bugs by
allowing you to slowly step through your methods and examine method information.
This process of stepping through methods is called tracing.

You can cause the Debugger window to display and then trace the methods in the
following ways:

• Clicking the Trace button in the Syntax Error Window
• Using the TRACE command
• Pressing Alt+Click (Windows) or Option-Click (Macintosh) while a method is executing
• Choosing Trace from the Process menu in the Design environment for the process
selected in the Process List Window (see section Tracing a Process not visible or not
executing code)
• Creating or editing a Catch Command or Break Point in the Break List Window.

Note: If a password system exists for the database, only the designer and users belonging
to the group that has structure access privileges can trace methods.

The Debugger window is displayed here:

You can move the Debugger Window and/or resize any of its internal window panes as
necessary.

4D is a multi-tasking environment. If you run several user processes, you can trace them
independently. You can have one debugger window open for each process.

4th Dimension Language Reference 383

Execution Control Tool Bar Buttons
__

Eight buttons are located in the Execution Control Tool Bar at the top of the Debugger
window:

No Trace Button
Tracing is halted and normal method execution resumes.
Note: ALT+F5 (Windows) and Option-Command-R (Macintosh) resumes execution. They
also disable all the next TRACE calls for the current process.

Abort Button
The method is halted, and you return to where you were before you started executing the
method. If you were tracing a form or object method executing in response to an event,
it is stopped and you return to the form. If you were tracing a method executing from
within the Custom Menu environment, you return to the Custom Menu environment.

Abort and Edit Button
The method is halted as if you clicked on Abort. Also, if necessary, 4th Dimension opens
and brings the Design environment process to the front, then opens a Method Editor
window for the method that was executing at the time the Abort and Edit button was
clicked.

Tip: Use this button when you know which changes are required in your code and when
these changes are required to pursue the testing of your methods. After you are finished
with the changes, rerun the method.

384 4th Dimension Language Reference

Edit Button
Clicking the Edit button does the same as Clicking Abort and Edit button, but does not
abort the current execution. The method execution is paused at that point. If necessary,
4th Dimension opens and brings the Design environment process to the front, then
opens a Method Editor window for the method that was executing at the time the Edit
button was clicked.

Important: You can modify this method; however, these modifications will not appear or
execute in the instance of the method currently being traced in the debugger window.
After the method has either aborted or completed successfully, the modifications will
appear on the next execution of this method. In other words, the method must be
reloaded so its modifications will be taken into account.

Tip: Use this button when you know which changes are required in your code and when
they do not interfere with the rest of the code to be executed or traced.

Tip: Object Methods are reloaded for each event. If you are tracing an object method (i.e.,
in response to a button click), you do not need to leave the form. You can edit the object
method, save the changes, then switch back to the form and retry. For tracing/changing
form methods, you must exit the form and reopen it in order to reload the form method.
When doing extensive debugging of a form, a trick is to put the code (that you are
debugging) into a project method that you use as subroutine from within a form method.
In doing so, you can stay in the form while you trace, edit, and retest your form, because
the subroutine is reloaded each time it is called by the form method.

Step Over Button
The current method line (the one indicated by the yellow arrow—called the program
counter) is executed, and the Debugger steps to the next line. The Step Over button does
not step into subroutines and functions; it stays at the level of the method you are
currently tracing. If you want to also trace subroutines and functions calls, use the Step
Into button.

Step Into Button
On execution of a line that calls another method (subroutine or function), this button
causes the Debugger window to display the method being called and allows you to step
through this method. The new method becomes the current (top) method in the Call
Chain pane of the Debugger window. On execution of a line that does not call another
method, this button acts in the same manner as the Step Over button.

Step Into Process Button
On execution of a line that creates a new process (i.e., calling the command New process),
this button opens a new Debugger window that allows you to trace the process method of
the newly created process. On execution of a line that does not creates a new process, this
button acts in the same manner as the Step Over button.

4th Dimension Language Reference 385

Step Out Button
If you are tracing subroutines and functions, clicking on this button allows you to
execute the entire method currently being traced and to step back to the caller method.
The Debugger window is brought back to the previous method in the call chain. If the
current method is the last method in the call chain, the Debugger window is closed.

Execution Control Tool Bar Information
__

On the right side of the execution control tool bar, the debugger provides the following
information:
• The name of the method you are currently tracing (displayed in black)
• The problem caused the appearance of the Debugger window (displayed in red)

Using the example window shown above, the following information is displayed:
• The method DE_DebugDemo is the method being traced.
• The debugger window appeared because it detected a call to the command C_DATE and
this command was one of the commands to be caught.

Here are the possible reasons for the debugger to appear and for the message (displayed in
red):
• TRACE Command: A call to TRACE has been issued.
• Break Point Reached: A temporary or persistent break point has been encountered.
• User Interrupt: You used ALT+Click (Windows) or Option-Click (Macintosh) or you used
the Trace menu command from the Design environment Process menu.
• Caught a call to: Name of the command: A call to a 4D command to be caught is on
the point of being performed.
• Stepping into a new process: You used the Step Into Process button and this message is
displayed by the Debugger window opened for the newly created process.

386 4th Dimension Language Reference

The Debugger Window’s Panes
__

The Debugger window consists of the previously described Execution Control Tool Bar
and four resizable panes:

• Watch Pane
• Call Chain Pane
• Custom Watch Pane
• Source Code Pane

The first three panes use easy-to-navigate hierarchical lists to display pertinent debugging
information. The fourth one, Source Code Pane, displays the source code of the method
being traced. Each pane has its own function to assist you in your debugging efforts. You
can use the mouse to vertically and horizontally resize the debugger window and also
each pane. In addition, the first three panes include a dotted separation line between the
two columns they display. Using the mouse, you can move this dotted line to
horizontally resize the columns, at your convenience.

See Also
Break List Window, Call Chain Pane, Custom Watch Pane, Debugger Shortcuts, ON ERR CALL,
Source Code Pane, Syntax Error Window, TRACE, Watch Pane, Why a Debugger?.

4th Dimension Language Reference 387

Watch Pane Debugging

version 6.0
__

The Watch pane is displayed in the top left corner of the Debugger window, below the
Execution Control Tool Bar. Here is an example:

The Watch pane displays useful general information about the system, the 4D
environment, and the execution environment.

The Expression column displays the names of the objects or expressions. The Value
column displays the current value of corresponding the object or expression.

Clicking on any value on the right side of the pane allows you to modify the value of the
object, if this is permitted for that object.

The multi-level hierarchical lists are organized by theme at the main level. The themes
are:
• Line Objects
• Variables
• Constants
• Fields
• Semaphores
• Sets
• Processes
• Named Selections
• Information

Depending on the theme, each item may have one or several sublevels. Clicking the list
node next to a theme name expands or collapses the theme. If the theme is expanded,
the items in that theme are visible. If the theme has several levels of information, click
the list node next to each item for exploring all the information provided by the theme.

388 4th Dimension Language Reference

At any point, you can drag and drop themes, theme sublists (if any), and theme items to
the Custom Watch pane.

Information: Displays general information, such the current Default Table (if any). The
expressions from this theme cannot be modified.

Named Selections: Lists the process named selections that are defined in the current
process (the one you’re currently tracing); it also lists the interprocess named selections.
For each named selection, the Value column displays the number of records and the table
name. This list may be empty if you do not use named selections. The expressions from
this theme cannot be modified.

Processes: Lists the processes started since the beginning of the working session. The
value column displays the current state for each process (i.e., Executing, Paused, and so
on). The expressions from this theme cannot be modified.

Sets: Lists the sets defined in the current process (the one you're currently tracing); it also
lists the interprocess sets. For each set, the Value column displays the number of records
and the table name. This list may be empty if you do not use sets. The expressions from
this theme cannot be modified.

Semaphores: Lists the local and global semaphores currently being set. For each
semaphore, the Value column provides the name of the process that sets the semaphore.
This list may be empty if you do not use semaphores. The expressions from this theme
cannot be modified.

Fields: This theme lists the tables and fields in the database; it does not list subfields. For
each Table item, the Value column displays the size of the current selection for the
current process. For each Field item, the Value column displays the value of the field
(except picture, subtable, and BLOB) for the current record, if any. In this theme, the field
values can be modified (there is no undo), but the table information cannot.

Constants: Displays predefined constants provided by 4D. like the Constants page of the
Explorer window. The expressions from this theme cannot be modified.

Variables: This theme is composed of the following subthemes:
• Interprocess: Displays the list of the interprocess variables being used at this moment.
This list can be empty if you do not use interprocess variables. The values of the
interprocess variables can be modified.
• Process: Displays the list of the process variables being used by the current process. This
list is rarely empty. The values of the process variables can be modified.
• Local: Displays the list of the local variables being used by the method being traced (the
one being shown in the source code pane). This list can be empty if no local variable is
used or has not yet been created. The values of the local variables can be modified.

4th Dimension Language Reference 389

• Parameters: Displays the list of parameters received by the method. This list can be
empty if no parameter were passed to the method being traced (the one being shown in
the source code pane). The values of the parameters can be modified.
• Self Pointer: Displays a pointer to the current object if you are tracing an Object
Method. This value cannot be modified

Note: You can modifiy String, Text, Numeric, Date, and Time variables; in other words,
you can modify the variables whose value can be entered with the keyboard.

Arrays, like other variables, appear in the Interprocess, Process, and Locals subthemes,
depending on their scope. The debugger displays each array with an additional
hierarchical level; this enables you to obtain or change the values of the array elements, if
any. The debugger displays the first 100 elements, including the element zero. The Value
column displays the size of the array in regard to its name. After you have deployed the
array, the first sub-item displays the current selected element number, then the element
zero, then the other elements (up to 100). You can modifiy String, Text, Numeric, and
Date arrays. You can modify the selected element number, the element zero, and the
other elements (up to 100). You cannot modify the size of the array.

Reminder: At any time, you can drag and drop an item from the Watch pane to the
Custom Watch pane, including an individual array element.

Line Objects
This theme displays the values of the objects or expressions that are:
• used in the line of code to be executed (the one marked with the program counter—the
yellow arrow in the Source Code pane), or
• used in the previous line of code.

Since the previous line of code is the one that was just executed before, the Line Objects
theme therefore shows the objects or expressions of the current line before and after that
the line was executed. Let's say you execute the following method:

TRACE
a:=1
b:=a+1
c:=a+b

` ...

1. You enter the Debugger window with the Source Code pane program counter set to the
line a:=1. At this point the Line Objects theme displays:

a: Undefined

The a variable is shown because it is used in the line to be executed (but has not yet been
initialized).

390 4th Dimension Language Reference

2. You step one line. The program counter is now set to the line b:=a+1. At this point, the
Line Objects theme displays:

a: 1
b: Undefined

The a variable is shown because it is used in the line that was just executed and was
assigned the numeric value 1. It is also shown because it is used in the line to be executed
as the expression to be assigned to the variable b. The b variable is shown because it is
used in the line to be executed (but has not yet been initialized).

3. Again, you step one line. The program counter is now set to the line c:=a+b. At this
point the Line Objects theme displays:

c: Undefined
a: 1
b: 2

The c variable is shown because it is used in the line to be executed (but has not yet been
initialized). The a and b variables are shown because there were used in the previous line
and are used in the line to be executed. And so on...

The Line Objects theme is a very convenient tool—each time you execute a line, you do
not need to enter an expression in the Custom Watch pane, just watch the values
displayed by the Line Objects theme.

Speed Menu
__

Addtional options are provided by the Speed Menu of the Watch pane. To display this
menu:
• On Windows, click anywhere in the Watch pane using the right mouse button.
• On Macintosh, Control-Click anywhere in the Watch pane.

The Speed Menu of the Watch pane is shown here:

4th Dimension Language Reference 391

• Collapse All: Collapses all levels of the Watch hierarchical list.

• Expand All: Collapses all levels of the Watch hierarchical list.

• Show Types: Displays the object type for each object (when appropriate).

• Show Field and Table Numbers: Displays the number of each table or field of the Fields.
If you work with table or field numbers, or with pointers using the commands such as
Table or Field, this option is very useful.

• Show Icons: Displays an icon denoting the object type for each object. You can turn this
option off in order to speed up the display, or just because you prefer to use only the
Show Types option.

• Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order,
within their respective lists.

• Show Integers in Hexadecimal: Numbers are usually displayed in decimal notation. This
option displays them in hexadecimal notation. Note: To enter a numeric value in
hexadecimal, type 0x (zero + "x"), followed by the hexadecimal digits.

The following is a view of the Watch pane with all options selected:

See Also
Call Chain Pane, Custom Watch Pane, Debugger, Debugger Shortcuts, Source Code Pane.

392 4th Dimension Language Reference

Call Chain Pane Debugging

version 6.0
__

One method may call other methods, which may call other methods. For this reason, it
is very helpful to see the chain of methods, or Call Chain, during the debugging process.
The Call Chain pane, which provides this useful function, is the top right pane of the
Debugger window. This pane is displayed using a hierarchical list. Here is an example of
the Call Chain pane:

• Each main level item is a name of a method. The top item is the method you are
currently tracing, the next main level item is the name of the caller method (the method
that called the method you are currently tracing), the next one is the caller's caller
method, and so on. In the example above, the method M_BitTestDemo is being traced; it
has been called by the method DE_LInitialize, which has been called by DE_DebugDemo.
• Double-clicking the name of a method in the Call Chain pane “transports” you back to
the caller method, displaying its source code in the Source code pane. In doing so, you
can quickly see “how” the caller method made its call to the called method. You can
examine any stage of the call chain this way.
• Clicking the node next to a Method name expands or collapses the parameter ($1, $2...)
and the optional function result ($0) list for the method. The values appear on the right
side of the pane. Clicking on any value on the right side allows you to change the value
of any parameter or function result. In the figure above:
1. M_BitTestDemo has not received any parameter.
2. M_BitTestDemo's $0 is currently undefined, as the method did not assign any value to
$0 (because it has not executed this assignment yet or because the method is a subroutine
and not a function).
3. DE_LInitialize has received three parameters from DE_DebugDemo. $1 is a pointer to the
table [Customers], $2 is a pointer to the field [Customers]Company, and $3 is an
alphanumeric parameter whose value is "Z".
• After you have deployed the parameter list for a method, you can also drag and drop
parameters and function results to the Custom Watch pane.

See Also
Custom Watch Pane, Debugger, Debugger Shortcuts, Source Code Pane, Watch Pane.

4th Dimension Language Reference 393

Custom Watch Pane Debugging

version 6.0
__

Directly below the Call Chain pane is the Custom Watch pane. This pane is used to
evaluate expressions. Any type of expression can be evaluated, including fields, variables,
pointers, calculations, built-in functions, your own functions, and anything else that
returns a value.

You can evaluate any expression that can be shown in text form. This does not cover
picture and BLOB fields or variables. On the other hand, the Debugger uses deployed
hierarchical lists to let you display arrays and pointers. To display BLOB contents, you can
use BLOB commands, such as BLOB to text.

In the following example, you can see several of these items: two variables, a field pointer
variable and the result of a built-in function, and a calculation.

Inserting a new expression
__

You can add an expression to be evaluated in the Custom Watch pane in the following
way:
• Drag and drop an object or expression from the Watch pane
• Drag and drop an object or expression from the Call Chain pane
• In the Source Code pane, click on an expression that can be evaluated

To create a blank expression, double-click somewhere in the empty space of the Custom
Watch pane. This adds an expression ` New expression and then goes into editing mode so
you can edit it. You can enter any 4D formula that returns a result.

After you have entered the formula, type Enter or Return (or click somewhere else in the
pane) to evaluate the expression.

To change the expression, click on it to select it, then click again (or press Enter
—numeric key pad) to go into editing mode.

If you no longer need an expression, click on it to select it, then press Backspace or
Delete.

394 4th Dimension Language Reference

Custom Watch Pane Speed Menu
__

To help you enter and edit an expression, the Custom Watch Pane’s Speed menu gives
you access the 4D formula editor. In fact, the speed menu also proposes additional
options.

To present this menu:
• On Windows, click anywhere in the Custom Watch pane using the right mouse button
• On Macintosh, Control-Click anywhere in the Custom Watch pane.

• New Expression: This inserts a new expression and displays the 4D Formula Editor (as
shown) so you can edit the new expression.

For more information about the Formula Editor, See the 4th Dimension User Reference
Manual.

4th Dimension Language Reference 395

• Insert Command: This hierarchical menu item is a shortcut for inserting a command as
a new expression, without using the Formula Editor.

• Delete All: Deletes all the expressions currently present.

• Collapse All/Expand All: Collapses or Expands all the expressions whose evaluation is
done by the means of a hierarchical list (i.e., pointers, arrays,...)

• Show Types: Displays the object type for each object (when appropriate).

• Show Field and Table Numbers: Displays the number of each table or field of the Fields.
If you work with table or field number or pointers using the commands such as Table or
Field, this option is very useful.

• Show Icons: Displays an icon denoting the object type for each object. You can turn this
option off in order to speed up the display, or just because you prefer to use only the
Show Types option.

• Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order,
within their respective lists.

• Show Integers in Hexadecimal: Numbers are displayed using the decimal notation. This
option displays them hexadecimal notation. Note: To enter a numeric value in
hexadecimal, type 0x (zero + "x"), followed by the hexadecimal digits.

See Also
Call Chain Pane, Debugger, Debugger ShorTcuts, Source Code Pane, Watch Pane.

396 4th Dimension Language Reference

Source Code Pane Debugging

version 6.0
__

The Source Code pane shows the source code of the method being traced.

• If the method is too long to fit in the text area, you can scroll to view other parts of the
method.
• Moving the mouse pointer over any expression that can be evaluated (field, variable,
pointer, array,...) will cause a Tool Tip to display the current value of the object or
expression and its declared type.

Here is an example of the Source Code pane:

A tool tip is displayed because the mouse pointer was over the variable pTable which,
according to the tool tip, is a pointer to the table [Customers].

Tip: In the Source Code pane, clicking on an expression (that can be evaluated) copies the
expression or object to the Custom Watch pane.

Program Counter
__

A yellow arrow in the left margin of the Source Code pane (see the figure above) marks
the next line that will be executed. This arrow is called the program counter. The
program counter always indicates the line on the verge of being executed.

For debugging purposes, you can change the program counter for the method being on
top of the call chain (the method actually being executed). To do so, click and drag the
yellow arrow vertically, to the line you want.

WARNING: Use this feature with caution!

4th Dimension Language Reference 397

Moving the program counter forward does NOT mean that the debugger is rapidly
executing the lines you skip. Similarily, moving the program counter backward does NOT
mean that the debugger is reversing the effect of the lines that has already been executed.

Moving the program counter simply tells the debugger to “pursue tracing or executing
from here.” All current settings, fields, variables, and so on are not affected by the move.

Here is an example of moving the program counter. Let’s say you are debugging the
following code:

` ...
If (This condition)

DO SOMETHING
Else

DO SOMETHING ELSE
End if

` ...

The program counter is set to the line If (This condition). You step once and you see that
the program counter moves to the line DO SOMETHING ELSE. This is unfortunate, because
you wanted to execute the other alternative of the branch. In this case, and provided that
the expression This condition does not perform operations affecting the next steps in your
testing, just move the program counter back to the line DO SOMETHING. You can now
continuing tracing the part of the code in which you are interested.

Setting Break Points
__

In the debugging process, you may need to skip the tracing of some parts of the code.
The debugger offers you several ways to execute code up to a certain point:

• While stepping, you can click on the Step Over button instead of Step Into button. This
is useful when you do not want to enter into possible subroutines or functions called in
the program counter line.
• If you mistakenly entered into a subroutine, you can execute it and directly go back to
the caller method by clicking on the Step Out button.
• If you have a TRACE call placed at some point, you can click the No Trace button, which
resumes the execution up to that TRACE call.

398 4th Dimension Language Reference

Now, let’s say you are executing the following code, with the program counter set to the
line ALL RECORDS([ThisTable]):

` ...
ALL RECORDS([ThisTable])
$vrResult:=0
For($vlRecord;1;Records in selection([ThisTable]))

$vrResult:=This Function([ThisTable]))
NEXT RECORD([ThisTable])

End for
If ($vrResult>=$vrLimitValue)

` ...

Your goal is to evaluate the value of $vrResult after the For loop has been completed. Since
it takes quite some execution time to reach this point in your code, you do not want to
abort the current execution, then edit the method in order to insert a TRACE call before
the line If ($vrResult....

One solution is to step through the loop, however, if the table [ThisTable] contains several
hundreds records, you are going to spend the entire day for this operation. In this type of
situation, the debugger offers you break points. You can insert break points by clicking in
the left margin of the Source Code pane.

For example:
You click in the left margin of the Source Code pane at the level of the line If ($vrResult...:

This inserts a break point for the line. The break point is indicated by a red bullet. Then
click the No Trace button.

This resumes the normal execution up to the line marked with the break point. That line
is not executed itself—you are back to the trace mode. In this example, the whole loop
has consequently been executed normally. Then, when reaching the break point, you just
need to move the mouse button over $vrResult to evaluate its value at the exit point of
the loop.

Setting a break point beyond the program counter and clicking the No Trace button
allows you to skip portions of the method being traced.

4th Dimension Language Reference 399

A red break point is a persistent break point. Once you created it, it “stays.” Even though
you quit the database, then reopen it later on, the break point will be there.

There are two ways to eliminate a persistent break point:
• If you are through with it, just remove it by clicking on the red bullet—the break point
disappears.
• If you are not totally through with it, you may want to keep the break point. You can
temporarily disable the break point by editing it. This explained in the section Break
Points.

See Also
Break Points, Call Chain Pane, Custom Watch Pane, Debugger, Watch Pane.

400 4th Dimension Language Reference

Break Points Debugging

version 6.0
__

As explained in the Source Code pane section, you set a break point by clicking in the left
margin of the Source Code pane at the same level as the line of code on which you want
to break. In the following figure, a break point has been set on the line
If($vrResult>=$vrLimitValue):

If you click again on the red bullet, the break point is deleted.

Editing a Break Point
__

Pressing Alt-click (Windows) or Option-click (Macintosh) in the left margin of the source
code pane, for a line of code, gives you access to the Break Point Properties window.

• If you click on an existing break point, the window is displayed for that break point.
• If you click on a line where no break point was set, the debugger creates one and
displays the window for the newly created break point.

The Break Point Properties window is shown here:

4th Dimension Language Reference 401

Here are the properties:

Location: This tells you the name of the method and the line number where the break
point is set. You cannot change this information.

Type: By default, the debugger lets you create persistent break points, depicted by a red
bullet in the source code pane of the debugger window. To create a temporary break
point, select the Temporary option. A temporary break point is useful when you want to
break just once in a method. A temporary break point is identified by a green bullet in the
source code pane of the Debugger window. Note: You can also set a temporary break
point directly in the source code pane by clicking in the left margin while pressing
ALT+Shift (Windows) or Option+Shift (Macintosh).

Break when following expression is true: You can create conditional break points by
entering a 4D formula that returns True or False. For example, if you want to break at a
line only when Records in selection([aTable])=0, enter this formula, and the break will
occur only if there no record selected for the table [aTable], when the debugger
encounters the line with this break point. If you are not sure about the syntax of your
formula, click the Check Syntax button.

Number of times to skip before breaking: You can set a break point to a line of code
located in a loop structure (While, Repeat, or For) or located in subroutine or function
called from within a loop. For example, you know that the “problem” you are tracking
does not occur before at least the 200th iteration of the loop. Enter 200, and the break
point will activate at the 201st iteration.

Break Point is disabled: If you currently do not need a persistent break point, but you
may need it later, you can temporarily disable the break point by editing it. A disabled
break point appears as a dash (-) instead of a bullet (•) in the source code pane of the
debugger window and in the Break List window.

You create and edit break point from within the Debugger window. You can also edit
existing break points using the Design environment Break List window. For more
information, see the section Break List window.

See Also
Break List Window, Debugger, Source Code Pane.

402 4th Dimension Language Reference

Break List Window Debugging

version 6.0
__

The Break List window is a Design Environment window that enables you to:
• Manage the Break Points created in the Debugger Window.
• Add additional breaks to your code by catching calls to 4D commands.

To open the Break List window:

1. Switch to the Design environment if you are not already there.

2. Choose Break List from the Tools menu.

The Break List window appears.

4th Dimension Language Reference 403

Note that when the Break List window is the frontmost window of the Design
environment, the Break List menu appears in the main menu bar:

The Break List window has two panes, each composed of two columns:

• The top pane lists the commands to be caught during execution. The left column
displays the Enable/Disable status of the caught command, followed by the name of the
command. The right column displays the condition associated with the caught
command, if any.

• The lower pane shows the persistent Break Points. The left column displays the
Enable/Disable status of the break point, followed by the name of the method and the
line number where the break point has been set (using the Debugger window). The right
column displays the condition associated with the break point, if any.

3. To select a pane as the active pane of the window, click somewhere in the pane or use
the Tab key.

Catching Commands
__

Catching a command enables you to start tracing the execution of any process as soon as
a command is called by that process. Unlike a break point, which is located in a particular
project method (and therefore triggers a trace exception only when it is reached), the
scope of catching a command includes all the processes that execute 4D code and call that
command.

Catching a command is a convenient way to trace large portions of code without setting
break points at arbitrary locations. For example, if a record that should not be deleted is
deleted after you have executed one or several processes, you can try to reduce the field of
your investigation by catching commands such as DELETE RECORD and DELETE
SELECTION. Each time these commands are called, you can check if the record in
question has been deleted, and thus isolate the faulty part of the code.

With some experience, you can combine the use of break points and command catching.

404 4th Dimension Language Reference

Adding a New Command to be Caught
To add a new command:

1. Choose Add New Catch from the Break List menu.
 OR
 Double-click the left mouse button in the Caught Commands list.

In both cases, a new entry is added to the list with the ALERT command as default.
The entry is set to the edit mode.

2. Enter the name of the command you want to catch.

3. Press Enter or Return to validate your choice.

4. Press the right mouse button (Control-Click on Macintosh) to display the speed menu:

4th Dimension Language Reference 405

5. Select Add New Catch, then select the desired command from the command themes
and names submenus. A new entry is added with the command you selected.

Editing the Name of a Caught Command
To edit the name of a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. To toggle an entry between edit mode and select mode, press Enter or Return.

3. Enter or modify the name of the command.

4. To validate your changes, press Enter or Return. If name you entered does not
correspond to an existing 4D command, the entry is set to its previous value. If the entry
is a new one, it is reset to ALERT.

Disabling/Enabling a Caught Command
To disable or enable a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch to select mode.

3. Choose Enable/Disable from the Break List menu or from the speed menu.

Shortcut: Each entry in the list may be disabled/enabled by clicking on the bullet (•). The
bullet changes to a dash (–) when disabled.
Deleting a Caught Command
To delete a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch to select mode.

3. Press the Delete key, choose Delete from the Break List menu or choose Delete from
the speed menu.

Note: To delete all the caught commands, choose Delete All from the Break List menu or
from the speed menu.

406 4th Dimension Language Reference

Setting a Condition for Catching a Command
To set a condition for catching a command:

1. Click on the entry in the right column.

2. Enter a 4D formula (expression, command call or project method) that returns a
Boolean value.

Note: To remove a condition, delete its formula.

Break Points
__

The Break Point pane displays only the persistent break points created in the Debugger
window. Unlike the Caught Commands pane, you cannot add a new persistent break
point from this pane. Persistent break points can only be created from within the
Debugger window.

Disabling/Enabling a Break Point
To disable or enable a break point:

1. Select the entry by clicking on it or by using the arrows to navigate through the list (if
the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch it to select mode.

3. Choose Enable/Disable from the Break List menu or from the speed menu.

Shortcut: Each entry in the list may be disabled/enabled by clicking directly on the bullet
(•). The bullet changes to a dash (–) when disabled.

Deleting a Break Point
To delete a break point:

1. Select the entry by clicking on it or by using the arrows to navigate through the list (if
the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch it to select mode.

3. Press the Delete key, choose Delete from the Break List menu or choose Delete from
the speed menu.

Note: To delete all the break points, choose Delete All from the Break List menu or from
the speed menu.

4th Dimension Language Reference 407

Setting a Condition for a Break Point
To set a condifition for a break point, proceed as follows:

1. Click on the entry in the right column

2. Enter a 4D formula (expression or command call or project method) that returns a
Boolean value.

Note: To remove a condition, delete its formula.

Tips
__

• Adding conditions to caught commands or break points slows the execution, because
the condition has to be evaluated each time an exception is met. On the other hand,
adding consitions accelerates the debugging process, because it automatically skips
occurrences that do not match the conditions.
• Disabling a caught command or break point has almost the same effect as deleting it.
During execution, the debugger spends almost no time on the entry. The advantage of
disabling an entry is that you do not have to recreate it when you need it again.

See Also
Break Points, Debugger, Source Code Pane, Why a Debugger?.

408 4th Dimension Language Reference

Debugger Shortcuts Debugging

version 6.0
__

This section lists all the shortcuts provided by the Debugger window.

Execution Control Tool Bar

® The following figure shows the shortcuts for the eight buttons located in the top left
corner of the Debugger Window:

® ALT+F5 (Windows) and Option-Command-R (Macintosh) resume the execution. Also,
they disable all the next TRACE calls for the current process.

Watch Pane

® Right mouse button click (Windows) or Control-Click (Macintosh) in the Watch pane
pulls down the Watch Speed menu.

® Double-click on an item of the Watch pane copies the item to the Custom Watch pane.

Call Chain Pane

® Double-Click on a method name in the Call chain pane displays the method in the
Source Code pane at the line corresponding to the call in the call chain.

Custom Watch Pane

® Right mouse button click (Windows) or Control-Click (Macintosh) in the Custom
Watch pane pulls down the Custom Watch Speed menu.

® Double-Click in the Custom Watch pane creates a new watch.

4th Dimension Language Reference 409

Source Code Pane

® Click in the left margin sets (persistent) or removes break points.

® ALT-Shift-Click (Windows) or Option-Shift Click (Macintosh) sets a temporary break
point.

® Alt-Click (Windows) or Option-Click displays the Edit Break window for a new or
existing break point.

® Click on an evaluable expression in the source code pane copies the expression or
object to the Custom Watch pane.

All Panes

® When no item is selected in any pane, typing Enter steps by one line.

® When an item value is selected, use the arrows keys to navigate through the list.

® When an item is being edited, use the arrow keys to move the cursor; use Ctrl-
A/X/C/V (Windows) or Command-A/X/C/V (Macintosh) as shortcuts to the Select
All/Cut/Copy/Paste menu commands of the Edit menu.

See Also
Call Chain Pane, Custom Watch Pane, Debugger, Source Code Pane, Watch Pane.

410 4th Dimension Language Reference

Tracing a Process not visible or not executing code Debugging

version 6.0
__

The Debugger's Step Into Process button allows you to trace a process at the moment
you start it using the command New Process.

You may also want to trace a process long after the process has been started.

If the process has at least one visible window and if it is the frontmost window, pressing
Alt+Click (Windows) or Option-Click (Macintosh) in that window starts the trace mode
for the process.

Using Alt+Click or Option+Click could prove quite difficult if the process:
• is executing code, but its windows are behind other windows and you do want to move
them around to access the process
• is executing code but does not have any user interface (no windows)
• is in data entry and waiting for an event (*)
• is currently paused (*)
• is currently delayed (*)

(*) means running but not executing code.

4D provides another convenient way to start tracing a process; this technique does not
require the process to be “visible” or to be executing code.

1. Switch to the Design environment if you are not already in it.

2. Choose Process List from the Tools menu.

4th Dimension Language Reference 411

3. This displays the Process List window shown. The Process List window displays the
processes that are currently running (whether or not they are executing).

4. Select the process that you want to trace, by clicking on it.

5. Choose Trace from the Process menu.

The interesting point here is that 4D “memorizes” the Trace request:
• If the process is currently executing code, the Debugger immediately appears for that
process.
• If the process is not currently executing code (i.e., the process is waiting for an event in
data entry mode), the Debugger will appear right after the process resumes executing the
code.

Tip: You may want to trace the object method for a button when you click on it.
Alt+Click (Windows) or Option-Click (Macintosh) may or may not work, depending on
the “speed” of the click. In this case, use the Trace menu command from the Process
menu. As soon as the object method starts, you'll get the Debugger. Otherwise, you can
also place a TRACE call in the method itself.

412 4th Dimension Language Reference

14 Drag and Drop

4th Dimension Language Reference 413

414 4th Dimension Language Reference

Drag and Drop Drag and Drop

version 6.0
__

Version 6 of 4th Dimension introduces built-in drag and drop capability between objects
in your forms. You can drag and drop one object to another, in the same window or in
another window. In other words, drag and drop can be performed within a process or
from one process to another.

Version 6.0 does not include built-in drag and drop to and from the desktop or another
application. However, this functionality is provided by plug-ins developed by
ACI Partners.

Note: As an introduction, we assume that a drag and drop action “transports” some data
from one point to another. Later, we will see that drag and drop can also be a metaphor
for an operation.

Dragable and Dropable Object Properties
__

To drag and drop an object to another object, you must select the Dragable property for
that object in the Object Properties window. In a drag and drop operation, the object that
you drag is the source object.

To make an object the destination of a drag and drop operation, you must select the
Dropable property for that object in the Object Properties window. In a drag and drop
operation, the object that receives data is the destination object.

By default, newly created objects can be neither dragged nor dropped. It is up to you to
set these properties.

All objects in an input or dialog form can be made to be dragged and dropped. Individual
elements of an array (i.e., scrollable area) or items of a hierarchical list can be dragged and
dropped. Conversely, you can drag and drop an object over an individual element of an
array or item of a hierarchical list. However, you cannot drag and drop objects from the
detail area of an output form.

You can easily create a drag and drop user interface, because 4D allows you to use any type
of active object (field or variable) as source or destination objects. For example, you can
drag and drop a button.

Note: An object that is capable of being both dragged and dropped can also be dropped
onto itself, unless you reject the operation. For details, see the discussion below.

4th Dimension Language Reference 415

The following figure shows the Object Properties window with the Dropable and Dragable
properties set for the selected objects:

Drag and Drop User Interface Handling
__

4th Dimension insures the user interface part of the drag and drop capability. If you click
on a dragable object and then drag the mouse, 4D drags the object; it reflects this
operation on the screen with a dotted rectangle that follows the movements of the
mouse. In the following figure, a hierarchical list item is being dragged over a text field:

Note the reverse gray frame highlight around the text field area. The highlight indicates
the destination object (in this case, the text field). If you release the mouse button at this
point, 4D assumes that you want to drop the dragged object onto the highlighted
destination object.

416 4th Dimension Language Reference

In the Database Properties dialog box, you can set the drag and drop highlight of the
destination object to be a frame or a pattern (or both):

The default highlight is Frame. It is a rectangular, gray, reverse highlight around the
object. If you use colored background or object frames, using this highlight may be
confusing. You can alternatively use the Pattern highlight, which fills the destination
object with a diagonal lines pattern, as shown.

Here a hierarchical list item is dragged over a text field:

4th Dimension Language Reference 417

Here an array element is dragged over its array:

You can also choose both types of highlight.

Note: The highlight of the destination object “follows” elements or items when the
destination object is an array (scrollable area) or a hierarchical list.

Drag and Drop Programmatical Handling
__

4th Dimension performs the user interface part of a drag and drop—it is up to you to
perform the programmatical part. To enable you to do so, 4D provides you with two form
events: On Drag Over and On Drop. Both events are sent to the destination object. During
a drag and drop operation, the object method of the source object is never involved.

In order to accept On Drag Over and On Drop, the destination object must have these two
events activated in the Object Properties window, as shown here:

418 4th Dimension Language Reference

On Drag Over
The On Drag Over event is repeatedly sent to the destination object when the mouse
pointer is moved over the object. In response to this event, you usually:

• Call the DRAG AND DROP PROPERTIES command, which informs you about the source
object.
• Depending on the nature and type of both the destination object (whose object method
is currently being executed) and the source object, you accept or reject the drag and
drop.

To accept the drag, the destination object method must return 0 (zero), so you write
$0:=0. To reject the drag, the object method must return -1 (minus one), so you write
$0:=-1. During an On Drag Over event, 4D treats the object method as a function. If no
result is returned, 4D assumes that the drag is accepted.

If you accept the drag, the destination object is highlighted. If you reject the drag, the
destination is not highlighted. Accepting the drag does not mean that the dragged data is
going to be inserted into the destination object. It only means that if the mouse button
was released at this point, the destination object would accept the dragged data.

If you do not process the On Drag Over event for a dropable object, that object will be
highlighted for all drag over operations, no matter what the nature and type of the
dragged data.

The On Drag Over event is the means by which you control the first phase of a drag and
drop operation. Not only can you test if the dragged data is of a type compatible with the
destination object, and then accept or reject the drag; you can simultaneously notify the
user of this fact, because 4D highlights (or not) the destination object, based on your
decision.

The code handling an On Drag Over event should be short and execute quickly, because
that event is sent repeatedly to the current destination object, due to the movements of
the mouse.

WARNING: If the drag and drop is an interprocess drag and drop, which means the source
object is located in a process (window) other than that of the destination object, the
object method of the destination object for an On Drag Over event is executed within the
context of the source process (the source object's process), and not in the process of the
destination object. This is the only case in which such an execution occurs. The
advantages of this type of execution are described at the end of this section.

4th Dimension Language Reference 419

On Drop
The On Drop event is sent once to the destination object when the mouse pointer is
released over the object. This event is the second phase of the drag and drop operation, in
which you perform an operation in response to the user action.

This event is not sent to the object if the drag was not accepted during the On Drag Over
events. If you process the On Drag Over event for an object and reject a drag, the On Drop
event does not occur. Thus, if during the On Drag Over event you have tested the data
type compatibility between the source and destination objects and have accepted a
possible drop, you do not need to re-test the data during the On Drop. You already know
that the data is suitable for the destination object.

An interesting aspect of the 4D drag and drop implementation is that 4D lets you do
whatever you want. Examples:

• If a hierarchical list item is dropped over a text field, you can insert the text of the list
item at the beginning, at the end, or in the middle of the text field.
• Your form contains a two-state picture button, which could represent an empty or full
trash can. Dropping an object onto that button could mean (from the user interface
standpoint) “delete the object that has been dragged and dropped into the trash can.”
Here, the drag and drop does not transport data from one point to another; instead, it
performs an action.
• Dragging an array element from a floating window to an object in a form could mean
“in this window, show the Customer record whose name you just dragged and dropped
from the floating window listing the Customers stored in the database.”
• And so on.

So, the 4D drag and drop interface is a framework which enables you to implement any
user interface metaphor you may devise.

Drag and drop commands
__

The DRAG AND DROP PROPERTIES command returns:
• a pointer to the dragged object (field or variable)
• the element or item number, if the dragged object is an array element or a list item
• the process number of the source process

The Drop position command returns the element number of the item position of the
target element or list item, if the destination object is an array (i.e., scrollable area) or a
hierarchical list,

Commands like RESOLVE POINTER and Type are useful for testing the nature and type of
the source object.

420 4th Dimension Language Reference

When the drag and drop operation is intended to copy the dragged data, the
functionality of these commands depend on how many processes are involved:
• If the drag and drop is limited to one process, use these commands to perform the
appropriate actions (i.e., simply assigning the source object to the destination object).
• If the drag and drop is an interprocess drag and drop, you need to be careful while
getting access to the dragged data; you must access the data instance from the source
process. If the dragged data comes from a variable, use GET PROCESS VARIABLE to get the
right value. If the dragged data comes from a field, remember that the current record for
a table is probably different for the two processes, so you need to access the right record.

In this last case, several solutions are available:
• If the On Drag Over event for the destination object method is executed in the context
of the source process, you can copy the field data or the record number to an interprocess
variable that will be reused during the On Drop event.
• You can get the required data by starting an interprocess communication during the On
Drop event.

If the drag and drop is not intended to move data, but is instead a user interface
metaphor for a particular operation, you can perform whatever you want.

See Also
DRAG AND DROP PROPERTIES, Drop position, Form event, GET PROCESS VARIABLE, Is a list,
RESOLVE POINTER, Type.

4th Dimension Language Reference 421

Drop position Drag and Drop

version 6.0
__

Drop position ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Destination element number or item position,
or -1 if drop occurred beyond
the last array element or list item

Description
The command Drop position returns the array element number or list item position onto
which an object has been dragged and dropped.

Typically, you will use Drop position while handling a drag and drop event that occurred
over an array or a hierarchical list.

If the destination object is an array, the command returns an element number. If the
destination object is a hierarchical list, the command returns an item position. In both
cases, the command may return -1 if the source object has been dropped beyond the last
element or the last item.

If you call Drop position while handling an event that is not a drag and drop event and
that occurred over an array or a hierarchical list, the command returns -1.

Important: A form object accepts dropped data if its Dropable property has been selected.
Also, its object method must be activated for On Drag Over and/or On Drop, in order to
process these events.

Example
See examples for the command DRAG AND DROP PROPERTIES.

See Also
Drag and drop, DRAG AND DROP PROPERTIES.

422 4th Dimension Language Reference

DRAG AND DROP PROPERTIES Drag and Drop

version 6.0
__

DRAG AND DROP PROPERTIES (srcObject; srcElement; srcProcess)

Parameter Type Description
srcObject Pointer ¬ Pointer to drag and drop source object
srcElement Number ¬ Dragged array element number, or

Dragged hierarchical list item, or
-1 if source object is neither an array nor a list

srcProcess Number ¬ Source process number

Description
The command DRAG AND DROP PROPERTIES enables you to obtain the information
about the source object when an On Drag Over or On Drop event occurs for an object.

Typically, you use DRAG AND DROP PROPERTIES from within the object method of the
object (or from one of the subroutines it calls) for which the On Drag Over or On Drop
event occurs (the destination object).

Important: A form object accepts dropped data if its Dropable property has been selected.
Also, its object method must be activated for On Drag Over and/or On Drop, in order to
process these events.

After the call:
• The parameter srcObject is a pointer to the source object (the object that has been
dragged and dropped). Note that this object can be the destination object (the object for
which the On Drag Over or On Drop event occurs) or a different object. Dragging and
dropping data from and to the same object is useful for arrays and hierarchical lists—it is a
simple way of allowing the user to sort an array or a list manually.
• If the dragged and dropped data is an array element (an element of the source object
being an array), the parameter srcElement returns the number of that element.
Otherwise, if the drag and dropped data is a list item (an item of the source object being a
hierarchical list), the parameter srcElement returns the position of that item. Otherwise, if
the source object is neither an array nor a hierarchical list, srcElement is equal to -1.
• Drag and drop operations can occur between processes. The parameter srcProcess is equal
to the number process to which the source object belongs. It is important to test the
value of this parameter. You can respond to a drag and drop within the same process by
simply copying the source data to the destination object. On the other hand, while
treating an interprocess drag and drop, you will use the command GET PROCESS VARIABLE
to get the source data from the source process object instance. If the source object is a
field, you must get the value from the source process via interprocess communication or
handle that particular case while responding to the On Drag Over event (see below).

4th Dimension Language Reference 423

However, you will usually implement drag and drop user interface from source variables
(i.e., arrays and lists) toward data entry areas (fields or variables).

If you call DRAG AND DROP PROPERTIES while there is no drag and drop event, srcObject
returns a NIL pointer, srcElement returns -1 and srcProcess returns 0.

Tip: 4th Dimension automatically handles the graphical aspect of a drag and drop. You
must then respon to the event in the appropriate way. In the following examples, the
response is to copy the data that has been dragged. Alternatively, you can implement
sophisticated user interfaces where, for example, dragging and dropping an array element
from a floating window will fill in the destination window (the window where the
destination object is located) with structured data (i.e., several fields coming from a record
uniquely identified by the source array element).

You use DRAG AND DROP PROPERTIES during an On Drag Over event in order to decide
whether the destination object accepts the drag and drop operation, depending on the
type and/or the nature of the source object (or any other reason). If you accept the drag
and drop, the object method must return $0:=0. If you do not accept the drag and drop,
the object method must return $0:=-1. Accepting or refusing the drag and drop is
reflected at the screen—the object is or is not highlighted as the potential destination of
the drag and drop operation.

Tip: During an On Drag Over event, the object method of the destination object is
executed within the context of the source object’s process. If the source object of an
interprocess drag and drop is a field, you can use the opportunity of this event to copy
the source data into an interprocess variable. In doing so, then later on, during the On
Drop event, you will not have to initiate an interprocess communication with the source
process in order to get the value of the field that was dragged. If an interprocess drag and
drop involves a variable as source object, you can use the GET PROCESS VARIABLE
command during the On Drop event.

Examples
1. In several of your database forms, there are scrollable areas in which you want to
manually reorder the elements by simple drag and drop from one part of the scrollable
area into another within it. Rather than writing specific code for each case, you may
implement a generic project method that will handle any one of these scrollable areas.
You could write something like:

` Handle self array drag and drop project method
` Handle self array drag and drop (Pointer) -> Boolean
` Handle self array drag and drop (-> Array) -> Was a self array drag and drop

Case of
: (Form event=On Drag Over)

DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)
If ($vpSrcObj=$1)

424 4th Dimension Language Reference

` Accept the drag and drop if it is from the array to itself
$0:=0

Else
$0:=-1

End if
: (Form event=On Drop)

` Get the information about the drag and drop source object
DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)

` Get the destination element number
$vlDstElem:=Drop position

` If the element was not dropped over itself
If ($vlDstElem # $vlSrcElem)

` Save dragged element in element 0 of the array
$1->{0}:=$1->{$vlSrcElem}

` Delete the dragged element
DELETE ELEMENT($1->;$vlSrcElem)

` If the destination element was beyond the dragged element
If ($vlDstElem>$vlSrcElem)

` Decrement the destination element number
$vlDstElem:=$vlDstElem-1

End if
` If the drag and drop occured beyond the last element

If ($vlDstElem=-1)
` Set the destination element number to a new element
` at the end of the array

$vlDstElem:=Size of array($1->)+1
End if

` Insert this new element
INSERT ELEMENT($1->;$vlDstElem)

` Set its value which was previously saved in the element zero of the array
$1->{$vlDstElem}:=$1->{0}

` The element becomes the new selected element of the array
$1->:=$vlDstElem

End if
End case

Once you have implemented this project method, you can use it in the following way:

` anArray Scrollable Area Object Method

Case of
`...

: (Form event=On Drag Over)
$0:=Handle self array drag and drop (Self)

: (Form event=On Drop)
Handle self array drag and drop (Self)

` ...
End case

4th Dimension Language Reference 425

2. In several of your database forms, you have text enterable areas in which you want to
drag and drop data from various sources. Rather than writing specific code for each case,
you may implement a generic project method that will handle any one of these text
enterable areas. You could write something like:

` Handle dropping to text area project method
` Handle dropping to text area (Pointer)
` Handle dropping to text area (-> Text or String variable)

Case of
` Use this event for accepting or rejecting the drag and drop

: (Form event=On Drag Over)
` Initialize $0 for rejecting

$0:=-1
` Get the information about the drag and drop source object

DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)
` In this example, we do not allow drag and drop from an object to itself

If ($vpSrcObj # $1)
` Get the type of the data which is being dragged

$vlSrcType:=Type($vpSrcObj->)
Case of

: ($vlSrcType=Is Alpha Field)
` Alphanumeric Field is OK

$0:=0
` Copy the value now into an IP variable

<>vtDraggedData:=$vpSrcObj->
: ($vlSrcType=Is Text)

` Text Field or Variable is OK
$0:=0
RESOLVE POINTER($vpSrcObj;$vsVarName;$vlTableNum;$vlFieldNum)

` If it is a field
If (($vlTableNum>0) & ($vlFieldNum>0))

` Copy the value now into an IP variable
<>vtDraggedData:=$vpSrcObj->

End if
: ($vlSrcType=Is String Var)

` String Variable is OK
$0:=0

: (($vlSrcType=String array) | ($vlSrcType=Text array))
` String and Text Arrays are OK

$0:=0
: (($vlSrcType=Is LongInt) | ($vlSrcType=Is Real)

If (Is a list($vpSrcObj->))
` Hierarchical list is OK

$0:=0
End if

End case
End if

426 4th Dimension Language Reference

` Use this event for performing the actual drag and drop action
: (Form event=On Drop)

$vtDraggedData:=""
` Get the information about the drag and drop source object

DRAG AND DROP PROPERTIES($vpSrcObj;$vlSrcElem;$vlPID)
RESOLVE POINTER($vpSrcObj;$vsVarName;$vlTableNum;$vlFieldNum)

` If it is field
If (($vlTableNum>0) & ($vlFieldNum>0))

` Just grab the IP variable set during the On Drag Over event
$vtDraggedData:=<>vtDraggedData

Else
` Get the type of the variable which has been dragged

$vlSrcType:=Type($vpSrcObj->)
Case of

` If it is an array
: (($vlSrcType=String array) | ($vlSrcType=Text array))

If ($vlPID # Current process)
` Read the element from the source process instance
` of the variable

GET PROCESS VARIABLE($vlPID;
$vpSrcObj->{$vlSrcElem};$vtDraggedData)

Else
` Copy the array element

$vtDraggedData:=$vpSrcObj->{$vlSrcElem}
End if

: (($vlSrcType=Is LongInt) | ($vlSrcType=Is Real)
` If it is a hierarcical list

If (Is a list($vpSrcObj->))
` If it is a list from another process

If ($vlPID # Current process)
` Get the List Reference from the other process

GET PROCESS VARIABLE($vlPID;$vpSrcObj->;$vlList)
Else

$vlList:=$vpSrcObj->
End if

` Get the text of the item whose position was obtained
GET LIST ITEM($vlList;$vlSrcElem;$vlItemRef;$vsItemText)
$vtDraggedData:=$vsItemText

End if
Else

` It is a string or a text variable
If ($vlPID # Current process)

GET PROCESS VARIABLE($vlPID;$vpSrcObj->;$vtDraggedData)
Else

$vtDraggedData:=$vpSrcObj->
End if

End case
End if

4th Dimension Language Reference 427

` If there is actually something to drop (the source object may be empty)
If ($vtDraggedData # "")

` Check that the length of the text variable will not exceed 32,000 char.
If ((Length($1->)+Length($vtDraggedData))<=32000)

$1->:=$1->+$vtDraggedData
Else

BEEP
ALERT("The drag and drop cannot be completed because

the text would become too long.")
End if

End if

End case

Once you have implemented this project method, you can use it in the following way:

` [anyTable]aTextField Object Method

Case of
 ` ...

: (Form event=On Drag Over)
$0:=Handle dropping to text area (Self)

: (Form event=On Drop)
Handle dropping to text area (Self)

 ` ...
End case

See Also
Drag and Drop, Drop position, Form event, GET PROCESS VARIABLE, Is a list, RESOLVE
POINTER.

428 4th Dimension Language Reference

15 Entry Control

4th Dimension Language Reference 429

430 4th Dimension Language Reference

ACCEPT Entry Control

version 3
__

ACCEPT

Parameter Type Description
This command does not require any parameters

Description
The command ACCEPT is used in form or object methods (or in subroutines) to:
• accept a new or modified record or subrecord, for which data entry has been initiated
using ADD RECORD, MODIFY RECORD, ADD SUBRECORD, or MODIFY SUBRECORD
• accept a form displayed with the DIALOG command
• exit a form displaying a selection of records, using DISPLAY SELECTION or MODIFY
SELECTION

ACCEPT performs the same action as if a user had pressed the Enter key. After the form is
accepted, the OK system variable is set to 1.

ACCEPT is commonly executed as a result of choosing a menu command. ACCEPT is also
commonly used in the object method of a “no action” button.

It is also often used in the optional close box method for the Open window command. If
there is a Control-menu box on a window, ACCEPT or CANCEL can be called, in the
method to be executed, when the Control-menu box is double-clicked or the Close menu
command is chosen.

ACCEPT cannot be queued up. In response to an event, executing two ACCEPT commands
in a row from within a method would have the same effect as executing one.

See Also
CANCEL.

4th Dimension Language Reference 431

CANCEL Entry Control

version 3
__

CANCEL

Parameter Type Description
This command does not require any parameters

Description
The command CANCEL is used in form or object methods (or in a subroutine) to:
• cancel a new or modified record or subrecord, for which data entry has been initiated
using ADD RECORD, MODIFY RECORD, ADD SUBRECORD, or MODIFY SUBRECORD.
• cancel a form displayed with the DIALOG command.
• exit a form displaying a selection of records, using DISPLAY SELECTION or MODIFY
SELECTION.

CANCEL performs the same action as if the user had pressed the cancel key combination
(Ctrl-Period on Windows, Command-Period on Macintosh). After the form is canceled,
the OK system variable is set to 0 (zero).

CANCEL is commonly executed as a result of a menu command being chosen. CANCEL is
also commonly used in the object method of a “no action” button.

It is also often used in the optional close box method for the Open window command. If
there is a Control-menu box on a window, ACCEPT or CANCEL can be called, in the
method to be executed, when the Control-menu box is double-clicked or the Close menu
command is chosen.

CANCEL cannot be queued up. Executing two CANCEL commands in a row from within a
method in response to an event would have the same effect as executing one.

See Also
ACCEPT.

432 4th Dimension Language Reference

Keystroke Entry Control

version 6.0
__

Keystroke ® string

Parameter Type Description
This command does not require any parameters

Function result string ¬ character entered by user

Description
Keystroke returns the character entered by the user into a field or an enterable area.

Usually, you will call Keystroke within a form or object method while handling an On
Keystroke event form. To detect keystroke events, use the command Form event.

To replace the character actually entered by the user with another character, use the
command FILTER KEYSTROKE.

IMPORTANT NOTE: If you want to perform some “on the fly” operations depending on
the current value of the enterable area being edited, as well as the new character to be
entered, remember that the text you see on screen is NOT YET the value of the data
source field or variable for the area being edited. The data source field or variable is
assigned the entered value after the data entry for the area is validated (e.g., tabulation to
another area, click on a button, and so on). It is therefore up to you to “shadow” the data
entry into a variable and then to work with this shadow value. You must do so if you
need to know the current text value for executing any particular actions.

You will use the command Keystroke for:
• Filtering characters in a customized way
• Filtering data entry in a way that you cannot produce using data entry filters
• Implement dynamic lookup or type-ahead areas

Examples
1. See examples for the command FILTER KEYSTROKE.

2. When you process an On Keystroke event, you are dealing with the editing of the
current text area (the one where the cursor is), not with the “future value” of the data
source (field or variable) for this area. The Handle keystroke project method allows to
shadow any text area data entry into a second variable, which you can use to perform the
actions while entering characters into the area. You pass a pointer to the area’s data source
as the first parameter and a pointer to the shadow variable as second parameter. The
method returns the new value of the text area in the shadow variable, and returns True if
the value is different from it what was before the last entered character was inserted.

4th Dimension Language Reference 433

` Handle keystroke project method
` Handle keystroke (Pointer ; Pointer) -> Boolean
` Handle keystroke (-> srcArea ; -> curValue) -> Is new value

C_POINTER ($1;$2)
C_TEXT ($vtNewValue)

` Get the text selection range within the enterable area
GET HIGHLIGHT ($1->;$vlStart;$vlEnd)

` Start working with the current value
$vtNewValue:=$2->

` Depending on the key pressed or the character entered,
` Perform the appropriate actions

Case of

` The Backspace (Delete) key has been pressed
Þ : (Ascii (Keystroke)=Backspace)

` Delete the selected characters or the character at the left of the text cursor
$vtNewValue:=Substring ($vtNewValue;1;$vlStart-1-Num($vlStart=$vlEnd))

+Substring($vtNewValue;$vlEnd)

` An acceptable character has been entered
Þ : (Position (Keystroke;"abcdefghjiklmnopqrstuvwxyz -0123456789")>0)

If ($vlStart#$vlEnd)
` One or several characters are selected,
` the keystroke is going to override them

Þ $vtNewValue:=Substring($vtNewValue;1;$vlStart-1)
+Keystroke+Substring($vtNewValue;$vlEnd)

Else
` The text selection is the text cursor

Case of
` The text cursor is currently at the begining of the text

: ($vlStart<=1)
` Insert the character at the begining of the text

Þ $vtNewValue:=Keystroke+$vtNewValue
` The text cursor is currently at the end of the text

: ($vlStart>=Length($vtNewValue))
` Append the character at the end of the text

Þ $vtNewValue:=$vtNewValue+Keystroke
Else

` The text cursor is somewhere in the text, insert the new character
Þ $vtNewValue:=Substring($vtNewValue;1;$vlStart-1)

+Keystroke+Substring($vtNewValue;$vlStart)
End case

End if

434 4th Dimension Language Reference

` An Arrow key has been pressed
` Do nothing, but accept the keystroke

Þ : (Ascii(Keystroke)=Left Arrow Key)
Þ : (Ascii(Keystroke)=Right Arrow Key)
Þ : (Ascii(Keystroke)=Up Arrow Key)
Þ : (Ascii(Keystroke)=Down Arrow Key)

`
Else

` Do not accept characters other than letters, digits, space and dash
FILTER KEYSTROKE ("")

End case
` Is the value now different?

$0:=($vtNewValue#$2->)
` Return the value for the next keystroke handling

$2->:=$vtNewValue

After this project method is added to your application, you can use it as follows:
` myObject enterable area object method

Case of
: (Form event=On Load)

MyObject:=""
MyShadowObject:=""

: (Form event=On Keystroke)
If (Handle keystroke (->MyObject;->MyShadowObject))

` Perform appropriate actions using the value stored in MyShadowObject
End if

End case

Let’s examine the following part of a form:

4th Dimension Language Reference 435

It is composed of the following objects: an enterable area vsLookup, a non-enterable area
vsMessage, and a scrollable area asLookup. While entering characters in vsLookup, the
method for that object performs a query on a [US Zip Codes] table, allowing the user to
find US cities by typing only the first characters of the city names.

The vsLookup object method is listed here:
` vsLookup enterable area object method

Case of
: (Form event=On Load)

vsLookup:=""
vsResult:=""
vsMessage:="Enter the first characters of the city you are looking for."
CLEAR VARIABLE(asLookup)

: (Form event=On Keystroke)
If (Handle keystroke (->vsLookup;->vsResult))

If (vsResult#"")
QUERY([US Zip Codes];[US Zip Codes]City=vsResult+"@")
MESSAGES OFF
DISTINCT VALUES([US Zip Codes]City;asLookup)
MESSAGES ON
$vlResult:=Size of array(asLookup)
Case of

: ($vlResult=0)
vsMessage:="No city found."

: ($vlResult=1)
vsMessage:="One city found."

Else
vsMessage:=String($vlResult)+" cities found."

End case
Else

DELETE ELEMENT(asLookup;1;Size of array(asLookup))
vsMessage:="Enter the first characters of the city you are looking for."

End if
End if

End case

436 4th Dimension Language Reference

Here is the form in the User environment:

Using the interprocess communication capabilities of 4th Dimension, you can similarily
build user interfaces in which Lookup features are provided in floating windows that
communicate with processes in which records are listed or edited.

See Also
FILTER KEYSTROKE, Form event.

4th Dimension Language Reference 437

FILTER KEYSTROKE Entry Control

version 6.0
__

FILTER KEYSTROKE (filteredChar)

Parameter Type Description
filteredChar String ® Filtered keystroke character or

Empty string to cancel the keystroke

Description
FILTER KEYSTROKE enables you to replace the character entered by the user into a field or
an enterable area with the first character of the string filteredChar you pass.

If you pass an empty string, the keystroke is cancelled and ignored.

Usually, you will call FILTER KEYSTROKE within a form or object method while handling
an On Keystroke form event. To detect keystroke events, use the command Form event. To
obtain the actual keystroke, use the command Keystroke.

IMPORTANT NOTE: The command FILTER KEYSTROKE allows you to cancel or replace the
character entered by the user with another character. On the other hand, if you want to
insert more than one character for a specific keystroke, remember that the text you see
on the screen is NOT YET the value of the data source field or variable for the area being
edited. The data source field or variable is assigned the entered value after the data entry
for the area is validated. It is therefore up to you to “shadow” the data entry into a
variable and then to work with this shadow value and reassign the enterable area (see the
example in this section).

You will use the command FILTER KEYSTROKE for:
• Filtering characters in a customized way
• Filtering data entry in a way that you cannot produce using data entry filters
• Implement dynamic lookup or type-ahead areas

WARNING: If you call the command Keystroke after calling FILTER KEYSTROKE, the
character you pass to this command is returned instead of the character actually entered.

438 4th Dimension Language Reference

Examples
1. Using the following code:

` myObject enterable area object method
Case of

: (Form event=On Load)
myObject:=""
: (Form event=On Keystroke)

If(Position(Keystroke;"0123456789")>0)
Þ FILTER KEYSTROKE("*")

End if
End case

All the digits entered in the area myObject are transformed into star characters.

2. This code implements the behavior of a Password enterable area in which all the
entered characters are replaced (on the screen) by random characters:

` vsPassword enterable area object method
Case of

: (Form event=On Load)
vsPassword:=""
vsActualPassword:=""

: (Form event=On Keystroke)
Handle keystroke (->vsPassword;->vsActualPassword)
If (Position(Keystroke;Char(Backspace)+Char(Left Arrow Key)+

Char(Right Arrow Key)+Char(Up Arrow Key)+Char(Down Arrow Key))=0)
Þ FILTER KEYSTROKE(Char(65+(Random%26)))

End if
End case

After the data entry is validated, you retrieve the actual password entered by the user in
the variable vsActualPassword. Note: The method Handle keystroke is listed in the Example
section for the command Keystroke.

3. In your application, you have some text areas into which you can enter a few
sentences. Your application also includes a dictionary table of terms commonly used
throughout your database. While editing your text areas, you would like to be able to
quickly retrieve and insert dictionary entries based on the selected characters in a text
area. You have two ways to do this:
 - Provide some buttons with associated keys, or
 - Intercept special keystrokes during the editing of the text area

This example implements the second solution, based on the Help key.

4th Dimension Language Reference 439

As explained above, during the editing of the text area, the data source for this area will
be assigned the entered value after you validate the data entry. In order to retrieve and
insert dictionary entries into the text area while this area is being edited, you therefore
need to shadow the data entry. You pass pointers to the enterable area and the shadow
variable as the first two parameters, and you pass a string of the “forbidden” characters as
the third parameter. No matter how the keystroke will be treated, the method returns the
original keystroke. The “forbidden” characters are those that you do not want to be
inserted into the enterable area and you want to treat as special characters.

` Shadow keystroke project method
` Shadow keystroke (Pointer ; Pointer ; String) -> String
` Shadow keystroke (-> srcArea ; -> curValue ; Filter) -> Old keystroke

C_STRING(1;$0)
C_POINTER($1;$2)
C_TEXT($vtNewValue)
C_STRING(255;$3)

` Return the original keystroke
$0:=Keystroke

` Get the text selection range within the enterable area
GET HIGHLIGHT($1->;$vlStart;$vlEnd)

` Start working with the current value
$vtNewValue:=$2->

` Depending on the key pressed or the character entered,
` Perform the appropriate actions

Case of
` The Backspace (Delete) key has been pressed

: (Ascii($0)=Backspace)
` Delete the selected characters or the character at the left of the text cursor

$vtNewValue:=Delete text ($vtNewValue;$vlStart;$vlEnd)
` An Arrow key has been pressed
` Do nothing, but accept the keystroke

: (Ascii($0)=Left Arrow Key)
: (Ascii($0)=Right Arrow Key)
: (Ascii($0)=Up Arrow Key)
: (Ascii($0)=Down Arrow Key)

` An acceptable character has been entered
: (Position($0;$3)=0)

$vtNewValue:=Insert text ($vtNewValue;$vlStart;$vlEnd;$0)
Else

` The character is not accepted
Þ FILTER KEYSTROKE("")

End case
` Return the value for the next keystroke handling

$2->:=$vtNewValue

440 4th Dimension Language Reference

This method uses the two following submethods:
` Delete text project method
` Delete text (String ; Long ; Long) -> String
` Delete text (-> Text ; SelStart ; SelEnd) -> New text

C_TEXT($0;$1)
C_LONGINT($2;$3)
$0:=Substring($1;1;$2-1-Num($2=$3))+Substring($1;$3)

` Insert text project method
` Insert text (String ; Long ; Long ; String) -> String
` Insert text (-> srcText ; SelStart ; SelEnd ; Text to insert) -> New text

C_TEXT($0;$1;$4)
C_LONGINT($2;$3)
$0:=$1
If ($2#$3)

$0:=Substring($0;1;$2-1)+$4+Substring($0;$3)
Else

Case of
: ($2<=1)

$0:=$4+$0
: ($2>Length($0))

$0:=$0+$4
Else

$0:=Substring($0;1;$2-1)+$4+Substring($0;$2)
End case

End if

After you have added these project methods to your project, you can use them in this
way:

` vsDescription enterable area object method
Case of

: (Form event=On Load)
vsDescription:=""
vsShadowDescription:=""

` Establish the list of the “forbidden” characters to be treated as special keys
` (here, in this example, only the Help Key is filtered)

vsSpecialKeys:=Char(HelpKey)
: (Form event=On Keystroke)

$vsKey:=Shadow keystroke (->vsDescription;->vsShadowDescription;vsSpecialKeys)
Case of

: (Ascii($vsKey)=Help Key)
 ` Do something when the Help key is pressed

` Here, in this example, a Dictionary entry must be searched and inserted
 LOOKUP DICTIONARY (->vsDescription;->vsShadowDescription)

End case
End case

4th Dimension Language Reference 441

The LOOKUP DICTIONARY project method is listed below. Its purpose is to use the shadow
variable for reassigning the enterable area being edited:

` LOOKUP DICTIONARY project method
` LOOKUP DICTIONARY (Pointer ; Pointer)
` LOOKUP DICTIONARY (-> Enterable Area ; ->ShadowVariable)

C_POINTER($1;$2)
C_LONGINT($vlStart;$vlEnd)

` Get the text selection range within the enterable area
GET HIGHLIGHT($1->;$vlStart;$vlEnd)

` Get the selected text or the word on the left of the text cursor
$vtHighlightedText:=Get highlighted text ($2->;$vlStart;$vlEnd)

` Is there something to look for?
If ($vtHighlightedText#"")

` If the text selection was the text cursor,
` the selection now starts at the word preceeding the text cursor

If ($vlStart=$vlEnd)
$vlStart:=$vlStart-Length($vtHighlightedText)

End if
` Look for the first avaliable dictionary entry

QUERY([Dictionary];[Dictionary]Entry=$vtHighlightedText+"@")
` Is there one?

If (Records in selection([Dictionary])>0)
` If so, insert it in the shadow text

$2->:=Insert text ($2->;$vlStart;$vlEnd;[Dictionary]Entry)
` Copy the shadow text to the enterable being edited

$1->:=$2->
` Set the selection just after the insert dictionary entry

$vlEnd:=$vlStart+Length([Dictionary]Entry)
HIGHLIGHT TEXT(vsComments;$vlEnd;$vlEnd)

Else
` There is no corresponding entry in the Dictionary

BEEP
End if

Else
` There is no highlighted text

BEEP
End if

442 4th Dimension Language Reference

The Get highlighted text method is listed here:

` Get highlighted text project method
` Get highlighted text (String ; Long ; Long) -> String
` Get highlighted text (Text ; SelStart ; SelEnd) -> highlighted text

C_TEXT($0;$1)
C_LONGINT($2;$3)
If ($2<$3)

$0:=Substring($1;$2;$3-$2)
Else

$0:=""
$2:=$2-1
Repeat

If ($2>0)
If (Position($1[[$2]];" ,.!?:;()-_–—")=0)

$0:=$1[[$2]]+$0
$2:=$2-1

Else
$2:=0

End if
End if

Until ($2=0)
End if

See Also
Form event, Keystroke.

4th Dimension Language Reference 443

GOTO AREA Entry Control

version 3
__

GOTO AREA (area)

Parameter Type Description
area Field | Variable ® Enterable field or variable to go to

Description
The command GOTO AREA is used to select the data entry area area as the active area of
the form. It is equivalent to the user’s clicking on or tabbing into the field or variable.

Note: This command has no effect on data entry areas located in subform List forms.

Example
See the example for the command REJECT.

See Also
REJECT.

444 4th Dimension Language Reference

REJECT Entry Control

version 3
__

REJECT {(field)}

Parameter Type Description
field Field ® Field to reject

Description
REJECT has two forms. The first form has no parameters. It rejects the entire data entry
and forces the user to stay in the form. The second form rejects only the field and forces
the user to stay in the field.

Note: You should consider the built-in data validation tools before using this command.

The first form of REJECT prevents the user from accepting a record that is not complete.
You can achieve the same result without using REJECT—you associate the Enter key with a
No Action button and use the ACCEPT and CANCEL commands to accept or cancel the
record, after the fields have been entered correctly. It is recommended that you use this
second technique and do not use the first form of REJECT.

If you use the first form, you execute REJECT to prevent the user from accepting a record,
usually because the record is not complete or has inaccurate entries. If the user tries to
accept the record, executing REJECT prevents the record from being accepted; the record
remains displayed in the form. The user must continue with data entry until the record is
acceptable, or cancel the record.

The best place to put this form of REJECT is in the object method of an Accept button
associated with the Enter key. This way, validation occurs only when the record is
accepted, and the user cannot bypass the validation by pressing the Enter key.

The second form of REJECT is executed with the field parameter. The cursor stays in the
field area. This form of REJECT forces the user to enter a correct value. It must be used
immediately following a modification to the field. You can test for modification by using
the Modified function. You can also use REJECT in the object method for the data entry
area. This command has no effect on fields in subform areas.

You must put either form of the REJECT command in the form method or object method
for the form that is being modified. If you are using REJECT for the subform’s Detail Form
for a table, put it in the form method or object method for the Detail Form.

You can use HIGHLIGHT TEXT to select the data in the field that is being rejected.

4th Dimension Language Reference 445

Examples
1. The following example is for a bank transaction record. It shows the first form of
REJECT being used in an Accept button object method. The Enter key is set as an
equivalent for the button. This means that even if the user presses the Enter key to accept
the record, the button’s object method will be executed. If the transaction is a check,
then there must be a check number. If there is no check number, the validation is
rejected:

Case of
` If it is a check with no number...

: (([Operation]Transaction="Check") & ([Operation]Check Number = ""))
ALERT ("Please fill in the check number.") ` Alert the user

Þ REJECT ` Reject the entry
GOTO AREA ([Operation]Check Number) ` Go to the check number field

End case

2. The following example is part of an object method for an [Employees]Salary field. The
object method tests the [Employees]Salary field and rejects the field if it is less than
$10,000. You could perform the same operation by specifying a minimum value for the
field in the form editor:

If ([Employees]Salary<10000)
ALERT ("Salary must be greater than $10,000")

Þ REJECT ([Employees]Salary)
End if

See Also
ACCEPT, CANCEL, GOTO AREA.

446 4th Dimension Language Reference

16 Form Events

4th Dimension Language Reference 447

448 4th Dimension Language Reference

Form event Form Events

version 6.0
__

Form event ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Form event number

Description
Form event returns a numeric value identifying the type of form event that has just
occurred. Usually, you will use Form event from within a form or object method.

4th Dimension provides the following predefined constants:

Constant Value Description
On Load 1 The form is about to be displayed or printed
On Unload 24 The form is about to be exited and released
On Validate 3 The record data entry has been validated
On Clicked 4 A click occurred on an object
On Double Clicked 13 A double click occurred on an object
On Keystroke 17 A character is about to be entered in the object that has

the focus
On Getting Focus 15 A form object is getting the focus
On Losing Focus 14 A form object is losing the focus
On Activate 11 The form’s window becomes the frontmost window
On Deactivate 12 The form’s window ceases to be the frontmost window
On Outside Call 10 The form received a CALL PROCESS call
On Drop 16 Data has been dropped onto an object
On Drag Over 21 Data could be dropped onto an object
On Menu Selected 18 A menu item has been chosen
On Data Change 20 Object Data has been modified
On External Area 19 An External object requested its object method to be

executed

4th Dimension Language Reference 449

On Header 5 The form’s header area is about to be printed or displayed
On Printing Details 23 The form’s details area is about to be printed
On Printing Break 6 One of the form’s break areas is about to be printed
On Printing Footer 7 The form’s footer area is about to be printed
On Close Box 22 The window’s close box has been clicked
On Display Detail 8 A record is about to be displayed in a list
On Open Detail 25 A record is double clicked and you are going to the input

form
On Close Detail 26 You left the input form and are going back to the output

form

Events and Methods
When a form event occurs, 4th Dimension performs the following actions:
• First, it browses the objects of the form and calls the object method for any object
(involved in the event) whose corresponding object event property has been selected.
• Second, it calls the form method if the corresponding form event property has been
selected.

Do not assume that the object methods, if any, will be invoked in a particular order. The
rule of thumb is that the object methods are always called before the form method. If an
object is a subform, the object methods of the subform’s list form are called, then the
form method of the list form is called. 4D then continues to call the object methods of
the parent form. In other words, when an object is a subform, 4D uses the same rule of
thumb for the object and form methods within the subform object.

Except for the On Load and On Unload events, if the form event property is not selected
for a given event, this does not prevent calls to the object methods for the objects whose
same event property is selected. In other words, enabling or disabling an event at the
form level has no effect on the object event properties.

450 4th Dimension Language Reference

The number of objects involved in an event depends on the nature of the event:
• On Load event - All the objects of the form (from any page) whose On Load object event
property is selected will have their object method invoked. Then, if the On Load form
event property is selected, the form will see its form method invoked.
• On Activate event - No object method will be invoked, because this event applies to the
form as a whole and not to a particular object. Consequently, if the On Activate form
event property is selected, only the form will see its form method invoked.
• On Drag Over event - Only the droppable object involved in the event will see its object
method invoked if its On Drag Over object event property is selected. The form method
will not be called.

WARNING: Unlike all other events, during an On Drag over event, the object method for
an object is executed in the context of the process of the drag and drop source object, not
in the context of the process of the drag and drop destination object. For more
information, see the commands DRAG AND DROP PROPERTIES and Drag and drop
position.

The following table summarizes how object and form methods are called for each event
type:

Event Object Methods Form Method Which Objects
On Load Yes Yes All objects
On Unload Yes Yes All objects
On Validate Yes Yes All objects
On Clicked Yes (if clickable) (*) Yes Involved object only
On Double Clicked Yes (if clickable) (*) Yes Involved object only
On Keystroke Yes (if keyboard enterable) (*) Yes Involved
object only
On Getting Focus Yes (if tabbable) (*) Yes Involved object only
On losing Focus Yes (if tabbable) (*) Yes Involved object only
On Activate Never Yes None
On Deactivate Never Yes None
On Outside Call Never Yes None
On Drop Yes (if droppable) (*) Yes Involved object only
On Drag Over Yes (if droppable) (*) Never Involved object only
On Menu Selected Never Yes None
On Data Change Yes (if modifiable) (*) Yes Involved object only

4th Dimension Language Reference 451

On External Area Yes Yes Involved object only
On Header Yes Yes All objects
On Printing Details Yes Yes All objects
On Printing Break Yes Yes All objects
On Printing Footer Yes Yes All objects
On Close Box Never Yes None
On Display Details Yes Yes All objects
On Open Details Never Yes None
On Close Details Never Yes None

 (*) For more infomation, see the section Events, Objects and Properties below.

IMPORTANT: Always keep in mind that, for any event, the method of a form or an object
is called if the corresponding event property is selected for the form or objects. The
benefit of disabling events in the Design environment (using the Form and Object
Properties windows) is that you can greatly reduce the number of calls to methods and
therefore significantly optimize the execution speed of your forms.

WARNING: The On Load and On Unload events are generated for objects if the events are
enabled for both objects and the form to which belong. If the events are enabled for
objects only, they will not occur; these two events must also be enabled at the form level.

Events, Objects and Properties
An object method is called if the event can actually occur for the object, depending on its
nature and properties. The following section details the events you will generally use to
handle the various types of objects.

Clickable Objects
Clickable objects are mainly handled using the mouse. They include:
• Boolean enterable fields or variables
• Picture fields or variables whose display format has been set to On Background
• Buttons, default buttons, radio buttons, check boxes, button grid
• 3DbButtons, 3D radio buttons, 3D check boxes
• Pop-up menus, hierarchical pop-up menus, picture menus
• Drop-down lists, menus/drop-down lists
• Scrollable areas, hierarchical lists

452 4th Dimension Language Reference

• Invisible buttons, highlight buttons, radio pictures
• Thermometers, rulers, dials (also known as slider objects)
• Tab controls

After the On Clicked and On Double Clicked object event properties are selected for one of
these objects, you can detect and handle the clicks within or on the object, using the
Form event command that returns On Clicked or On Double Clicked, depending on the
case.

For all these objects, the On Clicked event occurs once the mouse button is released.
However, there are two exceptions:
• Invisible buttons - The On Clicked event occurs as soon as the click is made and does not
wait for the mouse button to be released.
• Slider objects (thermometers, rulers, and dials) - If the display format indicates that the
object method must be called while you are sliding the control, the On Clicked event
occurs as soon as the click is made.

Note: Some of these objects can be activated with the keyboard. For example, once a
check box gets the focus, it can be entered using the space bar. In such a case, an On
Clicked event is still generated.

WARNING: Combo boxes are not considered to be clickable objects. A combo box must be
treated as an enterable text area whose associated drop-down list provides default values.
Consequently, you handle the data entry within a combo box through the On Keystroke
and On Data Change events.

Keyboard Enterable Objects
Keyboard enterable objects are objects into which you enter data using the keyboard and
for which you may filter the data entry at the lowest level by detecting On Keystroke
events. These include:
• All enterable field objects (except Picture, Subtable, and BLOB)
• All enterable variables (except Picture, BLOB, Pointer, and Array)
• Combo boxes
• Hierarchical lists

After the On Keystroke object event property is selected for one of these objects, you can
detect and handle the keystrokes within the object, using the command Form event that
will return On keystroke.

4th Dimension Language Reference 453

Modifiable Objects
Modifiable objects have a data source whose value can be changed using the mouse or the
keyboard; they are not truly considered as user interface controls handled through the On
Clicked event. They include:
• All enterable field objects (except Subtable and BLOB)
• All enterable variables (except BLOB, Pointer, and Array)
• Combo boxes
• External objects (for which full data entry is accepted by the 4D Extension)

These objects receive On Data Change events. After the On Data Change object event
property is selected for one of these objects, you can detect and handle the change of the
data source value, using the command Form event that will return On Data Change.

Tabbable Objects
Tabbable objects get the focus when you use the Tab key to reach them and/or click on
them. The object having the focus receives the characters (typed on the keyboard) that
are not accelerators (Windows) or shortcuts (MacOS) to a menu item or to an object such
as a button.

All objects are tabbable, EXCEPT the following:
• Non enterable fields or variables
• Buttons (when used on MacOS)
• Button grid
• 3D buttons, 3D radio buttons, 3D check boxes
• Pop-up menus, hierarchical pop-up menus
• Menus/drop-down lists (when used on MacOS)
• Picture menus
• Scrollable areas
• Invisible buttons, highlight buttons, radio pictures
• Graphs
• External objects (for which full data entry is not accepted by the 4D Extension)
• Tab control

454 4th Dimension Language Reference

After the On Getting Focus and/or On losing Focus object event properties are selected for a
tabbable object, you can detect and handle the change of focus, using the command
Form event that will return On Getting Focus or On losing Focus, depending on the case.

Event Categories
Form events can be classified in the following categories:
• General events
 On Load, On Unload, On Validate, On Display Details
• Events proper to the form
 On Activate, On Deactivate, On Outside Call, On Close Box, On Menu Selected
 On Open Details, On Close Details
• Events related to user actions
 On Clicked, On Double Clicked, On Keystroke, On Getting Focus, On losing Focus
 On Data Change, On External Area
• Drag and drop events
 On Drop, On Drag Over
• Printing Events
 On Header, On Printing Details, On Printing Break, On Printing Footer

Compatibility between V6 and V3
The following table summarizes the equivalence between V6 form events and V3 layout
execution cycles.

V6 Events V3 Layout Execution cycles V3 command
On Load Before phase Before
On Unload No equivalent execution cycle None
On Validate After phase After
On Clicked Generic During phase During
On Double Clicked Generic During phase During
On Keystroke No equivalent execution cycle None
On Getting Focus No equivalent execution cycle None
On losing Focus No equivalent execution cycle None
On Activate Activated phase Activated
On Deactivate Deactivated phase Deactivated
On Outside Call Outside call phase Outside call
On Drop No equivalent execution cycle None
On Drag Over No equivalent execution cycle None
On Menu Selected Generic During phase During plus Menu selected
On Data Change Generic During phase During
On External Area Generic During phase During
On Header Printing header phase In header
On Printing Details Generic During phase During
On Printing Break Printing break phase In break
On Printing Footer Printing footer phase In footer
On Close Box No equivalent execution cycle OPEN WINDOW (with Close

 box)
On Display Details Before and During phase Before & During
On Open Details Generic During phase During

4th Dimension Language Reference 455

On Header Printing header phase In header
On Printing Details Generic During phase During
On Printing Break Printing break phase In break
On Printing Footer Printing footer phase In footer
On Display Details Before and During phase Before & During
On Open Details Generic During phase During
On Close Details Generic During phase During

If an object (field or variable) has the V3 Script only if modified option selected, the event
properties are reduced to those corresponding to any During execution cycle that could
occur during data entry in V3:

V6 Events V3 Layout Execution cycles V3 command
On Clicked Generic During phase During
On Double Clicked Generic During phase During
On Data Change Generic During phase During
On External Area Generic During phase During

Once you start editing a form and its objects in V6, the form and object event properties
are, by default, set according to the same scheme. To take advantage of the new events
introduced by V6, select the event properties for the form and objects in the Design
environment, and modify the form and object methods using the new Form event
command.

The new events without corresponding V3 execution cycle are:
V6 Events V3 Layout Execution cycles V3 command
On Unload No equivalent execution cycle None
On Keystroke No equivalent execution cycle None
On Getting Focus No equivalent execution cycle None
On losing Focus No equivalent execution cycle None
On Drop No equivalent execution cycle None
On Drag Over No equivalent execution cycle None
On Close Box No equivalent execution cycle OPEN WINDOW (with Close
box)

456 4th Dimension Language Reference

The new events that allow you to perform actions better tuned to the nature of the
events are:
V6 Events V3 Layout Execution cycles V3 command
On Clicked Generic During phase During
On Double Clicked Generic During phase During
On Menu Selected Generic During phase During plus Menu selected
On Data Change Generic During phase During
On External Area Generic During phase During
On Printing Details Generic During phase During
On Display Details Before and During phase Before & During
On Open Details Generic During phase During
On Close Details Generic During phase During

Examples
In all the examples discussed here, it is assumed that the event properties of the forms
and objects have been selected appropriately.

1. This example sorts a selection of subrecords for the subtable [Parents]Children before a
form for the table [Parents] is displayed on the screen:

` Method of a form for the table [Parents]
Case of

Þ : (Form event=On Load)
ORDER SUBRECORDS BY([Parents]Children;[Parents]Children'First name;>)
` ...

End case

2. This example shows the On Validate event being used to automatically assign (to a field)
the date that the record is modified:

` Method of a form
Case of

` ...
Þ : (Form event=On Validate)

[aTable]Last Modified On:=Current date
End case

4th Dimension Language Reference 457

3. In this example, the complete handling of a drop-down list (initialization, user clicks,
and object release) is encapsulated in the method of the object:

` asBurgerSize Drop-down list Object Method
Case of

Þ : (Form event=On Load)
ARRAY STRING(31;asBurgerSize;3)
asBurgerSize{1}:="Small"
asBurgerSize{1}:="Medium"
asBurgerSize{1}:="Large"

Þ : (Form event=On Clicked)
If (asBurgerSize#0)

ALERT("You chose a "+asBurgerSize{asBurgerSize}+" burger.")
End if

Þ : (Form event=On Unload)
CLEAR VARIABLE(asBurgerSize)

End case

4. This example shows how, in an object method, to accept and later handle a drag and
drop operation for a field object that only accepts picture values.

` [aTable]aPicture enterable picture field object method
Case of

Þ : (Form event=On Drag Over)
` A drag and drop operation has started and the mouse is currently over the

field
` Get the information about the source object

DRAG AND DROP PROPERTIES ($vpSrcObject;$vlSrcElement;$lSrcProcess)
` Note that we do not need to test the source process ID number
` for the object method is exceptionally here executed in the context of that
 process

$vlDataType:=Type ($vpSrcObject->)
` Is the source data a picture (field, variable or array) ?

If (($vlDataType=Is Picture) | ($vlDataType=Picture Array))
` If so, accept the drag.
` Note that the mouse button is still pressed, the only effect while
` accepting the drag is to let 4D highlighting the object so the user
` knows the source data could be dropped onto that object

458 4th Dimension Language Reference

$0:=0
Else

` If so, refuse the drag
$0:=-1

` In this case, the object is not highlighted
End if

Þ : (Form event=On Drop)
` The source data has been dropped on the object, we therefore need to copy
 it
` into the object
` Get the information about the source object

DRAG AND DROP PROPERTIES ($vpSrcObject;$vlSrcElement;$lSrcProcess)
$vlDataType:=Type ($vpSrcObject->)
Case of

` The source object is Picture field or variable
: ($vlDataType=Is Picture)

` Is the source object from the same process (thus from the same
 window and form)?

If ($lSrcProcess=Current process)
` If so, just copy the source value

[aTable]aPicture:=$vpSrcObject->
Else

` If not, is the source object a variable?
If (Is a variable ($vpSrcObject))

 ` If so, get the value from the source process
GET PROCESS VARIABLE ($lSrcProcess;$vpSrcObject-

>;$vgDraggedPict)
[aTable]aPicture:=$vgDraggedPict

Else
` If not, use CALL PROCESS to get the field value from the source
 process

End if
End if
` The source object is an array of pictures

: ($vlDataType=Picture Array)
` Is the source object from the same process (thus from the same

 window and form)?
If ($lSrcProcess=Current process)

4th Dimension Language Reference 459

` If so, just copy the source value
[aTable]aPicture:=$vpSrcObject->{$vlSrcElement}

Else
` If not, get the value from the source process

GET PROCESS VARIABLE ($lSrcProcess;$vpSrcObject
->{$vlSrcElement};$vgDraggedPict)

[aTable]aPicture:=$vgDraggedPict
End if

End case
End case

Note: For other examples showing how to handle On Drag Over and On Drop events, see
the examples of the command DRAG AND DROP PROPERTIES.

5. This example is a template for a form method. It shows each of the possible events that
can occur while a summary report uses a form as an output form:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
Þ : (Form event=On Header)

` A header area is about to be printed
Case of

: (Before selection($vpFormTable->))
` Code for the first break header goes here

: (Level = 1)
` Code for a break header level 1 goes here

: (Level = 2)
` Code for a break header level 2 goes here
` ...

End case
Þ : (Form event=On Printing Details)

` A record is about to be printed
` Code for each record goes here

Þ : (Form event=On Printing Break)
` A break area is about to be printed

Case of

460 4th Dimension Language Reference

: (Level = 0)
` Code for a break level 0 goes here

: (Level = 1)
` Code for a break level 1 goes here
` ...

End case
Þ : (Form event=On Printing Footer)

If(End selection($vpFormTable->))
` Code for the last footer goes here

Else
` Code for a footer goes here

End if
End case

6. This example shows the template of a form method that handles the events that can
occur for a form displayed using the commands DISPLAY SELECTION or MODIFY
SELECTION. For didactic purposes, it displays the nature of the event in the title bar of the
form window.

` A Form method
Case of

Þ : (Form event=On Load)
$vsTheEvent:="The form is about to be displayed"

Þ : (Form event=On Unload)
$vsTheEvent:="The output form has been exited and is about to disappear from

the screen"
Þ : (Form event=On Display Details)

$vsTheEvent:="Displaying record #"+String(Selected record
number([TheTable]))
Þ : (Form event=On Menu Selected)

$vsTheEvent:="A menu item has been selected"
Þ : (Form event=On Header")

$vsTheEvent:="The header area is about to be drawn"
Þ : (Form event=On Open Details)

$vsTheEvent:="The record #"+String(Selected record number([TheTable]))+" is
double-clicked"
Þ : (Form event=On Close Details)

$vsTheEvent:="Going back to the output form"
Þ : (Form event=On Activate)

4th Dimension Language Reference 461

$vsTheEvent:="The form's window just become the frontmost window"
Þ : (Form event=On Deactivate)

$vsTheEvent:="The form's window is no longer the frontmost window"
Þ : (Form event=On Menu Selected)

$vsTheEvent:="A menu item has been choosen"
Þ : (Form event=On Outside call)

$vsTheEvent:="A call from another has been received"
Else

Þ $vsTheEvent:="What's going on? Event #"+String(Form event)
End case
SET WINDOW TITLE ($vsTheEvent)

7. For examples on how to handle On Keystroke events, see examples for the commands
Keystroke and FILTER KEYSTROKE.

8. This example shows how to treat clicks and double clicks in the same way as a scrollable
area:

` asChoices scrollable area object method
Case of

Þ : (Form event=On Load)
ARRAY STRING (...;asChoices;...)

` ...
asChoices:=0

Þ : ((Form event=On Clicked) | (Form event=On Double Clicked))
If (asChoices#0)

` An item has been clicked, do something here
` ...

End if
` ...

End case

9. This example shows how to treat clicks and double clicks using a different response.
Note the use of the element zero for keeping track of the selected element:

` asChoices scrollable area object method
Case of

Þ : (Form event=On Load)
ARRAY STRING (...;asChoices;...)

462 4th Dimension Language Reference

` ...
asChoices:=0
asChoices{0}:="0"

Þ : (Form event=On Clicked)
If (asChoices#0)

If (asChoices#Num(asChoices))
` A new item has been clicked, do something here
` ...
` Save the new selected element for the next time

asChoices{0}:=String (asChoices)
End if

Else
asChoices:=Num(asChoices{0})

End if
Þ : (Form event=On Double Clicked)

If (asChoices#0)
` An item has been double clicked, do something different here

End if
` ...

End case

10. This example shows how to maintain a status text information area from within a
form method, using the On Getting Focus and On losing Focus events:

` [Contacts];"Data Entry" form method
Case of

Þ : (Form Event=On Load)
C_TEXT(vtStatusArea)
vtStatusArea:=""

Þ : (Form Event=On Getting Focus)
RESOLVE POINTER (Last object;$vsVarName;$vlTableNum;$vlFieldNum)
If (($vlTableNum#0) & ($vlFieldNum#0))

Case of
: ($vlFieldNum=1) ` Last name field

vtStatusArea:="Enter the Last name of the Contact, it will be
automatically capitalized"

` ...
: ($vlFieldNum=10) ` Zip Code field

4th Dimension Language Reference 463

vtStatusArea:="Enter a 5-digit zip code, it will be automatically
 checked and validated"

` ...
End case

End if
Þ : (Form Event=On Losing Focus)

vtStatusArea:=""
` ...

End case

11. This example shows how to respond to a close window event with a form used for
record data entry:

` Method for a data entry form
$vpFormTable:=Current form table
Case of

` ...
Þ : (Form Event=On Close Box)

If (Modified record($vpFormTable->))
CONFIRM ("This record has been modified. Save Changes?")
If (OK=1)

ACCEPT
Else

CANCEL
End if

Else
CANCEL

End if
` ...

End case

464 4th Dimension Language Reference

vtStatusArea:="Enter a 5-digit zip code, it will be automatically
 checked and validated"

` ...
End case

End if
Þ : (Form Event=On Losing Focus)

vtStatusArea:=""
` ...

End case

11. This example shows how to respond to a close window event with a form used for
record data entry:

` Method for a data entry form
$vpFormTable:=Current form table
Case of

` ...
Þ : (Form Event=On Close Box)

If (Modified record($vpFormTable->))
CONFIRM ("This record has been modified. Save Changes?")
If (OK=1)

ACCEPT
Else

CANCEL
End if

Else
CANCEL

End if
` ...

End case

4th Dimension Language Reference 465

12. This example shows how to capitalize a text or alphanumeric field each time its data
source value is modified:

` [Contacts]First Name Object method
Case of

` ...
: (Form event=On Data Change)

[Contacts]First Name:= Uppercase(Substring([Contacts]First Name;1;1))
+Lowercase(Substring([Contacts]First Name;2))

` ...
End case

See Also
CALL PROCESS, Current form table, DRAG AND DROP PROPERTIES, FILTER KEYSTROKE,
Keystroke.

466 4th Dimension Language Reference

Before Form Events

version 3
Compatibility Note
This command has been kept in 4D for compatibility reasons. Starting with version 6,
you should consider using the command Form event and checking if it returns an On
Load event.

__

Before ® Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the Before execution cycle to be generated, make sure that the On Load event
property for the form and/or the objecs has been selected in the Design environment.

See Also
Form event.

4th Dimension Language Reference 467

During Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an event such
as On Clicked.

__

During ® Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the During execution cycle to be generated, make sure that the appropriate
event properties, such as On Clicked, for the form and/or the objects have been selected in
the Design environment.

See Also
Form event.

468 4th Dimension Language Reference

After Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Validate
event.

__

After ® Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the After execution cycle to be generated, make sure that the On Validate
event property for the form and/or the objects has been selected in the Design
environment.

See Also
Form event.

4th Dimension Language Reference 469

In header Form Events

version 3
Compatibility Note

This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Header
event.

__

In header ® Boolean

Parameter Type Description

This command does not require any parameters

Description

In order for the In header execution cycle to be generated, make sure that the On Header
event property for the form and/or the objects has been selected in the Design
environment.

See Also

During, In break, In footer.

470 4th Dimension Language Reference

In break Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Printing
Break event.

__

In break ® Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the In break execution cycle to be generated, make sure that the On Printing
Break event property for the form and/or the objects has been selected in the Design
environment.

See Also
During, In footer, In header.

4th Dimension Language Reference 471

In footer Form Events

version 3
Compatibility Note
This command has been kept for compatibility reason. Starting with version 6, you may
want to start using the command Form event and check if it returns an On Printing Footer
event.

__

In footer ® Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the In footer execution cycle to be generated, make sure that the On Printing
footer event property for the form and/or the objects has been selected in the Design
environment.

See Also
During, In break, In header.

472 4th Dimension Language Reference

Activated Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Activate
event.

__

Activated ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ Returns TRUE if the execution cycle is an
activation

Description
The command Activated returns TRUE in a form method when the window containing
the form becomes the frontmost window of the frontmost process.

WARNING: Do not place a command such as TRACE or ALERT in the Activated phase of the
form, as this will cause an endless loop.

Note: In order for the Activated execution cycle to be generated (for compatibility with
V3 databases), make sure that the On Activate event property of the form has been
selected in the Design environment. This is done automatically when a database is
converted.

See Also
Deactivated, Form event.

4th Dimension Language Reference 473

Deactivated Form Events

version 3

Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On
Deactivate event.

__

Deactivated ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ Returns TRUE if the execution cycle is a
deactivation

Description
The command Deactivated returns TRUE in a form or object method when the frontmost
window of the frontmost process, containing the form, moves to the back.

In order for the Deactivated execution cycle to be generated, make sure that the On
Deactivate event property of the form and/or the objects has been selected in Design
environment.

See Also
Activated, Form event.

474 4th Dimension Language Reference

Outside call Form Events

version 3
Compatibility Note
This command has been kept for compatibility reasons. Starting with version 6, you
should consider using the command Form event and checking if it returns an On Outside
call event.

__

Outside call ® Boolean

Parameter Type Description
This command does not require any parameters

Description
In order for the Outside call execution cycle to be generated, make sure that the On
Outside call event property for the form and/or the objects has been selected in the Design
environment.

See Also
CALL PROCESS, Form event.

4th Dimension Language Reference 475

476 4th Dimension Language Reference

17 Form Pages

4th Dimension Language Reference 477

478 4th Dimension Language Reference

Form Pages Form Pages

version 6.0
__

The commands in this section enable you to manipulate form pages.

Automatic action buttons perform the same tasks as the FIRST PAGE, LAST PAGE, NEXT
PAGE, and PREVIOUS PAGE commands. In addition, version 6 introduces a new automatic
action equivalent to GOTO PAGE that you can apply to objects such as tab controls, drop-
down list boxes, and so on. Whenever appropriate, use automatic action buttons instead
of commands.

Page commands can be used with input forms or with forms displayed in dialogs. Output
forms use only the first page. A form always has at least one page—the first page.
Remember that regardless of the number of pages a form has, only one form method
exists for each form.

Use the Current form page command to find out which page is being displayed.

Note: When designing a form, you can work with pages 1 through N, as well as with page
0, in which you put objects that will appear in all of the pages. When using a form, and
therefore when calling the form pages commands, you work with pages 1 through N;
page 0 is automatically combined with the page being displayed.

4th Dimension Language Reference 479

FIRST PAGE Form Pages

version 3
__

FIRST PAGE

Parameter Type Description
This command does not require any parameters

Description
FIRST PAGE changes the currently displayed form page to the first form page. If a form is
not being displayed, or if the first form page is already displayed, FIRST PAGE does
nothing.

Example
The following example is a one-line method called from a menu command. It displays the
first form page:

Þ FIRST PAGE

See Also
Current form page, GOTO PAGE, LAST PAGE, NEXT PAGE, PREVIOUS PAGE.

480 4th Dimension Language Reference

LAST PAGE Form Pages

version 3
__

LAST PAGE

Parameter Type Description
This command does not require any parameters

Description
LAST PAGE changes the currently displayed form page to the last form page. If a form is
not being displayed, or if the last form page is already displayed, LAST PAGE does nothing.

Example
The following example is a one-line method called from a menu command. It displays the
last form page:

Þ LAST PAGE

See Also
Current form page, FIRST PAGE, GOTO PAGE, NEXT PAGE, PREVIOUS PAGE.

4th Dimension Language Reference 481

NEXT PAGE Form Pages

version 3
__

NEXT PAGE

Parameter Type Description
This command does not require any parameters

Description
NEXT PAGE changes the currently displayed form page to the next form page. If a form is
not being displayed, or if the last form page is already displayed, NEXT PAGE does
nothing.

Example
The following example is a one-line method called from a menu command. It displays the
form page that follows the one currently displayed:

Þ NEXT PAGE

See Also
Current form page, FIRST PAGE, GOTO PAGE, LAST PAGE, PREVIOUS PAGE.

482 4th Dimension Language Reference

PREVIOUS PAGE Form Pages

version 3
__

PREVIOUS PAGE

Parameter Type Description
This command does not require any parameters

Description
PREVIOUS PAGE changes the currently displayed form page to the previous form page. If a
form is not being displayed, or if the first form page is already displayed, PREVIOUS PAGE
does nothing.

Example
The following example is a one-line method called from a menu command. It displays the
form page that precedes the one currently displayed:

Þ PREVIOUS PAGE

See Also
Current form page, FIRST PAGE, GOTO PAGE, LAST PAGE, NEXT PAGE.

4th Dimension Language Reference 483

GOTO PAGE Form Pages

version 3
__

GOTO PAGE (pageNumber)

Parameter Type Description
pageNumber Number ® Form page to display

Description
GOTO PAGE changes the currently displayed form page to the form page specified by
pageNumber.

If a form is not being displayed, GOTO PAGE does nothing. If pageNumber is greater than
the number of pages, the last page is displayed. If pageNumber is less than one, the first
page is displayed.

Examples
The following example is an object method for a button. It displays a specific page, page
3:

Þ GOTO PAGE (3)

See Also
Current form page, FIRST PAGE, LAST PAGE, NEXT PAGE, PREVIOUS PAGE.

484 4th Dimension Language Reference

Current form page Form Pages

version 3
__

Current form page ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of currently displayed form page

Description
The Current form page command returns the number of the currently displayed form
page.

Example
In a form, when you select a menu item from the menu bar or when the form receives a
call from another process, you can perform different actions depending on the form page
currently displayed. In this example, you write:

` [myTable];"myForm" Form Method
Case of

: (Form event=On Load)
` ...

: (Form event=On Unload)
` ...

: (Form event=On Menu selected)
$vlMenuNumber:=Menu Selected >> 16
$vlItemNumber:=Menu Selected & 0xFFFF
Case of

: ($vlMenuNumber=...)
Case of

: ($vlItemNumber=...)
Þ : (Current form page=1)

` Do appropriate action for page 1
Þ : (Current form page=2)

` Do appropriate action for page 2
` ...

: ($vlItemNumber=...)
` ...

End case
: ($vlMenuNumber=...)

` ...
End case

4th Dimension Language Reference 485

: (Form event=On Outside call)
Case of

Þ : (Current form page=1)
` Do appropriate reply for page 1

Þ : (Current form page=2)
` Do appropriate reply for page 2

End case
` ...

End case

See Also
FIRST PAGE, GOTO PAGE, LAST PAGE, NEXT PAGE, PREVIOUS PAGE.

486 4th Dimension Language Reference

18 Graphs

4th Dimension Language Reference 487

488 4th Dimension Language Reference

GRAPH Graphs

version 6.0 (Modified)

Version 6 Note: Starting with version 6, graphs are now supported by the 4D Chart Plug-
in, which is integrated within 4th Dimension. The Graph commands from the previous
version of 4D are transparently redirected to 4D Chart. In addition, to use the additional
4D Chart commands for customizing a Graph Area located in a form, use the graphArea
parameter (described in this command) as an external area reference for the 4D Chart
commands. For detailed information about the 4D Chart commands, refer to the
4D Chart Reference manual.

__

GRAPH (graphArea; graphNumber; xLabels; yElements{; yElements2; ...; yElementsN})

Parameter Type Description
graphArea Variable ® Graph area in the form
graphNumber Number ® Graph type number
xLabels Array or Subfields ® Labels for the x-axis
yElements Array or Subfields ® Data to graph (up to eight allowed)

Description
GRAPH draws a graph for a Graph area located in a form. The data can come from either
arrays or subfields.

The graphArea parameter is the name of the Graph area that displays the graph. The
Graph area is created in the Form editor, using the graph object type. The graph name is
the name entered for the variable name. For information about creating a Graph area, see
the 4th Dimension Design Reference.

The graphNum parameter defines the type of graph that will be drawn. It must be a
number from 1 to 8. The graph types are described in Example 1. After a graph has been
drawn, you can change the type by changing graphNum and executing the GRAPH
command again.

The xLabels parameter defines the labels that will be used to label the x-axis (the bottom of
the graph). This data can be of string, date, time, or numeric type. There should be the
same number of subrecords or array elements in xLabels as there are subrecords or array
elements in each of the yElements.

The data specified by yElements is the data to graph. The data must be numeric. Up to
eight data sets can be graphed. Pie charts graph only the first yElements.

4th Dimension Language Reference 489

Examples
1. The following example shows how to use arrays to create a graph. The code would be
inserted in a form method or object method. It is not intended to be realistic, since the
data is constant:

ARRAY STRING (4; X; 2) ` Create an array for the x-axis
X{1}:="1995" ` X Label #1
X{2}:="1996" ` X Label #2
ARRAY REAL (A; 2) ` Create an array for the y-axis
A{1}:=30 ` Insert some data
A{2}:=40
ARRAY REAL (B; 2) ` Create an array for the y-axis
B{1}:=50 ` Insert some data
B{2}:=80

Þ GRAPH (vGraph;vType; X; A; B) ` Draw the graph
GRAPH SETTINGS (vGraph;0;0;0;0;False;False;True;"France";"USA") ` Set the legends

for the graph

The following figure shows the resulting graph.

• With vType equal to 1, you obtain a Column graph:

• With vType equal to 2, you obtain a Proportional Column graph:

490 4th Dimension Language Reference

• With vType equal to 3, you obtain a Stacked Column graph:

• With vType equal to 4, you obtain a Line graph:

• With vType equal to 5, you obtain a Area graph:

4th Dimension Language Reference 491

• With vType equal to 6, you obtain a Scatter graph:

• With vType equal to 7, you obtain a Pie graph:

• With vType equal to 8, you obtain a Picture graph:

2. The following example graphs the sales in dollars for sales people in a subtable. The
subtable has three fields: Name, LastYearTot, and ThisYearTot. The graph will show the
sales for each of the sales people for the last two years:

Þ GRAPH (vGraph;1;[Employees]Sales'Name;
[Employees]Sales'LastYearTot;[Employees]Sales'ThisYearTot)

See Also
GRAPH SETTINGS, GRAPH TABLE.

492 4th Dimension Language Reference

GRAPH SETTINGS Graphs

version 6.0 (Modified)

Version 6 Note: Starting with version 6, graphs are now supported by the 4D Chart Plug-
in, which is integrated within 4th Dimension. The Graph commands from the previous
version of 4D are transparently redirected to 4D Chart. In addition, to use the additional
4D Chart commands for customizing a Graph Area located in a form, use the graph
parameter (described in this command) as an external area reference for the 4D Chart
commands. For detailed information about the 4D Chart commands, refer to the 4D
Chart Reference manual.

__

GRAPH SETTINGS (graph; xmin; xmax; ymin; ymax; xprop; xgrid; ygrid; title{; title2; ...;
titleN})

Parameter Type Description
graph Variable ® Name of the Graph area
xmin Number

or date
or time ® Minimum x-axis value for proportional

graph (line or scatter plot only)
xmax Number

or date
or time ® Maximum x-axis value for proportional

graph (line or scatter plot only)
ymin Number ® Minimum y-axis value
ymax Number ® Maximum y-axis value
xprop Boolean ® TRUE for proportional x-axis; FALSE for

normal x-axis (line or scatter plot only)
xgrid Boolean ® TRUE for x-axis grid; FALSE for no x-axis grid

(only if xprop is TRUE)
ygrid Boolean ® TRUE for y-axis grid; FALSE for no y-axis grid
title String ® Title(s) for graph legend(s)

4th Dimension Language Reference 493

Description
GRAPH SETTINGS changes the graph settings for graph displayed in a form. The graph
must have already been displayed with the GRAPH command. GRAPH SETTINGS has no
effect on a pie chart.

The xmin, xmax, ymin, and ymax parameters all set the minimum and maximum values for
their respective axes of the graph. If the value of any pair of these parameters is a null
value (0, ?00:00:00?, or !00/00/00!, depending on the data type), the default graph values
will be used.

The xprop parameter turns on proportional plotting for line graphs (type 4) and scatter
graphs (type 6). When TRUE, it will plot each point on the x-axis according to the point’s
value, and then only if the values are numeric, time, or date.

The xgrid and ygrid parameters display or hide grid lines. A grid for the x-axis will be
displayed only when the plot is a proportional scatter or line graph.

The title parameter(s) labels the legend.

Compatibility Note (March 97): The parameters xmin, xmax and xprop are not currently
supported. They will be supported in a future update of 4D Chart.

Example
See example for the command GRAPH.

See Also
GRAPH, GRAPH TABLE.

494 4th Dimension Language Reference

GRAPH TABLE Graphs

version 6.0 (Modified)

Version 6 Note: Starting with version 6, graphs are now supported by the 4D Chart Plug-
in, which is integrated within 4th Dimension. The Graph commands from the previous
version of 4D are transparently redirected to 4D Chart. For detailed information about the
4D Chart commands, refer to the 4D Chart Reference manual.

__

GRAPH TABLE {(table)}

or:

GRAPH TABLE ({table; }graphType; x field; y field{; y field2; ...; y fieldN})

Parameter Type Description
table Table ® Table to graph, or

Default table, if omitted
graphType Number ® Graph type number
x field Field ® Labels for the x-axis
y field Field ® Fields to graph (up to eight allowed)

Description
GRAPH TABLE has two forms. The first form displays the Chart Wizard and allows the user
to select the fields to be graphed. The second form specifies the fields to be graphed and
does not display the Chart Wizard.

GRAPH TABLE graphs data from a table’s fields. Only data from the current selection of the
current process is graphed.

Using the first form is equivalent to choosing Graph from the Report menu in the User
environment.

4th Dimension Language Reference 495

The following figure shows the Chart Wizard, which allows the user to define the graph.

The second form of the command graphs the fields specified for table.

The graphType parameter defines the type of graph that will be drawn. It must be a
number from 1 to 8. See the graph types listed in the example for the command Graph.

The x field defines the labels that will be used to label the x-axis (the bottom of the graph).
The field type can be Alpha, Integer, Long integer, Real or Date.

The y field is the data to graph. The field type must be Integer, Long integer or Real. Up to
eight y fields can be graphed, each set off by a semicolon.

In either form, GRAPH TABLE opens a Chart window for working with the newly created
graph. For more information about using the Chart window, see the 4th Dimension User
Reference manual.

Note: You can also use the Quick Report editor to generate graphs from field data, by
using the Print Destination menu.

496 4th Dimension Language Reference

Examples
1. The following example illustrates the use of the first form of GRAPH TABLE. It presents
the Chart Wizard window and allows users to select the fields to graph. The code queries
records in the [People] table, sorts them, and then displays the Chart Wizard:

QUERY ([People])
If (OK=1)

ORDER BY ([People])
If (OK=1)

Þ GRAPH TABLE([People])
End if

End if

2. The following example illustrates the use of the second form of GRAPH TABLE. It first
queries and orders records from the [People] table. It then graphs the salaries of the
people:

QUERY([People];[People]Title="Manager")
ORDER BY([People];[People]Salary;>)

Þ GRAPH TABLE([People];1;[People]Last Name;[People]Salary)

See Also
Graph.

4th Dimension Language Reference 497

498 4th Dimension Language Reference

19 Hierarchical Lists

4th Dimension Language Reference 499

500 4th Dimension Language Reference

Load list Hierarchical Lists

version 6.0
__

Load list (listName) ® ListRef

Parameter Type Description
listName String ® Name of a list created in the

Design environment List Editor

Function result ListRef ¬ List reference number of newly created list

Description
The command Load list creates a new hierarchical list whose contents are copied from the
list and whose name you pass in listName. It then returns the list reference number to the
newly created list.

If the list specified by listName does not exist, the list is not created and Load list returns
zero (0).

Note that the new list is a copy of the list defined in the Design environment.
Consequently, any modifications made to the new list will not affect the list defined in
the Design environment. Conversely, any subsequent modifications made to the list
defined in the Design environment will not affect the list that you just created.

If you modify the newly created list and want to permanently save the changes, call SAVE
LIST.

Remember to call CLEAR LIST in order to dispose of the newly created list when you have
finished with it. Otherwise, it will stay in memory until the end of the working session or
until the process in which it was created ends or is aborted.

Tip: If you associate a list to a form object (hierarchical list, tab control, or hierarchical
pop-up menu) using the Choice List property within the Form Editor Object Properties
window, you do not need to call Load list or CLEAR LIST from the method of the object.
4th Dimension loads and clears the list automatically for you.

4th Dimension Language Reference 501

Example
You create a database for the international market and you need to switch to different
languages while using the database. In a form, you present a hierarchical list, named
hlList, that proposes a list of standard options. In the Design environment, you have
prepared various lists, such as “Std Options US” for the English version, “Std Options FR”
for the French version, “Std Options SP” for the Spanish version, and so on. In addition,
you maintain an interprocess variable, named <>gsCurrentLanguage, where you store a 2-
character language code, such as “US” for the English version, “FR” for the French
version, “SP” for the Spanish version, and so on. To make sure that your list will always be
loaded using the current selected language, you can write:

` hlList Hierarchical List Object Method
Case of

: (Form event = On Load)
C_LONGINT (hlList)

Þ hlList:=Load list("Std Options"+<>gsCurrentLanguage)
: (Form event = On Unload)

CLEAR LIST(hlList;*)
End case

See Also
CLEAR LIST, SAVE LIST.

502 4th Dimension Language Reference

SAVE LIST Hierarchical Lists

version 6.0
__

SAVE LIST (list; listName)

Parameter Type Description
list ListRef ® List reference number
listName String ® Name of the list as it will appear

in the Design environment List Editor

Description
The command SAVE LIST saves the list whose reference number you pass in list, within the
Design environment List Editor, under the name you pass in listName.

If there is already a list with this name, its contents are replaced.

See Also
Load list.

4th Dimension Language Reference 503

New list Hierarchical Lists

version 6.0
__

New list ® ListRef

Parameter Type Description
This command does not require any parameters

Function result ListRef ¬ List reference number

Description
New list creates a new, empty hierarchical list in memory and returns its unique list
reference number.

WARNING: Hierarchical lists are held in memory. When you are finished with a
hierarchical list, it is important to dispose of it and free the memory, using the command
CLEAR LIST.

Several other commands allow you to create hierarchical lists:
• Copy list duplicates a list from an existing list.
• Load list creates a list by loading a Choice List created (manually or programmatically) in
the Design enviornment List Editor.
• BLOB to list creates a list from the contents of a BLOB in which a list was previously
saved.

After you have created a hierarchical list using New list, you can:
• Add items to that list, using the command APPEND LIST ITEM or INSERT LIST ITEM.
• Delete items from that list, using the command DELETE LIST ITEM.

Example
See example for the command APPEND TO TO LIST.

See Also
APPEND TO LIST, BLOB to list, CLEAR LIST, Copy list, DELETE LIST ITEM, INSERT LIST ITEM,
Load list.

504 4th Dimension Language Reference

Copy list Hierarchical Lists

version 6.0
__

Copy list (list) ® ListRef

Parameter Type Description
list ListRef ® Reference to list to be copied

Function result ListRef ¬ List reference number to duplicated list

Description
The command Copy list duplicates the list whose reference number you pass in list, and
returns the list reference number of the new list.

After you have finished with the new list, call CLEAR LIST to delete it.

See Also
CLEAR LIST, Load list, New list.

4th Dimension Language Reference 505

CLEAR LIST Hierarchical Lists

version 6.0
__

CLEAR LIST (list{; *})

Parameter Type Description
list ListRef ® List reference number
* ® If specified, clear sublists from memory, if any

If omitted, sublists, if any, are not cleared

Description
The command CLEAR LIST disposes of the hierarchical list whose list reference number you
pass in list.

Usually you will pass the optional * parameter, so all the sublists, if any, attached to items
or subitems of the list will be disposed of too.

You do not need to clear a list attached to a form object via the Object Properties window.
4D loads and clears the list for you. On the other hand, each time you load, copy, extract
from a BLOB, or create a list programmatically, call CLEAR LIST when you are through
with the list.

To clear a sublist attached to an item (of any level) of another list currently displayed in a
form, proceed as follows:
1. Call GET LIST ITEM on the parent item to get the list reference of the sublist.
2. Call SET LIST ITEM on the parent item to detach the sublist from the list item before
clearing it.
3. Call CLEAR LIST to clear the sublist whose reference number you obtained with GET LIST
ITEM.
4. Call REDRAW LIST for the list displayed in the form, to recalculate its items and sublists.

506 4th Dimension Language Reference

Examples
1. Within a clean-up routine that clears all objects and data that you no longer need (i.e.,
when a window is closed and a form unloaded), you may end up clearing a hierarchical
list that may have already been cleared, depending on the user actions within the form.
Use Is a list to clear the list only if necessary:

` Extract of clean up routine
If (Is a list(hlList))

Þ CLEAR LIST(hlList;*)
End if

2. See example for the command Load list.
3. See example for the command BLOB to list.

See Also
BLOB to list, Load list, New list.

4th Dimension Language Reference 507

Count list items Hierarchical Lists

version 6.0
__

Count list items (List) ® Long

Parameter Type Description
List ListRef ® List reference number

Function result Long ¬ Number of items in expanded lists

Description
The command Count list items returns the number of items currently “visible” in the list
whose reference number you pass in list.

Count list items does not return the total number of items in the list. It returns the
number of items that are visible, depending on the current expanded/collapsed state of
the list and its sublists.

You apply this command to a list displayed in a form.

Examples
Here a list named hList shown in the User environment:

Þ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 2

508 4th Dimension Language Reference

Þ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 5

Þ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 7

Þ $vlNbItems:=Count list items(hList) ` at this point $vlNbItems gets 4

See Also
List item position, Selected list item.

4th Dimension Language Reference 509

Is a list Hierarchical Lists

version 6.0
__

Is a list (list) ® Boolean

Parameter Type Description
list Number ® ListRef value to be tested

Function result Boolean ¬ TRUE if list is a hierarchical list
FALSE if list is not a hierarchical list

Description
The command Is a list returns TRUE if the value you pass in list is a valid reference to a
hierarchical list. Otherwise, it returns FALSE.

Examples
1. See example for the command CLEAR LIST.
2. See examples for the command DRAG AND DROP PROPERTIES.

See Also
DRAG AND DROP PROPERTIES.

510 4th Dimension Language Reference

REDRAW LIST Hierarchical Lists

version 6.0
__

REDRAW LIST (list)

Parameter Type Description
list Variable ® List reference number

Description
The command REDRAW LIST recalculates the positions of all the items and sublists (if any)
of the list whose reference number you pass in list.

You MUST call this command at least once when you modify one or several aspects of a
list or one of its sublists in a form.

Warning: Pass the actual variable instance of the list, not an expression or variable. For
example, if you have a list named hList in a form:

` Recalculate the list after changes were made
REDRAW LIST (hList) ` GOOD

` ...

$vlList:=hList
` ...
` Recalculate the list after changes were made

REDRAW LIST ($vlList) ` WRONG
` ...

4th Dimension Language Reference 511

SET LIST PROPERTIES Hierarchical Lists

version 6.0
__

SET LIST PROPERTIES (list; appearance{; icon{; lineHeight}})

Parameter Type Description
list ListRef ® List reference number
appearance Number ® Graphical style of the list

1 Hierarchical list ala Macintosh
2 Hierarchical list ala Windows

icon Number ® ‘cicn’ MacOS-based resource ID or
0 for default platform node icon

lineHeight Number ® Minimal line height expressed in pixels

Description
The command SET LIST PROPERTIES sets the appearance of the hierarchical list whose list
reference you pass in list.

The parameter appearance can be one of the following predefined constants provided by
4th Dimension:

Constant Type Value
ala Macintosh Long Integer 1
ala Windows Long Integer 2

In the Windows appearance, the list has connecting dotted lines between the nodes and
branches. One icon denotes the collapsed nodes, a second one the expanded nodes, a
third one the nodes without child items. Here is a default hierarchical list in Windows
appearance:

512 4th Dimension Language Reference

In the Macintosh appearance, the list has no connecting dotted lines. One icon denotes
the collapsed nodes, a second one the expanded nodes. Nodes without child items have
no icon. Here is a default hierachical list in Macintosh appearance:

Note: If you display a hierarchical list object without calling SET LIST PROPERTIES, the list
appears with the default Windows or Macintosh appearances, depending on the Platform
Interface property choosen for the object in the Design environment's Form Editor.

The parameter icon indicates the icons that will be displayed for each node. The value
passed in icon sets the icon for collapsed nodes, icon+1 sets the icon for expanded nodes,
and icon+2 sets the icon for nodes without child items (if the appearance is set to
Windows).

For example, if you pass 15000, the color icon 'cicn' ID=15000 will be displayed for each
collapsed node, the color icon 'cicn' ID=15001 will be displayed for each expanded node,
and the color icon 'cicn' ID=15002 will be displayed for each node without child items.

It is therefore important to have these 'cicn' color icon resources present in your database
structure file. If a color icon resource is missing, the corresponding nodes are displayed
with no icons. (You can actually take advantage of this to display a list with no icons.)

WARNING: When creating 'cicn' color icon resources, use resource IDs greater than or
equal to 15000. Resource IDs less than 15000 are reserved for 4th Dimension.

The resource IDs of the default Macintosh and Windows nodes are expressed by the
following predefined constants provided by 4th Dimension:

Constant Type Value
Macintosh node Long Integer 860
Windows node Long Integer 138

4th Dimension Language Reference 513

In other words, 4th Dimension provides the following 'cicn' resources:

ID Number Description
860 Collapsed node ala Macintosh
861 Expanded node ala Macintosh
138 Collapsed node ala Windows
139 Expanded node ala Windows
140 Node without child ala Windows

If you do not pass the parameter icon, the nodes are displayed with the default icons of
the chosen appearance type.

Color icon resources can be of various sizes. For example, you can create 16x16 or 32x32
color icons.

If you do not pass the parameter lineHeight, the line height of a hierarchical list is
determined by the font and font size used for the object. If you use a color icons that is
too tall or too wide, it will be displayed truncated and/or will be overidden by the
connecting dotted lines (if appearance is Windows), as well as by the text of the nodes
above or below it.

Choose color icon size, font, and font size accordingly, otherwise pass in the parameter
lineHeight the minimal line height of the hierarchical list. If the value you pass is greater
than the line height derived from the font and font size used, the line height of the
hierarchical list will be forced to the value you pass.

Note: SET LIST PROPERTIES affects the way nodes are displayed in the hierarchical list. If
you would rather customize the icon of each item in the list, use the command SET LIST
ITEM PROPERTIES.

Examples
The following hierarchical list has been defined in the Design environment List Editor:

514 4th Dimension Language Reference

Within a form, the hierarchical list object hlCities reuses that list with this object method:

Case of
: (Form event=On Load)

hlCities:=Load list("Cities")
Þ SET LIST PROPERTIES(hlCities;vlAppearance;vlIcon)

: (Form event=On Unload)
CLEAR LIST(hlCities;*)

End case

In addition, the structure file of the database has been edited so it contains the following
'cicn' color icon resources:

1. With the following line:

Þ SET LIST PROPERTIES(hlCities;ala Macintosh;Macintosh node)

The hierarchical list will look like this:

4th Dimension Language Reference 515

2. With the following line:

Þ SET LIST PROPERTIES(hlCities;ala Windows;Windows node)

The hierarchical list will look like this:

3. With the following line:

Þ SET LIST PROPERTIES(hlCities;ala Windows;20000)

The hierarchical list will look like this:

516 4th Dimension Language Reference

4. With the following line:

Þ SET LIST PROPERTIES(hlCities;ala Macintosh;20000)

The hierarchical list will look like this:

5. With the following line:

Þ SET LIST PROPERTIES(hlCities;ala Macintosh;20010)

The hierarchical list will look like this:

4th Dimension Language Reference 517

The 'cicn' color icon resources shown are then added to the structure file of the database:

6. With the following line:

Þ SET LIST PROPERTIES(hlCities;ala Windows;20020;32)

The hierarchical list will look like this:

See Also
GET LIST ITEM PROPERTIES, GET LIST PROPERTIES, SET LIST ITEM PROPERTIES.

518 4th Dimension Language Reference

GET LIST PROPERTIES Hierarchical Lists

version 6.0
__

GET LIST PROPERTIES (list; appearance{; icon{; lineHeight}})

Parameter Type Description
list ListRef ® List reference number
appearance Number ¬ Graphical style of the list

1 Hierarchical list ala Macintosh
2 Hierarchical list ala Windows

icon Number ¬ ‘cicn’ MacOS-based resource ID
lineHeight Number ¬ Minimal line height expressed in pixels

Description
The command GET LIST PROPERTIES returns information about the list whose reference
number you pass in list.

The parameter appearance returns the graphical style of the list.

The parameter icon returns the resource IDs of the node icons displayed in the list.

The parameter lineHeight returns the minimal line height.

These properties can be set using the command SET LIST PROPERTIES and/or in the Design
environment List Editor, if the list was created there or saved using the command SAVE
LIST.

For a complete description of the appearance, node icons, and minimal line height of a
list, see the command SET LIST PROPERTIES.

Example
Given the list named hList, shown here in the User environment (in Macintosh
appearance):

4th Dimension Language Reference 519

The object method for a button:

` bMacOrWin button Object Method
GET LIST PROPERTIES(hList;$vlAppearance;$vlIcon;$vlLH)
If ($vlAppearance=Ala Macintosh)

$vlAppearance:=Ala Windows
$vlIcon:=Windows node
$vlLH:=20

Else
$vlAppearance:=Ala Macintosh
$vlIcon:=Macintosh node

 $vlLH:=0
End if
SET LIST PROPERTIES(hList;$vlAppearance;$vlIcon;$vlLH)
REDRAW LIST(hList) ` Do NOT forget to call REDRAW LIST otherwise the list won't be

updated

will alternately display the list as shown above and here (in Windows appearance):

See Also
SET LIST PROPERTIES.

520 4th Dimension Language Reference

SORT LIST Hierarchical Lists

version 6.0
__

SORT LIST (list{; > or <})

Parameter Type Description
list ListRef ® List reference number
> or < ® Sorting order:

> to sort in ascending order, or
< to sort in descending order

Description
The command SORT LIST sorts the list whose reference number is passed in list.

To sort in ascending order, pass >. To sort in descending order, pass <. If you omit the
sorting order parameter, SORT LIST sorts in ascending order by default.

SORT LIST sorts all levels of the list; it first sorts the items of the list, then it sorts the
items in each sublist (if any), and so on, through all the levels of the list. This is why you
will usually apply SORT LIST to a list in a form. Sorting a sublist is of little interest because
the order will be changed by a call to a higher level.

SORT LIST does not change the selected list items or the current expanded/collapsed state
of the list and sublists. However, because the selected item can be moved by the sorting
operation, Select list item may return a different position before and after the sort.

Example
Given the list named hList, shown here in the User environment (in Macintosh
appearance):

 After the execution of this code:

` Sort the list and it sublists in ascending order
Þ SORT LIST(hList;>)

` Do NOT forget to call REDRAW LIST otherwise the list won't be updated
REDRAW LIST(hList)

4th Dimension Language Reference 521

The list looks like:

After the execution of this code:

` Sort the list and it sublists in ascending order
Þ SORT LIST(hList;<)

REDRAW LIST(hList) ` Do NOT forget to call REDRAW LIST otherwise the list won't be
updated

The list looks like:

See Also
Selected list item.

522 4th Dimension Language Reference

APPEND TO LIST Hierarchical Lists

version 6.0
__

APPEND TO LIST (list; itemText; itemRef{; sublist{; expanded}})

Parameter Type Description
list ListRef ® List reference number
itemText String ® Text of the new list item (max. 31 characters)
itemRef Number ® Unique reference number for the new list item
sublist ListRef ® Optional sublist to attach to the new list item
expanded Boolean ® Indicates if the sublist will be expanded or

collapsed

Description
The command APPEND TO LIST appends a new item to the hierarchical list whose list
reference number you pass in list.

You pass the text of the item in itemText. You can pass a string or text expression of up to
31 characters. If you pass a longer value, it will be truncated.

You pass the unique reference number of the item in itemRef. Although we qualify this
item reference number as unique, you can actually pass the value you want. See the Item
Reference Numbers section below.

If you also want an item to have child items, pass a valid list reference to the child
hierarchical list in sublist. To expand or collapse the child list, pass TRUE or FALSE in
expanded.

The list reference you pass in sublist must refer to an existing list. The existing list may be
empty, a one-level list, or a list with sublists. If you do not want to attach a child list to
the new item, omit the parameter or pass 0. If you pass the sublist parameter and do not
pass the expanded parameter, the sublist is not expanded, by default. Even if they are both
optional, both the sublist and expanded parameters must be passed jointly.

Tips
• To insert a new item in a list, use INSERT LIST ITEM. To change the text of an existing
item or modify its child list as well as it expanded state, use SET LIST ITEM.
• To change the appearance of the new appended item use SET LIST ITEM PROPERTIES.

WARNING: If you append an item to a list currently displayed in a form or to a list that is
attached to an item (through one or several levels) whose list is currently displayed in a
form, you MUST call REDRAW LIST; 4D recalculates the list and displays it, reflecting your
changes. The rule is simple: whatever the level of the list you act on, apply REDRAW LIST
to the main list, which is list referenced by the object in the form.

4th Dimension Language Reference 523

Item Reference Numbers: What to do with them?
Each item of a hierarchical list has a Long Integer item reference number. This value is for
your exclusive use: 4th Dimension only carries them. Here are some tips about what to do
with them:

1. You do not need to uniquely identify each item (beginner level)

• First example: You programmatically build a Tab Control, for example, an address book.
Since the Tab Control will return the number of the selected tab, you will probably not
need more information. In this case, do not even bother about item reference numbers,
pass 0 in the itemRef parameter. Note that for an address book Tab Control, you can
predefine an A, B,..., Z list in the Design environment. However, you may want to create
it programmatically in order to eliminate the letters for which there are no records (e.g.,
no records whose key field starts with Q).

• Second example: When working with a database, you progressively build a list of
keywords. You can save the list at the end of each session, using the commands SAVE LIST
or LIST TO BLOB, and reload it the beginning of each session, using Load list or BLOB to
list. You display this list in a palette window. When you click on an item, you insert the
clicked keyword in the current enterable area of the frontmost process. You can also use
drag and drop. Anyway, what is important is that you will deal with the selected item (the
one you clicked or dragged), because the commands Selected list item (click) and DRAG
AND DROP PROPERTIES give you the position of the item you have to get. Using this
position, you can obtain the text of the item using GET LIST ITEM. That’s it. So you do
not need to uniquely identify each item; you can pass 0 in the itemRef parameter.

2. You need to partially identify the list items (intermediate level)

You use item reference number for storing information required when you have to act on
an item; this is explained in the next example. In this example, we use the item reference
numbers for storing record numbers. However, we must be able to distinguish items
corresponding the [Departments] records from those corresponding to the [Employees]
records. Refer to the example for this command to see how this is done.

3. You need to uniquely identify the list items (advanced level)

You are programming an advanced handling of hierarchical lists, for which you
absolutely need to uniquely identify each item at every level of the list. A simple way to
do this is to maintain a private counter. Suppose you create a list hlList using New list. At
this point, you initialize a counter vlhCounter to 0. Each time you call APPEND TO LIST or
INSERT LIST ITEM, you increment this counter (vlhCounter:=vlhCounter+1), and you pass
that counter as the item reference number. The trick is to not decrement the counter
when you delete items—the counter can only grow. In doing so, you guarantee the
uniqueness of item reference numbers. Since item reference numbers are Long Integer
values, you can add or insert an item many times in a list that has been reinitialized.
(Remember, however, if you work with thousands of items, you should use a table, not a
list.)

524 4th Dimension Language Reference

Note: If use the Bitwise Operators you can also use item reference numbers for storing
information that fit into a Long Integer value. It means: 2 Integer values, 4 byte values or
32 Booleans values.

Why Do You Need Unique Reference Numbers?
In most cases, when using hierarchical lists for user interface purposes and when only
dealing with the selected item (the one that was clicked or dragged), you will not need to
use item reference numbers at all. Using Selected list item and GET LIST ITEM you have all
you need to deal with the current selected item. In addition, commands such as INSERT
LIST ITEM and DELETE LIST ITEM allow you to manipulate the list “relatively” to the
selected item.

Basically, you need to deal with item reference numbers when you want programmatical
direct access to any item of the list and not necessarily the one currently selected in the
list.

Example
Here is a partial view of a database structure:

The [Departments] and [Employees] tables contain the following records:

4th Dimension Language Reference 525

You want to display a hierarchical list, named hlList, that shows the Departments, and for
each Department, a child list that shows the Employees working in that Department. The
object method of hlList is:

` hlList Hierarchical List Object Method

Case of

: (Form event=On Load)
C_LONGINT(hlList;$hSubList;$vlDepartment;$vlEmployee)

` Create a new empty hierarchical list
hlList:=New list

` Select all the records from the [Departments] table
ALL RECORDS([Departments])

` For each Department
For ($vlDepartment;1;Records in selection([Departments]))

` Select the Employees from this Department
RELATE MANY([Departments]Name)

` How many are they?
$vlNbEmployees:=Records in selection([Employees])

` Is there at least one Employee in this Department?
If ($vlNbEmployees>0)

` Create a child list for the Department item
$hSubList:=New list

` For each Employee
For ($vlEmployee;1;Records in selection([Employees]))

` Add the Employee item to the sublist
` Note that the record number of the [Employees] record
` is passed as item reference number

APPEND TO LIST($hSubList;[Employees]Last Name+", "+
[Employees]First Name;Record number([Employees]))

` Go the next [Employees] record
NEXT RECORD([Employees])

End for
Else

526 4th Dimension Language Reference

` No Employees, No child list for the Department item
$hSubList:=0

End if
` Add the Department item to the main list
` Note that the record number of the [Departments] record
` is passed as item reference number. The bit #31
` of the item reference number is forced to one so we'll be able
` to distinguish Department and Employee items. See note further
` below on why we can use this bit as supplementary information about
` the item.

APPEND TO LIST(hlList;[Departments]Name;
0x80000000 | Record number([Departments]);$hSublist;$hSubList # 0)

` Set the Department item in Bold to emphasize the hierarchy of the list
SET LIST ITEM PROPERTIES(hlList;0;False;Bold;0)

` Go to the next Department
NEXT RECORD([Departments])

End for
` Sort the whole list in ascending order

SORT LIST(hlList;>)
` Display the list using the Windows style
` and force the minimal line height to 14 Pts

SET LIST PROPERTIES(hlList;ala Windows;Windows node;14)

: (Form event=On Unload)
` The list is no longer needed, do not forget to get rid of it!

CLEAR LIST(hlList;*)

: (Form event=On Double Clicked)
` A double-clicked occurred
` Get the position of the selected item

$vlItemPos:=Selected list item(hlList)
` Just in case, check the position

If ($vlItemPos # 0)
` Get the list item information

GET LIST ITEM(hlList;$vlItemPos;$vlItemRef;$vsItemText;
$vlItemSubList;$vbItemSubExpanded)

` Is the item a Department item?
If ($vlItemRef ?? 31)

` If so, it is a double-click on a Department Item
ALERT("You double-clicked on the Department item "+

Char(34)+$vsItemText+Char(34)+".")
Else

` If not, it is a double-click on an Employee item
` Using the parent item reference number find the [Departments] record

GOTO RECORD([Departments];List item parent(hlList;$vlItemRef) ?- 31)

4th Dimension Language Reference 527

` Tell where the Employee is working and to whom he or she is reporting
ALERT("You double-clicked on the Employee item "+Char(34)

+$vsItemText+Char(34)+ " who is working in the Department "
+Char(34)+[Departments]Name+Char(34)+" whose manager is "

+Char(34)+[Departments]Manager+Char(34)+".")
End if

End if

End case

` Note: 4th Dimension can store up to 16 millions records per table
` (precisely 16,777,215). This value is 2^24 minus one. Record number
` fit on 24 bits. In our example, we use the bit #31 of the unused high byte for
` distinguishing Employees and Departments items.

In this example, there is only one reason to distinguish [Departments] items and
[Employees] items:
1. We store record numbers in the item reference numbers, therefore, we will probably
end up with [Departments] items whose item reference numbers are the same as
[Employees] items.

2. We use the command List parent item to retrieve the parent of the selected item. If we
click on an [Employees] item whose associated record number is #10, if there is also a
[Departments] item #10, the [Departments] item will be found first by List parent item
when it browses the lists to locate the item with the item reference number we pass. The
command will return the parent of the [Departments] item and not the parent of
[Employees] item.

Therefore, we made the item reference numbers unique, not because we wanted unique
numbers, but because we needed to distinguish [Departments] and [Employees] records.

In the User or Custom Menus environments, the list will look like this:

Note: This example is useful for user interface purposes if you deal with a reasonably small
number of records. Remember that lists are held in memory—do not build user interfaces
with hierarchical lists containing thousands of items.

528 4th Dimension Language Reference

INSERT LIST ITEM Hierarchical Lists

version 6.0
__

INSERT LIST ITEM (list; beforeItemRef | *; itemText; itemRef{; sublist{; expanded}})

Parameter Type Description
list ListRef ® List reference number
beforeItemRef | * Number | * ® Item reference number or

* for current selected list item
itemText String ® Text for the new list item (max. 31 characters)
itemRef Number ® Unique reference number for the new list item
sublist ListRef ® Optional sublist to attach to the new list item
expanded Boolean ® Indicates if the sublist will be expanded or
collapsed

Description
The command INSERT LIST ITEM inserts a new item in the list whose reference number
you pass in list.

If you pass * as second parameter, the item is inserted before the current selected item in
the list. In this case, the newly inserted item will also become the selected item.

Otherwise, if you want to insert an item before a specific item, you pass the item
reference number of that item. In this case, the newly inserted item is not automatically
selected. If there is no item with that item reference number, the command does
nothing.

You pass the text and the item reference number of the new item in itemText and itemRef.

Note: Even if they both are optional, the sublist and expanded parameters must be passed
jointly.

Example
The following code inserts an item (with no attached sublist) just before the item
currently selected in the list hList:

vlUniqueRef:=vlUniqueRef+1
Þ INSERT LIST ITEM(hList;*;"New Item";vlUniqueRef)

REDRAW LIST(hList)

See Also
APPEND TO LIST.

4th Dimension Language Reference 529

SET LIST ITEM PROPERTIES Hierarchical Lists

version 6.0
__

SET LIST ITEM PROPERTIES (list; itemRef; enterable; styles; icon)

Parameter Type Description
list ListRef ® List reference number
itemRef Number ® Item reference number, or

0 for last item appended to the list
enterable Boolean ® TRUE = Enterable, FALSE = Non-enterable
styles Number ® Font style for the item
icon Number ® ‘cicn’ MacOS-based resource ID, or

65536 + ‘PICT’ MacOS-based resource ID, or
131072 + Picture Reference Number

Description
The command SET LIST ITEM PROPERTIES modifies the item whose item reference number
is passed in itemRef within the list whose reference number is passed in list.

If there is no item with the item reference number that is passed, the command does
nothing. You can optionally pass 0 in itemRef to modify the last item added to the list
using APPEND TO LIST.

If you work with item reference numbers, build a list in which items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, refer to the description of thecommand APPEND TO LIST.

Note: To change the text of the item or its sublist, use the command SET LIST ITEM.

To make an item enterable, pass TRUE in enterable; otherwise, pass FALSE.

Important: In order for an item to be enterable, it must belong to a list that is enterable.
To make a whole list enterable, use the SET ENTERABLE command. To make an individual
list item enterable, use SET LIST ITEM PROPERTIES. Changing the enterable property at the
list level does not affect the enterable properties of the items. However, an item can be
enterable only if its list is enterable.

530 4th Dimension Language Reference

You specify the font style of the item in the styles parameter. You pass a combination
(one or a sum) of the following predefined constants:

Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the styles Plain or a combination of Bold, Italic, and Underline are
available.

To associate an icon to the item, pass one of the following numeric values:
• N, where N is the resource ID of MacOS-based ‘cicn’ resource
• Use PICT resource+N, where N is the the resource ID of a MacOS-based ‘PICT’ resource
• Use PicRef+N, where N is the reference number of a Picture from the Design
environment Picture Library

Pass zero (0), if you do not want any graphic for the item.

Note: Use PICT resource and Use PicRef are predefined constants provided by 4D.

Example
See the example for the command APPEND TO LIST.

See Also
GET LIST ITEM PROPERTIES, SET LIST ITEM.

4th Dimension Language Reference 531

GET LIST ITEM PROPERTIES Hierarchical Lists

version 6.0
__

GET LIST ITEM PROPERTIES (list; itemRef; enterable{; styles{; icon}})

Parameter Type Description
list ListRef ® List reference number
itemRef Number ® Item reference number
enterable Boolean ¬ TRUE = Enterable, FALSE = Non-enterable
styles Number ¬ Font style for the item
icon Number ¬ ‘cicn’ MacOS-based resource ID, or

65536 + ‘PICT’ MacOS-based resource ID, or
131072 + Picture Reference Number

Description
The command GET LIST ITEM PROPERTIES returns the properties of the item whose
reference number is passed in itemRef within the list whose list reference number is passed
in list.

After the call:
• enterable returns TRUE if the item is enterable.
• styles returns the font style of the item.
• icon returns the icon or picture assigned to the item, 0 if none.

For details about these properties, see the description of the command SET LIST ITEM
PROPERTIES.

If there is no item with the item reference number that is passed, the command leaves
the parameters unchanged.

If you work with item reference numbers, build a list in which items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, refer to the description of the command APPEND TO LIST.

See Also
GET LIST ITEM, SET LIST ITEM, SET LIST ITEM PROPERTIES.

532 4th Dimension Language Reference

List item position Hierarchical Lists

version 6.0
__

List item position (list; itemRef) ® Number

Parameter Type Description
list ListRef ® List reference number
itemRef Number ® Item reference number

Function result Number ¬ Item position in expanded lists

Description
The command List item position returns the position of the item whose item reference
number is passed in itemRef, within the list whose list reference number is passed in list.

The position is expressed relative to the top item of the main list, using the current
expanded/collapsed state of the list and its sublist.

The result is therefore a number between 1 and the value returned by Count list items.

If the item is not visible because it is located in a collapsed list, List item position expands
the appropriate list to make the item visible.

If the item does not exist, List item position returns 0.

See Also
Count list items, SELECT LIST ITEM BY REFERENCE.

4th Dimension Language Reference 533

List item parent Hierarchical Lists

version 6.0
__

List item parent (list; itemRef) ® Number

Parameter Type Description
list ListRef ® List reference number
itemRef Number ® Item reference rumber

Function result Number ¬ Item reference number of parent item
0 if none

Description
The command List item parent returns the item reference number of a parent item.

You pass a list reference number in list; you pass the item reference number of an item of
the list in itemRef. In return, if the item reference number refers to an existing item in
the list and if this item is in a sublist (and therefore has a parent item), you obtain the
item reference number of a parent item.

If there is no item with the item reference number you passed or if the item has no
parent, List item parent returns 0 (zero).

If you work with item reference numbers, build a list in which the items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, see the description of the command APPEND TO LIST.

Examples
Given the list named hList shown here in the User environment:

534 4th Dimension Language Reference

The item reference numbers are set as follows:

Item Item Reference Number
a 100
a - 1 101
a - 2 102
b 200
b - 1 201
b - 2 202
b - 3 203

• In the following code, if the item “b - 3” is selected, the variable $vlParentItemRef gets
200, the item reference number of the item “b”:

$vlItemPos:=Selected list item(hList)
GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText)

Þ $vlParentItemRef:=List item parent(hList;$vlItemRef) ` $vlParentItemRef gets 200

• If the item “a - 1” is selected, the variable $vlParentItemRef gets 100, the item reference
number of the item “a”.

• If the item “a” or “b” is selected, the variable $vlParentItemRef gets 0, because these
items have no parent item.

See Also
GET LIST ITEM, List item position, SELECT LIST ITEM BY REFERENCE, SET LIST ITEM.

4th Dimension Language Reference 535

DELETE LIST ITEM Hierarchical Lists

version 6.0
__

DELETE LIST ITEM (list; itemRef | *{; *})

Parameter Type Description
list ListRef ® List reference number
itemRef | * Number | * ® Item reference number, or

* for current selected list item
* ® If specified, clear sublists (if any) from memory

If omitted, sublists (if any) are not cleared

Description
The command DELETE LIST ITEM deletes an item from the list whose list reference number
is passed in list.

If you pass * as second parameter, you delete the current selected item in the list.

Otherwise, you specify the item reference number of the item you want to delete. If there
is no item with the item reference number you passed, the command does nothing.

If you work with item reference numbers, build a list in which the items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, see the description of the command APPEND TO LIST.

No matter which item you delete, you should specify the optional * parameter to let 4D
automatically delete the sublist attached to the item, if any. If you do not specify the *
parameter, it is a good idea to have previously obtained the list reference number of the
(possible) sublist attached to the item, because eventually you will have to delete it, using
the command CLEAR LIST.

Example
The following code deletes the current selected item of the list hList. If the item has an
attached sublist, the sublist (as well as any sub-sublist) is cleared:

Þ DELETE LIST ITEM(hList;*;*)
` Do NOT forget to call REDRAW LIST otherwise the list won't be updated

REDRAW LIST(hList)

See Also
CLEAR LIST, GET LIST ITEM.

536 4th Dimension Language Reference

GET LIST ITEM Hierarchical Lists

version 6.0
__

GET LIST ITEM (list; itemPos; itemRef; itemText{; sublist{; expanded}})

Parameter Type Description
list ListRef ® List reference number
itemPos Number ® Position of item in expanded lists
itemRef Number ¬ Item reference number
itemText String ¬ Text of the list item
sublist ListRef ¬ Sublist list reference number (if any)
expanded Boolean ¬ If a sublist is attached:

TRUE = sublist is currently expanded
FALSE = sublist is currently collapsed

Description
The command GET LIST ITEM returns information about the item whose position is passed
in itemPos within the list whose reference number is passed in list.

The position must be expressed relatively, using the current expanded/collaped state of
the list and its sublist. You pass a position value between 1 and the value returned by
Count list items. If you pass a value outside this range, GET LIST ITEM returns your
parameters unchanged.

After the call, you retrieve:
• The item reference number of the item in itemRef.
• The text of the item in itemText.

If you passed the optional parameters sublist and expanded:
• subList returns the list reference number of the sublist attached to the item. If the item
has no sublist, subList returns zero (0).
• If the item has a sublist, expanded returns TRUE if the sublist is currently expanded, and
FALSE if it is collapsed.

4th Dimension Language Reference 537

Example
hList is a list whose items have unique reference numbers. The following code
programmatically toggles the expanded/collapsed state of the sublist, if any, attached to
the current selected item:

$vlItemPos:=Selected list item(hList)
If ($vlItemPos>0)

Þ GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText;$hSublist;$vbExpanded)
If (Is a list($hSublist))

SET LIST ITEM(hList;$vlItemRef;$vsItemText;$vlItemRef;
$hSublist;Not($vbExpanded))

REDRAW LIST(hList)
End if

End if

See Also
GET LIST ITEM PROPERTIES, List item parent, List item position, Selected list item, SET LIST
ITEM, SET LIST ITEM PROPERTIES.

538 4th Dimension Language Reference

SET LIST ITEM Hierarchical Lists

version 6.0
__

SET LIST ITEM (list; itemRef; newItemText; newItemRef{; sublist{; expanded}})

Parameter Type Description
list ListRef ® List reference number
itemRef Number ® Item reference number

or 0 for last appended to the list
newItemText String ® New item text
newItemRef Number ® New item reference number
sublist ListRef ® New sublist attached to item, or

0 for no sublist (detaching current one, if any),
or -1 for no change

expanded Boolean ® Indicates if the optional sublist will be expanded
or collapsed

Description
The SET LIST ITEM command modifies the item whose item reference number is passed
in itemRef within the list whose reference number is passed in list.

If there is no item with the item reference number you passed, the command does
nothing. You can optionally pass 0 in itemRef to modify the last item added to the list
using APPEND TO LIST.

If you work with item reference numbers, build a list in which the items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, see the description of the command APPEND TO LIST.

You pass the new text for the item in newItemText. To change the item reference
number, pass the new value in newItemRef; otherwise, pass the same value as itemRef.

To attach a list to the item, pass the list reference number in subList. In this case, you also
specify if the newly sublist is expanded by passing TRUE in expanded; otherwise, pass
FALSE.

To detach a sublist already attached to the item, pass 0 (zero) in sublist. In this case, it is
a good idea to have previously obtained the reference number of that list using GET LIST
ITEM, so you can later delete the sublist using CLEAR LIST, if you no longer need it.

If you do not want to change the sublist property of the item, pass -1 in sublist.

Note: Even if they are optional, both the sublist and expanded parameters must be passed
jointly.

4th Dimension Language Reference 539

Example
1. hList is a list whose items have unique reference numbers. The following object method
for a button adds a child item to the current selected list item.

$vlItemPos:=Selected list item(hList)
If ($vlItemPos>0)

GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText;$hSublist;$vbExpanded)
$vbNewSubList:=Not(Is a list($hSublist))
If ($vbNewSubList)

$hSublist:=New list
End if
vlUniqueRef:=vlUniqueRef+1
APPEND TO LIST($hSubList;"New Item";vlUniqueRef)
If ($vbNewSubList)

SET LIST ITEM(hList;$vlItemRef;$vsItemText;$vlItemRef;$hSublist;True)
End if
SELECT LIST ITEM BY REFERENCE(hList;vlUniqueRef)
REDRAW LIST(hList)

End if

2. See example for the command GET LIST ITEM.
3. See example for the command APPEND TO LIST.

See Also
GET LIST ITEM, GET LIST ITEM PROPERTIES, SET LIST ITEM PROPERTIES.

540 4th Dimension Language Reference

Selected list item Hierarchical Lists

version 6.0
__

Selected list item (list) ® Long

Parameter Type Description
list ListRef ® List reference number

Function result Long ¬ Position of current selected list item
in expanded list

Description
The command Selected list item returns the position of the selected item in the list whose
reference number you pass in list.

You apply this command to a list displayed in a form to detect which item the user has
selected.

If the list has sublists, you apply the command to the main list (the one actually defined
in the form), not one of its sublists. The position is expressed relative to the top item of
the main list, using the current expanded/collapsed state of the list and its sublist.

Examples
Here a list named hList, shown in User environment:

Þ $vlItemPos:=Selected list item(hList) ` at this point $vlItemPos gets 2

Þ $vlItemPos:=Selected list item(hList) ` at this point $vlItemPos gets 4

4th Dimension Language Reference 541

Þ $vlItemPos:=Selected list item(hList) ` at this point $vlItemPos gets 7

Þ $vlItemPos:=Selected list item(hList) ` at this point $vlItemPos gets 5

See Also
SELECT LIST ITEM, SELECT LIST ITEM BY REFERENCE.

542 4th Dimension Language Reference

SELECT LIST ITEM Hierarchical Lists

version 6.0
__

SELECT LIST ITEM (list; itemPos)

Parameter Type Description
list ListRef ® List reference number
itemPos Number ® Position of item in expanded list

Description
The command SELECT LIST ITEM selects the item whose position is passed in itemPos
within the list whose reference number is passed in list. The parameter itemPos is a
position expressed using the current expanded/collapsed state of the list and its sublists.
You pass a position value between 1 and the value returned by Count list items. If you pass
a value outside this range, the first item is selected by default.

Examples
Given the list named hList, shown here in the User environment:

After the execution of this code:

Þ SELECT LIST ITEM(hList;Count list items(hList))
` Do NOT forget to call REDRAW LIST otherwise the list won't be updated

REDRAW LIST(hList)

The last visible list item is selected:

See Also
SELECT LIST ITEM BY REFERENCE, Selected list item.

4th Dimension Language Reference 543

SELECT LIST ITEM BY REFERENCE Hierarchical Lists

version 6.0
__

SELECT LIST ITEM BY REFERENCE (list; itemRef)

Parameter Type Description
list ListRef ® List reference number
itemRef Number ® Item reference number

Description
The command SELECT LIST ITEM BY REFERENCE selects the item whose item reference
number is passed in itemRef within the list whose reference number is passed in list.

If there is no item with the item reference number you passed, the command does
nothing.

If the item is not currently visible (i.e., it is located in a collapsed sublist), the command
expands the required sublist(s) so that the new selected item becomes visible.

If you work with item reference numbers, builds a list in which the items have unique
reference numbers, otherwise you will not be able to distinguish the items. For more
information, see the description of the command APPEND TO LIST.

Example
hList is a list whose items have unique reference numbers. The following object method
for a button selects the parent item (if any) of the current selected item:

` Get position of selected item
$vlItemPos:=Selected list item(hList)

` Get item ref. num. of selected item
GET LIST ITEM(hList;$vlItemPos;$vlItemRef;$vsItemText)

` Get item ref. num. of parent item (if any)
$vlParentItemRef:=List item parent(hList;$vlItemRef)
If ($vlParentItemRef>0)

` Select the parent item
Þ SELECT LIST ITEM BY REFERENCE(hList;List item parent(hList;$vlItemRef))

` Do NOT forget to call REDRAW LIST otherwise the list won't be updated
 REDRAW LIST(hList)

End if

See Also
SELECT LIST ITEM, Selected list item.

544 4th Dimension Language Reference

20 Import and Export

4th Dimension Language Reference 545

546 4th Dimension Language Reference

IMPORT TEXT Import and Export

version 3
__

IMPORT TEXT ({table; }document)

Parameter Type Description
table Table ® Table into which to import data, or

Default table, if omitted
document String ® Text document from which to import data

Description
The command IMPORT TEXT reads data from document, a Windows or Macintosh text
document, into the table table by creating new records for that table.

The import operation is performed through the current input form. The import operation
reads fields and variables based on the layering of objects in the input form. For this
reason, you should be very careful about the front-to-back order of text objects (fields and
variables) in the form. The first object into which data will be imported should be in the
back of the form, and so on. If the number of fields or variables in the form does not
match the number of fields being imported, the extra ones are ignored. An input form
used for importing cannot contain any buttons. Subform objects are ignored.

Note: One way to ensure that the data is imported into the correct objects is to select the
object into which the first field should be imported and move it to the front. Continue to
move fields and variables to the front in order, making sure that you have one field or
variable for each field being imported.

An On Validate event is sent to the form method for each record that is imported. If you
use variables in the import form, use this event to copy data from variables to fields, .

The document parameter can include a path that contains volume and folder names. If
you pass an empty string, the standard Open File dialog box is displayed. If the user
cancels this dialog, the import operation is canceled, and the OK system variable is set to
0.

A progress thermometer is displayed during import. The user can cancel the operation by
clicking a button labeled Stop. Records that have already been imported will not be
removed if the user presses the Stop button. If the import is successfully completed, the
OK system variable is set to 1. If an error occurs or the operation was interrupted, the OK
variable is set to 0. The thermometer can be hidden with the MESSAGES OFF command.

4th Dimension Language Reference 547

The import operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the import. An ASCII map can be used to convert the data coming from other platforms
that have a different ASCII table.

Using IMPORT TEXT, the default field delimiter is the tab character (ASCII 9). The default
record delimiter is the carriage return character (ASCII 13). You can change these defaults
by assigning values to the two delimiter system variables: FldDelimit and RecDelimit. The
user can change the
defaults in the User environment’s Import Data dialog box. Text fields may contain
carriage returns, therefore, be careful when using a carriage return as a delimiter if you are
importing text fields.

Example
The following example imports data from a text document. The method first sets the
input form so that the data will be imported through the correct form, changes the 4D
delimiter variables, then performs the import:

INPUT FORM([People]; "Import")
FldDelimit:=27 ` Set field delimiter to Escape character
RecDelimit:=10 ` Set record delimiter to Line Feed character

Þ IMPORT TEXT([People];"NewPeople") ` Import from “NewPeople” document

See Also
EXPORT TEXT, IMPORT DIF, IMPORT SYLK, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the import is successfully completed; otherwise, it is set to 0.

548 4th Dimension Language Reference

EXPORT TEXT Import and Export

version 3
__

EXPORT TEXT ({table; }document)

Parameter Type Description
table Table ® Table from which to export data, or

Default table, if omitted
document String ® Text document to receive the data

Description
The EXPORT TEXT command writes data from the records of the current selection of table
in the current process. The data is written to document, a Windows or Macintosh text
document on the disk.

The export operation is performed through the current output form. The export
operation writes fields and variables based on the entry order of the output form. For this
reason, use an output form that contains only the fields or enterable objects that you
wish to export. Do not place buttons or other extraneous objects on the export form.
Subform objects are ignored.

An On Load event is sent to the form method for each record that is exported. Use this
event to set the variables you may use in the export form.

The document parameter can name a new or existing document. If document is given the
same name as an existing document, the existing document is overwritten. The document
can include a path that contains volume and folder names. If you pass an empty string,
the standard Save File dialog box is displayed. If the user cancels this dialog, the export
operation is canceled, and the OK system variable is set to 0.

A progress thermometer is displayed during export. The user can cancel the operation by
clicking a Stop button. If the export is successfully completed, the OK system variable is
set to 1. If the operation is canceled or an error occurs, the OK system variable is set to 0.
The thermometer can be hidden with the MESSAGES OFF command.

The export operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the export. An ASCII map can be used to convert the data for use on other platforms that
have a different ASCII table.

4th Dimension Language Reference 549

Using EXPORT TEXT, the default field delimiter is the tab character (ASCII 9). The default
record delimiter is the carriage return character (ASCII 13). You can change these defaults
by assigning values to the two delimiter system variables: FldDelimit and RecDelimit. The
user can change the defaults in the User environment Export Data dialog box. Text fields
may contain carriage returns, so be careful when using a carriage return as a delimiter if
you are exporting text fields.

Example
This example exports data to a text document. The method first sets the output form so
that the data will be exported through the correct form, changes the 4D delimiter
variables, then performs the export:

OUTPUT FORM([People];"Export")
FldDelimit:=27 ` Set field delimiter to Escape character
RecDelimit:=10 ` Set record delimiter to Line Feed character

Þ EXPORT TEXT([People];"NewPeople") ` Export to the "NewPeople" document

See Also
EXPORT DIF, EXPORT SYLK, IMPORT TEXT, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the export is successfully completed; otherwise, it is set to 0.

550 4th Dimension Language Reference

IMPORT SYLK Import and Export

version 3
__

IMPORT SYLK ({table; }document)

Parameter Type Description
table Table ® Table into which to import data, or

Default table, if omitted
document String ® SYLK document from which to import data

Description
The command IMPORT SYLK reads data from document, a Windows or Macintosh SYLK
document, into the table table by creating new records for that table.

The import operation is performed through the current input form. The import operation
reads fields and variables based on the layering of objects in the input form. For this
reason, you should be very careful about the front-to-back order of text objects (fields and
variables) in the form. The first object into which data will be imported should be in the
back of the form, and so on. If the number of fields or variables in the form does not
match the number of fields being imported, the extra ones are ignored. An input form
used for importing cannot contain any buttons. Subform objects are ignored.

Note: One way to ensure that the data is imported into the correct objects is to select the
object into which the first field should be imported and move it to the front. Continue to
move the fields and variables to the front, in order, making sure that you have one field
or variable for each field being imported.

An On Validate event is sent to the form method for each record that is imported. If you
use variables in the import form, use this event to copy data from variables to fields, .

The document parameter can include a path that contains volume and folder names. If
you pass an empty string, the standard Open File dialog box is displayed. If the user
cancels this dialog, the import operation is canceled, and the OK system variable is set to
0.

A progress thermometer is displayed during the import. The user can cancel the operation
by clicking a Stop button. Records that have already been imported will not be removed if
the user presses the Stop button. If the import is successfully completed, the OK system
variable is set to 1. If an error occurs or the operation was interrupted, the OK variable is
set to 0. The thermometer can be hidden with the MESSAGES OFF command.

4th Dimension Language Reference 551

The import operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the import. An ASCII map can be used to convert the data coming from platforms that
have a different ASCII table.

Example
The following example imports data from a SYLK document. The method first sets the
input form so the data will be imported through the correct form, then performs the
import:

INPUT FORM([People]; "Import")
Þ IMPORT SYLK([People];"NewPeople") ` Import from “NewPeople” document

See Also
EXPORT SYLK, IMPORT DIF, IMPORT TEXT, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the import is successfully complete; otherwise, it is set to 0.

552 4th Dimension Language Reference

EXPORT SYLK Import and Export

version 3
__

EXPORT SYLK ({table; }document)

Parameter Type Description
table Table ® Table from which to export data, or

Default table, if omitted
document String ® SYLK document to receive the data

Description
The command EXPORT SYLK writes data from the records of the current selection of table
in the current process. The data is written to document, a Windows or Macintosh Sylk
document on the disk.

The export operation is performed through the current output form. The export
operation writes fields and variables based on the entry order of the output form. For this
reason, you should use an output form that contains only the fields or enterable objects
that you wish to export. Do not place buttons or other extraneous objects on the export
form. Subform objects are ignored.

An On Load event is sent to the form method for each record that is exported. Use this
event to set the variables you may use in the export form.

The document parameter can name a new or existing document. If document is given the
same name as an existing document, the existing document is overwritten. The document
can include a path that contains volume and folder names. If you pass an empty string,
the standard Save File dialog box is displayed. If the user cancels this dialog, the export
operation is canceled, and the OK system variable is set to 0.

A progress thermometer is displayed during export. The user can cancel the operation by
clicking a Stop button. If the export is successfully completed, the OK system variable is
set to 1. If the operation is canceled or an error occurs, the OK system variable is set to 0.
The thermometer can be hidden with the MESSAGES OFF command.

The export operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the export. An ASCII map can be used to convert the data for use on platforms that have
a different ASCII table.

4th Dimension Language Reference 553

Example
The following example exports data to a SYLK document. The method first sets the
output form so that the data will be exported through the correct form, then performs
the export:

OUTPUT FORM([People];"Export")
Þ EXPORT SYLK([People];"NewPeople") ` Export to the "NewPeople" document

See Also
EXPORT DIF, EXPORT TEXT, IMPORT SYLK, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the export is successfully completed; otherwise, it is set to 0.

554 4th Dimension Language Reference

IMPORT DIF Import and Export

version 3
__

IMPORT DIF ({table; }document)

Parameter Type Description
table Table ® Table into which to import data, or

Default table, if omitted
document String ® DIF document from which to import data

Description
The command IMPORT DIF reads data from document, a Windows or Macintosh DIF
document, into the table table by creating new records for that table.

The import operation is performed through the current input form. The import operation
reads fields and variables based on the layering of objects in the input form. For this
reason, you should be very careful about the front-to-back order of text objects (fields and
variables) in the form. The first object into which data will be imported should be in the
back of the form, and so on. If the number of fields or variables in the form does not
match the number of fields being imported, the extra ones are ignored. An input form
used for importing cannot contain any buttons. Subform objects are ignored.

Note: One way to ensure that the data is imported into the correct objects is to select the
object into which the first field should be imported and move it to the front. Continue to
move the fields and variables to the front, in order, making sure that you have one field
or variable for each field being imported.

An On Validate event is sent to the form method for each record that is imported. Use this
event to copy data from variables to fields, if you use variables in the import form.

The document parameter can include a path that contains volume and folder names. If
you pass an empty string, the standard Open File dialog box is displayed. If the user
cancels this dialog, the import operation is canceled, and the OK system variable is set to
0.

A progress thermometer is displayed during import. The user can cancel the operation by
clicking a Stop button. Records that have already been imported will not be removed if
the user presses the Stop button. If the import is successfully completed, the OK system
variable is set to 1. If an error occurs or the operation was interrupted, the OK variable is
set to 0. The thermometer can be hidden with the MESSAGES OFF command.

4th Dimension Language Reference 555

The import operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the import. An ASCII map can be used to convert the data coming from platforms that
have a different ASCII table.

Example
The following example imports data from a DIF document. The method first sets the
input form so that the data will be imported through the correct form, then performs the
import:

INPUT FORM([People]; "Import")
Þ IMPORT DIF([People];"NewPeople") ` Import from “NewPeople” document

See Also
EXPORT DIF, IMPORT SYLK, IMPORT TEXT, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the import is successfully completed; otherwise, it is set to 0.

556 4th Dimension Language Reference

EXPORT DIF Import and Export

version 3
__

EXPORT DIF ({table; }document)

Parameter Type Description
table Table ® Table from which to export data,or

Default table, if omitted
document String ® DIF document to receive the data

Description
The command EXPORT DIF writes data from the records of the current selection of table
in the current process. The data is written to document, a Windows or Macintosh DIF
document on the disk.

The export operation is performed through the current output form. The export
operation writes fields and variables based on the entry order of the output form. For this
reason, you should use an output form that contains only the fields or enterable objects
that you wish to export. Do not place buttons or other extraneous objects on the export
form. Subform objects are ignored.

An On Load event is sent to the form method for each record that is exported. Use this
event to set the variables you may use in the export form.

The document parameter can name a new or existing document. If document is given the
same name as an existing document, the existing document is overwritten. The document
can include a path that contains volume and folder names. If you pass an empty string,
the standard Save File dialog box is displayed. If the user cancels this dialog, the export
operation is canceled, and the OK system variable is set to 0.

A progress thermometer is displayed during export. The user can cancel the operation by
clicking a Stop button. If the export is successfully completed, the OK system variable is
set to 1. If the operation is canceled or an error occurs, the OK system variable is set to 0.
The thermometer can be hidden with the MESSAGES OFF command.

The export operation is made using the default ASCII map for the platform on which it is
executed, unless you change the ASCII map (using the command USE ASCII MAP) prior to
the export. An ASCII map can be used to convert the data for use on platforms that have
a different ASCII table.

4th Dimension Language Reference 557

Example
The following example exports data to a DIF document. The method first sets the output
form so that the data will be exported through the correct form, then performs the
export:

OUTPUT FORM([People];"Export")
Þ EXPORT DIF([People];"NewPeople") ` Export to the "NewPeople" document

See Also
EXPORT SYLK, EXPORT TEXT, IMPORT DIF, USE ASCII MAP.

System Variables and Sets
OK is set to 1 if the export is successfully completed; otherwise, it is set to 0.

558 4th Dimension Language Reference

21 Interruptions

4th Dimension Language Reference 559

560 4th Dimension Language Reference

ON EVENT CALL Interruptions

version 3
__

ON EVENT CALL (eventMethod{; processName})

Parameter Type Description
eventMethod String ® Event method to be invoked, or

Empty string to stop intercepting events
processName String ® Process name

Description
The command ON EVENT CALL installs the method, whose name you pass in
eventMethod, as the method for catching (trapping) events. This method is called the
event-handling method or event-catching method.

Tip: This command requires advanced programming knowledge. Usually, you do not need
to use ON EVENT CALL for working with events. While using forms, 4th Dimension
handles the events and sends them to the appropriate forms and objects.

Tip: Version 6 introduces new commands, such as GET MOUSE, Shift down, etc., for
getting information about events. These commands can be called from within object
methods to get the information you need about an event involving an object. Using
them spares you the writing of an algorithm based on the ON EVENT CALL scheme.

The scope of this command is the current working session. By default, the method is run
in a separate local process. You can have only one event-handling method at a time. To
stop catching events with a method, call ON EVENT CALL again and pass the empty string
in eventMethod.

As the event-handling method is run in a separate process, it is constantly active, even if
no 4th Dimension method is running. After installation, 4th Dimension calls the event-
handling method each time an event occurs. An event can be a mouse click or a
keystroke.

The optional processName parameter names the process created by the ON EVENT CALL
command. If processName is prefixed with a dollar sign ($), a local process is started,
which is usually what you want. If you omit the processName parameter, 4D creates, by
default, a local process named $Event Manager.

4th Dimension Language Reference 561

WARNING: Be very careful in what you do within an event-handling method. Do NOT
call commands that generate events, otherwise it will be extremely difficult to get out of
the event-handling method execution. The key combination Ctrl+Shift+Backspace (on
Windows) or Command-Shift-Option-Control-Backspace (on Macintosh) converts the
Event Manager process into a normal process. This means that the method will no longer
be automatically passed all the events that occur. You may want to use this technique to
recover an event-handing gone wrong (i.e., one that has bugs triggering events).

In the event-handling method, you can read the following system
variables—MouseDown, KeyCode, Modifiers, MouseX, MouseY, and MouseProc. Note that
these variables are process variables. Their scope is therefore the event-handling process.
Copy them into interprocess variables if you want their values available in another
process.

• The MouseDown system variable is set to 1 if the event is a mouse click, and to 0 if it is
not.
• The KeyCode system variable is set to the ASCII code for a keystroke. This variables may
return an ASCII code or a function key code. These codes are listed in the sections ASCII
Codes (and its subsections) and Function Key Codes. 4D provides predefined constants for
the major ASCII Codes and for Function Key Codes. In the Explorer window, look for the
themes of these constants.
• The Modifiers system variable contains the modifier value. The Modifiers system variable
indicates whether any of the following modifier keys were down when the event
occurred:

Platform Modifiers
Windows Shift key, Caps Lock, Alt key, Ctrl key, Right mouse button
Macintosh Shift key, Caps Lock, Option key, Command key, Control key

Notes
- The Windows ALT key is equivalent to the Macintosh Option key
- The Windows Ctrl key is equivalent to the Macintosh Command key
- The Macintosh Control key has no equivalent on Windows. However, a right mouse
button click on Windows, is equivalent to a Control-Click on Macintosh.

The modifier keys do not generate an event; another key or the mouse button must also
be pressed. The Modifiers variable is a 4-byte Long Integer variable that should be seen as
an array of 32 bits. 4D provides predefined constants expressing bit positions or bit masks
for testing the bit corresponding to each modifier key. For example, to detect if the Shift
key was pressed for the event, you can write:

If (Modifiers ?? Shift key bit) ` If the Shift key was down
or:

If ((Modifiers & Shift key mask)#0)` If the Shift key was down

562 4th Dimension Language Reference

• The system variables MouseX and MouseY contain the horizontal and vertical positions
of the mouse click, expressed in the local coordinate system of the window where the
click occurred. The upper left corner of the window is position 0,0. These are meaningful
only when there is a mouse click.

• The MouseProc system variable contains the process reference number of the process in
which the event occurred (mouse click).

Important: The system variables MouseDown, KeyCode, Modifiers, MouseX, MouseY, and
MouseProc contain significant values only within an event-hanlding method installed
with ON EVENT CALL.

Example
This example will cancel printing if the user presses Ctrl-period. First, the event-handling
method is installed. Then a message is displayed, announcing that the user can cancel
printing. If the interprocess variable àvbWeStop is set to True in the event-handling
method, the user is alerted to the number of records that have already been printed. Then
the event-handling method is deinstalled:

PAGE SETUP
If (OK=1)

àvbWeStop:=False
Þ ON EVENT CALL("EVENT HANDLER") ` Installs the event-handling method

ALL RECORDS([People])
MESSAGE("To interrupt printing press Ctrl-Period")
$vlNbRecords:=Records in selection([People])
For ($vlRecord;1;$vlNbRecords)

If (àvbWeStop)
ALERT("Printing cancelled at record "+String($vlRecord)+

" of "+String($vlNbRecords))
$vlRecord:=$vlNbRecords+1

Else
PRINT FORM([People];"Special Report")

End if
End for
PAGE BREAK

Þ ON EVENT CALL("") ` Deinstalls the event-handling method
End if

4th Dimension Language Reference 563

If Ctrl-period has been pressed, the event-handling method sets àvbWeStop to True:

` EVENT HANDLER project method
If ((Modifiers ?? Command key bit) & (KeyCode = Period))

CONFIRM("Are you sure?")
If (OK=1)

àvbWeStop:=True
FILTER EVENT ` Do NOT forget this call otherwise 4D will also get this event

End if
End if

Note that this example uses ON EVENT CALL, because it performs a special printing report
using the commands PAGE SETUP, PRINT FORM and PAGE BREAK with a For loop.

If you print a report using PRINT SELECTION, you do NOT need to handle events that let
the user interrupt the printing; PRINT SELECTION does that for you.

See Also
FILTER EVENT, GET MOUSE, Shift down.

564 4th Dimension Language Reference

FILTER EVENT Interruptions

version 3
__

FILTER EVENT

Parameter Type Description
This command does not require any parameters

Description
You call the FILTER EVENT command from within an event-handling project method
installed using the ON EVENT CALL command.

If an event-handling method calls FILTER EVENT, the current event is not passed to 4D.

This command allows you to remove the current event (i.e., click, keystroke) from the
event queue, so 4D will not perform any additional treatment to the one you made in the
event-handling project method.

WARNING: Avoid creating an event-handling method that only calls the FILTER EVENT
command, because all the events are going to be ignored by 4D. In case you have an
event-handling method with only the FILTER EVENT command, type
Ctrl+Shift+Backspace (on Windows) or Command-Option-Shift-Control-Backspace (on
Macintosh). This converts the On Event Call process into a normal process that does not
get any events at all.

Example
See example for the command ON EVENT CALL.

See Also
ON EVENT CALL.

4th Dimension Language Reference 565

ON ERR CALL Interruptions

version 3
__

ON ERR CALL (errorMethod)

Parameter Type Description
errorMethod String ® Error method to be invoked, or

Empty string to stop trapping errors

Description
The command ON ERR CALL installs the project method, whose name you pass in
errorMethod, as the method for catching (trapping) errors. This project method is called
the error-handling method or error-catching method.

The scope of this command is the current process. You can have only one error-handling
method per process at a time, but you can have different error-handling methods for
several processes.

To stop the trapping of errors, call ON ERR CALL again and pass the empty string in
errorMethod.

Once an error-handling project is installed, 4th Dimension calls the method each time an
error occurs.

You can identify errors by reading the Error system variable, which contains the code
number of the error. Error codes are listed in the theme Error codes. For more
information, see the section Syntax Errors or Database Engine Errors. The Error variable
value is significant only within the error-handling method; if you need the error code
within the method that provoked the error, copy the Error variable to your own process
variable.

The error-handling method should manage the error in an appropriate way or present an
error message to the user. Errors can be generated by:
• The 4th Dimension database engine; for example, when saving a record tries to
duplicate a unique index key.
• The 4th Dimension environment; for example, when you do not have enough memory
for allocating an array.
• The operating system on which the database is runs; for example, disk full or I/O errors.

The ABORT command can be used to terminate processing. If you don’t call ABORT in the
error-handling method, 4th Dimension returns to the interrupted method and continues
to execute the method. Use the ABORT command when an error cannot be recovered.

566 4th Dimension Language Reference

If an error occurs in the error-handling method itself, 4th Dimension takes over error
handling. Therefore, you should make sure that the error-handling method cannot
generate an error. Also, you cannot use ON ERR CALL inside the error-handling method.

When an ON ERR CALL error-handling method is installed, it is not possible to trace a
method by using Alt+Click (on Windows) or Option-Click (on Macintosh). This is
because Alt+Click and Option-Click) generate an error (error code 1006) that immediately
activates the ON ERR CALL error-handling method. However, you can test this error code
by calling TRACE.

Examples
1. The following project method tries to create a document whose name is received as
parameter. If the document cannot be created, the project metod returns 0 (zero) or the
error code:

` Create doc project method
` Create doc (String ; Pointer) -> LongInt
` Create doc (DocName ; ->DocRef) -> Error code result

gError:=0
Þ ON ERR CALL("IO ERROR HANDLER")

$2->:=Create document($1)
Þ ON ERR CALL("")

$0:=gError

The IO ERROR HANDLER project method is listed here:

` IO ERROR HANDLER project method
gError:=Error ` just copy the error code to the process variable gError

Note the use of the gError process variable to get the error code result within the current
executing method. Once these methods are present in your database, you can write:

` ...
C_TIME(vhDocRef)
$vlErrCode:=Create doc($vsDocumentName;->vhDocRef)
If ($vlErrCode=0)

`...
CLOSE DOCUMENT($vlErrCode)

Else
ALERT ("The document could not be created, I/O error "+String($vlErrCode))

End if

2. See example in the section Arrays and Memory.

4th Dimension Language Reference 567

3. While implementing a complex set of operations, you may end up with various
subroutines that require different error-handling methods. You can have only one error-
handling method per process at a time, so you have two choices:
 - Keep track of the current one each time you call ON ERR CALL, or
- Use a process array variable (in this case, asErrorMethod) to “pile up” the error-handling
methods and a project method (in this case, ON ERROR CALL) to install and deinstall the
error-handling methods.

You must initialize the array at the very beginning of the process execution:

` Do NOT forget to initialize the array at the beginning
` of the process method (the project method that runs the process)

ARRAY STRING(63;asErrorMethod;0)

Here is the custom ON ERROR CALL method:

` ON ERROR CALL project method
` ON ERROR CALL { (String) }
` ON ERROR CALL { (Method Name) }

C_STRING(63;$1;$ErrorMethod)
C_LONGINT($vlElem)

If (Count parameters>0)
$ErrorMethod:=$1

Else
$ErrorMethod:=""

End if

If ($ErrorMethod#"")
C_LONGINT(gError)
gError:=0
$vlElem:=1+Size of array(asErrorMethod)
INSERT ELEMENT(asErrorMethod;$vlElem)
asErrorMethod{$vlElem}:=$1
ON ERR CALL($1)

Else
ON ERR CALL("")
$vlElem:=Size of array(asErrorMethod)
If ($vlElem>0)

DELETE ELEMENT(asErrorMethod;$vlElem)
If ($vlElem>1)

ON ERR CALL(asErrorMethod{$vlElem-1})
End if

End if
End if

568 4th Dimension Language Reference

Then, you can call it this way:

gError:=0
ON ERROR CALL("IO ERRORS") ` Installs the IO ERRORS error-handling method

` ...
ON ERROR CALL("ALL ERRORS") ` Installs the ALL ERRORS error-handling method

` ...
ON ERROR CALL ` Deinstalls the ALL ERRORS error-handling method and reinstalls IO

ERRORS
` ...

ON ERROR CALL ` Deinstalls the IO ERRORS error-handling method
` ...

4. The following error-handling method ignores the user interruptions:

` SHOW ONLY ERRORS project method
If (Error#1006)

ALERT ("The error "+String(Error)+" occurred.")
End if

See Also
ABORT.

4th Dimension Language Reference 569

ABORT Interruptions

version 3

Note: You will rarely call this command.

__

ABORT

Parameter Type Description
This command does not require any parameters

Description
The command ABORT is to be used from within an error-handling project method
installed using the command ON ERR CALL.

If you do not have an error-handling project method, when an error occurs (for example,
a database engine error) 4D displays its standard error dialog box and then interrupts the
execution of your code. If the code being executed is:
• An object method, form method (or a project method called by a form or object
method), the control returns to the form currently being displayed.
• A method called from a menu, the control returns to the menu bar or to the form
currently being displayed.
• The master method of a process, the process then ends.
• A method called directly or indirectly by an import or export operation, the operation is
stopped. The same is true for sequential queries or order by operations.
• And so on...

If you use an error-handling project method to catch errors, 4D neither displays its
standard error dialog box nor interrupts the execution of your code. Instead, 4D calls your
error-handling project method (that you can see as an exception handler), and resumes
the execution to the next line of code in the method that triggered the error.

There are errors you can treat programmatically; for example, during an import operation,
if you catch a database engine duplicated value error, you can “cover” the error and
pursue the import. However, there are errors that you cannot process and errors that you
should not “cover.” In these cases, you need to stop the execution by calling ABORT from
within the error-handling project method.

Historical Note
Although the ABORT command is intended to be used only from within a error-handling
project method, some members of the 4D community also use it to interrupt execution in
other project methods. The fact that it works is only a side effect. We do not recommend
the use of this command in methods other than error-handling methods.

570 4th Dimension Language Reference

22 Language

4th Dimension Language Reference 571

572 4th Dimension Language Reference

Count parameters Language

version 3
__

Count parameters ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of parameters actually passed

Description
The command Count parameters returns the number of parameters passed to a project
method.

WARNING: Count parameters is meaningful only in a project method that has been called
by another method (project method or other). If the project method calling Count
parameters is associated with a menu, Count parameters returns 0.

Examples
1. 4th Dimension project methods accept optional parameters, starting from the right.
For example, you can call the method MyMethod(a;b;c;d) in the following ways:

MyMethod (a ; b ; c ; d) ` All parameters are passed
MyMethod (a ; b ; c) ` The last parameter is not passed
MyMethod (a ; b) ` The last two parameters are not passed
MyMethod (a) ` Only the first parameter is passed
MyMethod ` No Parameter is passed at all

Using Count parameters from within MyMethod, you can detect the actual number of
parameters and perform different operations depending on what you have received. The
following example displays a text message and can insert the text into a 4D Write area or
send the text into a document on disk:

` APPEND TEXT Project Method
` APPEND TEXT (Text { ; Long { ; Time } })
` APPEND TEXT (Text { ; 4D Write Area { ; DocRef } })

C_TEXT ($1)
C_TIME ($2)
C_LONGINT ($3)

MESSAGE ($1)
Þ If (Count parameters>=3)

SEND PACKET ($3;$1)
Else

4th Dimension Language Reference 573

Þ If (Count parameters>=2)
WR INSERT TEXT ($2;$1)

End if
End if

After this project method has been added to your application, you can write:

APPEND TEXT (vtSomeText) ` Will only display the text message
APPEND TEXT (vtSomeText;$wrArea) ` Will display the text message and append it to

$wrArea
APPEND TEXT (vtSomeText;0;$vhDocRef) ` Will display the text message and write it to

$vhDocRef

2. 4th Dimension project methods accept a variable number of parameters of the same
type, starting from the right. To declare these parameters, you use a compiler directive to
which you pass ${N} as a variable, where N specifies the first parameter. Using Count
parameters you can address those parameters with a For loop and the parameter
indirection syntax. This example is a function that returns the greatest number received
as parameter:

` Max of Project Method
` Max of (Real { ; Real2... ; RealN }) -> Real
` Max of (Value { ; Value2... ; ValueN }) -> Greatest value

C_REAL ($0;${1}) ` All parameters will be of type REAL as well as the function result
$0:=${1}

Þ For ($vlParam;2;Count parameters)
If (${$vlParam}>$0)

$0:=${$vlParam}
End if

End for

After this project method has been added to your application, you can write:
vrResult:=Max of (Records in set("Operation A");Records in set("Operation B"))

or:
vrResult:=Max of (r1;r2;r3;r4;r5;r6)

See Also
Compiler commands, C_BLOB, C_BOOLEAN, C_DATE, C_GRAPH, C_INTEGER, C_LONGINT,
C_PICTURE, C_POINTER, C_REAL, C_STRING, C_TEXT, C_TIME.

574 4th Dimension Language Reference

Type Language

version 6.0 (Modified)
__

Type (fieldVar) ® Number

Parameter Type Description
fieldVar Field | Variable ® Field or Variable to be tested

Function result Number ¬ Data type number

Description
The command Type returns a numeric value that denotes the type of the field or variable
you pass as fieldVar.

4th Dimension provides the following predefined constants:

Constant Type Value
Is Alpha Field Long Integer 0
Is String Var Long Integer 24
Is Text Long Integer 2
Is Real Long Integer 1
Is Integer Long Integer 8
Is LongInt Long Integer 9
Is Date Long Integer 4
Is Time Long Integer 11
Is Boolean Long Integer 6
Is Picture Long Integer 3
Is Subtable Long Integer 7
Is BLOB Long Integer 30
Is Undefined Long Integer 5
Is Pointer Long Integer 23
String array Long Integer 21
Text array Long Integer 18
Real array Long Integer 14
Integer array Long Integer 15
LongInt array Long Integer 16
Date array Long Integer 17
Boolean array Long Integer 22
Picture array Long Integer 19
Pointer array Long Integer 20
Array 2D Long Integer 13

4th Dimension Language Reference 575

Compatibility Note: In previous versions of 4D, Type returned 3 (Is Picture) when applied
to a Graph variable declared using the command C_GRAPH. Starting with version 6, Type
returns 9 (Is LongInt) when applied to a Graph variable.

You can apply Type to fields, interprocess variables, process variables, local variables, and
dereferenced pointers referring to these types of objects.

Version 6 Note: Starting with version 6, you can apply Type to parameters ($1,$2...,
${...}), or to project method or function results ($0).

Examples
1. See example for the APPEND TO CLIPBOARD command.

2. See example for DRAG AND DROP PROPERTIES command.

3. The following project method empties some or all of the fields for the current record of
the table whose a pointer is passed as parameter. It does this without deleting or changing
the current record:

` EMPTY RECORD Project Method
` EMPTY RECORD (Pointer {; Long })
` EMPTY RECORD (-> [Table] { ; Type Flags })

C_POINTER ($1)
C_LONGINT ($2;$vlTypeFlags)

If (Count parameters>=2)
$vlTypeFlags:=$2

Else
$vlTypeFlags:=0xFFFFFFFF

End if
For ($vlField;1;Count fields($1))

$vpField:=Field(Table($1);$vlField)
$vlFieldType:=Type($vpField->)
If ($vlTypeFlags ?? $vlFieldType)

Case of
: (($vlFieldType=Is Alpha Field)|($vlFieldType=Is Text))

$vpField->:=""
: (($vlFieldType=Is Real)|($vlFieldType=Is Integer)|($vlFieldType=Is LongInt))

$vpField->:=0
: ($vlFieldType=Is Date)

$vpField->:=!00/00/00!
: ($vlFieldType=Is Time)

$vpField->:=?00:00:00?
: ($vlFieldType=Is Boolean)

$vpField->:=False

576 4th Dimension Language Reference

: ($vlFieldType=Is Picture)
C_PICTURE($vgEmptyPicture)
$vpField->:=$vgEmptyPicture

: ($vlFieldType=Is Subtable)
Repeat

ALL SUBRECORDS($vpField->)
DELETE SUBRECORD($vpField->)

Until(Records in subselection($vpField->)=0)
: ($vlFieldType=Is BLOB)

SET BLOB SIZE($vpField->;0)
End case

End if
End for

After this project method is implemented in your database, you can write:

` Empty the whole current record of the table [Things To Do]
EMPTY RECORD (->[Things To Do])

` Empty Text, BLOB and Picture fields for the current record
` of the table [Things To Do]

EMPTY RECORD (->[Things To Do]; 0 ?+ Is Text ?+ Is BLOB ?+ Is Picture)

` Empty the whole current record of the table [Things To Do]
` except Alphanumeric fields

EMPTY RECORD (->[Things To Do]; -1 ?- Is Alpha Field)

See Also
Is a variable, Undefined.

4th Dimension Language Reference 577

Self Language

version 3
__

Self ® Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ¬ Pointer to form object (if any)
whose method is currently being executed.
Otherwise Nil (->[]) if outside of context

Description
The command Self returns a pointer to the object whose object method is currently being
executed.

Self is used to reference a variable within its own object method. It returns a valid pointer
only when it is called from within an object method. It cannot be used in a project
method, even when called from an object method. If Self is called out of context, it
returns a Nil pointer (->[]).

Tip: Self is useful when several objects on a form need to perform the same task, yet
operate on themselves.

Example
 See the example for the RESOLVE POINTER command.

See Also
RESOLVE POINTER.

578 4th Dimension Language Reference

RESOLVE POINTER Language

version 6.0
__

RESOLVE POINTER (pointer; varName; tableNum; fieldNum)

Parameter Type Description
pointer Pointer ® Pointer for which to retrieve

the referenced object
varName String ¬ Name of referenced variable or empty string
tableNum Number ¬ Number of referenced table or array element

or 0 or -1
fieldNum Number ¬ Number of referenced field or 0

Description
The command RESOLVE POINTER retrieves the information of the object referenced by
the pointer expression pointer and returns it into the parameters varName, tableNum, and
fieldNum.

Depending on the nature of the referenced object, RESOLVE POINTER returns the
following values:

Referenced object Parameters
varName tableNum fieldNum

None (NIL pointer) "" (empty string) 0 0
Variable Name of the variable -1 0
Array Name of the array -1 0
Array element Name of the array Element number 0
Table "" (empty string) Table number 0
Field "" (empty string) Table number Field number

Note: If the value you pass in pointer is not a pointer expression, a syntax error occurs.

Examples
1. Within a form, you create a group of 100 enterable variables called v1, v2... v100. To
do so, you perform the following steps:
a. Create one enterable variable that you name v.
b. Set the properties of the object.
c. Attach the following method to that object:

DoSomething (Self) ` DoSomething being a project method in your database

d. At this point, you can either duplicate the variable as many times as you need, or use
the Objects on Grid feature in the Form Editor.

4th Dimension Language Reference 579

e. Within the DoSomething method, if you need to know the index of the variable for
which the method is called, you write:

Þ RESOLVE POINTER($1;$vsVarName;$vlTableNum;$vlFieldNum)
$vlVarNum:=Num(Substring($vsVarName;2))

Note that by constructing your form in this way, you write the methods for the 100
variables only once; you do not need to write DoSomething (1), DoSomething
(2)...,DoSomething (100).

2. For debugging purposes, you need to verify that the second parameter ($2) to a
method is a pointer to a table. At the beginning of this method, you write:

` ...
If (<>DebugOn)

Þ RESOLVE POINTER($2;$vsVarName;$vlTableNum;$vlFieldNum)
If (Not(($vlTableNum>0)&($vlFieldNum=0)&($vsVarName="")))
` WARNING: The pointer is not a reference to a table

TRACE
End

End if
` ...

3. See example for the DRAG AND DROP PROPERTIES command.

See Also
DRAG AND DROP PROPERTIES, Field, Get pointer, Is a variable, Nil, Table.

580 4th Dimension Language Reference

Nil Language

version 3
__

Nil (aPointer) ® Boolean

Parameter Type Description
aPointer Pointer ® Pointer to be tested

Function result Boolean ¬ TRUE = Nil pointer (->[])
FALSE = Valid pointer to an existing object

Description
The command Nil returns True if the pointer you pass in aPointer is Nil (->[]). It returns
False in all other cases (pointer to field, table or variable).

Starting with version 6, instead of using Nil, it will be more convenient to use RESOLVE
POINTER, which tells you about the nature of the referenced object, no matter what the
object is (including Nil pointers).

See Also
Is a variable, RESOLVE POINTER.

4th Dimension Language Reference 581

Is a variable Language

version 3
__

Is a variable (aPointer) ® Boolean

Parameter Type Description
aPointer Pointer ® Pointer to be tested

Function result Boolean ¬ TRUE = Pointer points to a variable
FALSE = Pointer does not point to a variable

Description
The command Is a variable returns True if the pointer you pass in aPointer references a
defined variable. It returns False in all other cases (pointer to field or table, Nil pointer,
and so on).

Starting with version 6, instead of using Is a variable, it will be more convenient to use
RESOLVE POINTER, which tells you about the nature of the referenced object, no matter
what the object is (including the case of Nil pointers).

See Also
Nil, RESOLVE POINTER.

582 4th Dimension Language Reference

Get pointer Language

version 3
__

Get pointer (varName) ® Pointer

Parameter Type Description
varName String ® Name of a process variable

Function result Pointer ¬ Pointer to process variable

Description
The command Get pointer returns a pointer to the variable whose name you pass in
varName.

To get a pointer to a field, use Field. To get a pointer to a table, use Table.

Example
In a form, you build a 5 x 10 grid of enterable variables named v1, v2... v50. To initialize
all of these variables, you write:

` ...
For ($vlVar;1;50)

Þ $vpVar:=Get pointer("v"+String($vlVar))
$vpVar->:=""

End for

See Also
Field, Table.

4th Dimension Language Reference 583

EXECUTE Language

version 3

Note: You will rarely need to use this command.

__

EXECUTE (statement)

Parameter Type Description
statement String ® Code to be executed

Description
EXECUTE executes statement as a line of code. The statement string must be one line. If
statement is an empty string, EXECUTE does nothing.

The rule of thumb is that if the statement can be executed as a one line method, then it
will execute properly.

In a compiled database, the line of code is not compiled. This means that statement will
be executed, but it will not have been checked by 4D Compiler at compilation time.

Use EXECUTE sparingly, as it slows down execution speed.

The statement can be in the following:
• a Call to a project method
• a Call to a 4D command
• an Assignment

The statement can include process variables and interprocess variables. The statement
cannot contain control of flow statements, because it must be in one line of code.

Example
See examples for the Command Name command.

See Also
Command name.

584 4th Dimension Language Reference

Command name Language

version 6.0
__

Command name (command) ® String

Parameter Type Description
command Number ® Command number

Function result String ¬ Localized command name

Description
The command Command name returns the literal name of the command whose
command number you pass in command.

4th Dimension integrates a dynamic translation of the keywords, constants, and
command names used in your methods. For example, if you use the English version of
4D, you write:

DEFAULT TABLE ([MyTable])
ALL RECORDS ([MyTable])

This same code, reopened with the French version of 4D, will read:
TABLE PAR DEFAUT ([MyTable])
TOUT SELECTIONNER ([MyTable])

However, 4th Dimension also includes a unique feature, the EXECUTE command, which
allows you to build code on the fly and then execute this code, even though the database
is compiled.

The example code, written with EXECUTE statements in English, looks like:
EXECUTE ("DEFAULT TABLE([MyTable])")
EXECUTE ("ALL RECORDS([MyTable])")

This same code, reopened with the French version of 4D, will then read:
EXECUTER ("DEFAULT TABLE([MyTable])")
EXECUTER ("ALL RECORDS([MyTable])")

4D automatically translates EXECUTE (English) to EXECUTER (French), but cannot
translate the text statement you passed to the command.

If you use the EXECUTE command in your application, you can use Command name to
eliminate international localization issues for statements you execute in this way, and
thus make your statements independent of language.

4th Dimension Language Reference 585

The example code becomes:

Þ EXECUTE (Command name (46)+"([MyTable])")
Þ EXECUTE (Command name (47)+"([MyTable])")

With a French version of 4D, this code will read:

Þ EXECUTER (Nom commande (46)+"([MyTable])")
Þ EXECUTER (Nom commande (47)+"([MyTable])")

Note: Command names and numbers are listed in Commands by name and Commands by
number.

Examples
1. For all the tables of your database, you have a form called “INPUT FORM” used for
standard data entry in each table. Then, you want to add a generic project method that
will set this form as the current input form for the table whose pointer or name you pass.
You write:

` STANDARD INPUT FORM project method
` STANDARD INPUT FORM (Pointer {; String })
` STANDARD INPUT FORM (->Table {; TableName })

C_POINTER ($1)
C_STRING (31;$2)

If (Count parameters>=2)
Þ EXECUTE (Command name (55)+"(["+$2+"];"INPUT FORM")")

Else
If (Count parameters>=1)

INPUT FORM ($1->;"INPUT FORM")
End if

End if

After this project method has been added to your database, you write:
STANTARD INPUT FORM (->[Employees])
STANTARD INPUT FORM ("Employees")

Note: Usually, it is better to use pointers when writing generic routines. First, the code
will run compiled if the database is compiled. Second, 4D Insider will retrieve the
references to the object whose pointer you pass. Third, as in the previous example, your
code can cease to work correctly if you rename the table. However, in certain cases, using
EXECUTE will solve the problem.

586 4th Dimension Language Reference

2. In a form, you want a drop-down list populated with the basic summary report
commands. In the object method for that drop-down list, you write:

Case of
: (Form event =On Before)

ARRAY TEXT (asCommand;4)
Þ asCommand{1}:=Command name (1) ` Sum
Þ asCommand{2}:=Command name (2) ` Average
Þ asCommand{3}:=Command name (4) ` Min
Þ asCommand{4}:=Command name (3) ` Max

` ...
End case

In the English version of 4D, the drop-down list will read: Sum, Average, Min, and Max.
In the French version, the drop-down list will read: Somme, Moyenne, Min, and Max.

See Also
Commands by Name, Commands by Number, EXECUTE.

4th Dimension Language Reference 587

Commands by Name Language

version 6.0
__

This table lists the 4D commands by name, and their numbers. Command numbers must
be used with the command Command Name.

A

ABORT 156
Abs 99
ACCEPT 269
ACCUMULATE 303
ACI folder 485
Activated 346
ADD DATA SEGMENT 361
ADD RECORD 56
ADD SUBRECORD 202
Add to date 393
ADD TO SET 119
After 31
ALERT 41
ALL RECORDS 47
ALL SUBRECORDS 109
Append document 265
APPEND MENU ITEM 411
APPEND TO CLIPBOARD 403
APPEND TO LIST 376
Application file 491
Application type 494
Application version 493
APPLY TO SELECTION 70
APPLY TO SUBSELECTION 73
Arctan 20
ARRAY BOOLEAN 223
ARRAY DATE 224
ARRAY INTEGER 220

588 4th Dimension Language Reference

ARRAY LONGINT 221
ARRAY PICTURE 279
ARRAY POINTER 280
ARRAY REAL 219
ARRAY STRING 218
ARRAY TEXT 222
ARRAY TO LIST 287
ARRAY TO SELECTION 261
ARRAY TO STRING LIST 512
Ascii 91
AUTOMATIC RELATIONS 310
Average 2

B

BEEP 151
Before 29
Before selection 198
Before subselection 199
BLOB PROPERTIES 536
BLOB size 605
BLOB TO DOCUMENT 526
BLOB to integer 549
BLOB to list 557
BLOB to longint 551
BLOB to real 553
BLOB to text 555
BLOB TO VARIABLE 533
BREAK LEVEL 302
BRING TO FRONT 326
BUTTON TEXT 194

4th Dimension Language Reference 589

C

CALL PROCESS 329
CANCEL 270
CANCEL TRANSACTION 241
Caps lock down 547
CHANGE ACCESS 289
CHANGE PASSWORD 186
Change string 234
Char 90
CLEAR CLIPBOARD 402
CLEAR LIST 377
CLEAR NAMED SELECTION 333
CLEAR SEMAPHORE 144
CLEAR SET 117
CLEAR VARIABLE 89
CLOSE DOCUMENT 267
CLOSE RESOURCE FILE 498
CLOSE WINDOW 154
Command name 538
Compiled application 492
COMPRESS BLOB 534
COMPRESS PICTURE 355
COMPRESS PICTURE FILE 359
CONFIRM 162
COPY ARRAY 226
COPY BLOB 558
COPY DOCUMENT 541
Copy list 626
COPY NAMED SELECTION 331
COPY SET 600
Cos 18
Count fields 255
Count list items 380
Count menu items 405
Count menus 404
Count parameters 259
Count screens 437

590 4th Dimension Language Reference

Count tables 254
Count tasks 335
Count user processes 343
Count users 342
CREATE DIRECTORY 475
Create document 266
CREATE EMPTY SET 140
CREATE RECORD 68
CREATE RELATED ONE 65
Create resource file 496
CREATE SET 116
CREATE SUBRECORD 72
Current date 33
Current default table 363
Current form page 276
Current form table 627
Current machine 483
Current machine owner 484
Current process 322
Current time 178
Current user 182
CUT NAMED SELECTION 334
C_BLOB 604
C_BOOLEAN 305
C_DATE 307
C_GRAPH 352
C_INTEGER 282
C_LONGINT 283
C_PICTURE 286
C_POINTER 301
C_REAL 285
C_STRING 293
C_TEXT 284
C_TIME 306

4th Dimension Language Reference 591

D

Data file 490
DATA SEGMENT LIST 527
Database event 369
Date 102
Day number 114
Day of 23
Deactivated 347
Dec 9
DEFAULT TABLE 46
DELAY PROCESS 323
DELETE DOCUMENT 159
DELETE ELEMENT 228
DELETE FROM BLOB 560
DELETE LIST ITEM 624
DELETE MENU ITEM 413
DELETE RECORD 58
DELETE RESOURCE 501
DELETE SELECTION 66
Delete string 232
DELETE SUBRECORD 96
DELETE USER 615
DIALOG 40
DIFFERENCE 122
DISABLE BUTTON 193
DISABLE MENU ITEM 150
DISPLAY RECORD 105
DISPLAY SELECTION 59
DISTINCT VALUES 339
Document creator 529
DOCUMENT LIST 474
DOCUMENT TO BLOB 525
Document type 528
Drag and drop position 608
DRAG AND DROP PROPERTIES 607
DRAG WINDOW 452
DUPLICATE RECORD 225

592 4th Dimension Language Reference

During 30

E

EDIT ACCESS 281
ENABLE BUTTON 192
ENABLE MENU ITEM 149
End selection 36
End subselection 37
ERASE WINDOW 160
EXECUTE 63
Execute on server 373
Exp 21
EXPAND BLOB 535
EXPORT DIF 84
EXPORT SYLK 85
EXPORT TEXT 167

F

False 215
Field 253
Field name 257
FILTER EVENT 321
FILTER KEYSTROKE 389
Find in array 230
Find window 449
FIRST PAGE 250
FIRST RECORD 50
FIRST SUBRECORD 61
FLUSH BUFFERS 297
FOLDER LIST 473
FONT 164
FONT LIST 460
Font name 462
Font number 461
FONT SIZE 165
FONT STYLE 166

4th Dimension Language Reference 593

Form event 388
Frontmost process 327
Frontmost window 447

G

Gestalt 488
GET CLIPBOARD 401
Get document position 481
GET DOCUMENT PROPERTIES 477
Get document size 479
GET FIELD PROPERTIES 258
GET GROUP LIST 610
GET GROUP PROPERTIES 613
GET HIGHLIGHT 209
GET ICON RESOURCE 517
Get indexed string 510
GET LIST ITEM 378
GET LIST ITEM PROPERTIES 631
GET LIST PROPERTIES 632
Get menu item 422
Get menu item key 424
Get menu item mark 428
Get menu item style 426
Get menu title 430
GET MOUSE 468
GET PICTURE FROM CLIPBOARD 522
GET PICTURE FROM LIBRARY 565
GET PICTURE RESOURCE 502
Get platform interface 470
Get pointer 304
GET PROCESS VARIABLE 371
GET RESOURCE 508
Get resource name 513
Get resource properties 515
Get string resource 506
Get text from clipboard 524
Get text resource 504

594 4th Dimension Language Reference

GET USER LIST 609
GET USER PROPERTIES 611
GET WINDOW RECT 443
Get window title 450
GOTO AREA 206
GOTO PAGE 247
GOTO RECORD 242
GOTO SELECTED RECORD 245
GOTO XY 161
GRAPH 169
GRAPH SETTINGS 298
GRAPH TABLE 148

H

HIDE MENU BAR 432
HIDE PROCESS 324
HIDE TOOL BAR 434
HIGHLIGHT TEXT 210

I

IDLE 311
IMPORT DIF 86
IMPORT SYLK 87
IMPORT TEXT 168
In break 113
In footer 191
In header 112
In transaction 397
INPUT FORM 55
INSERT ELEMENT 227
INSERT IN BLOB 559
INSERT LIST ITEM 625
INSERT MENU ITEM 412
Insert string 231
Int 8
INTEGER TO BLOB 548

4th Dimension Language Reference 595

INTERSECTION 121
INVERT BACKGROUND 93
Is a list 621
Is a variable 294
Is in set 273
Is user deleted 616
ISO to Mac 520

K

Keystroke 390

L

Last object 278
LAST PAGE 251
LAST RECORD 200
LAST SUBRECORD 201
Length 16
Level 101
List item parent 633
List item position 629
LIST TO ARRAY 288
LIST TO BLOB 556
LOAD COMPRESS PICTURE FROM FILE 357
Load list 383
LOAD RECORD 52
LOAD SET 185
LOAD VARIABLES 74
Locked 147
LOCKED ATTRIBUTES 353
Log 22
LONGINT TO BLOB 550
Lowercase 14

596 4th Dimension Language Reference

M

Mac to ISO 519
Mac to Win 463
Macintosh command down 546
Macintosh control down 544
Macintosh option down 545
MAP FILE TYPES 366
Max 3
MENU BAR 67
Menu bar height 440
Menu bar screen 441
Menu selected 152
MESSAGE 88
MESSAGES OFF 175
MESSAGES ON 181
Milliseconds 459
Min 4
Mod 98
Modified 32
Modified record 314
MODIFY RECORD 57
MODIFY SELECTION 204
MODIFY SUBRECORD 203
Month of 24
MOVE DOCUMENT 540

N

New list 375
New process 317
NEXT PAGE 248
NEXT RECORD 51
NEXT SUBRECORD 62
Next window 448
Nil 315
NO TRACE 158
Not 34

4th Dimension Language Reference 597

Num 11

O

Old 35
OLD RELATED MANY 263
OLD RELATED ONE 44
ON ERR CALL 155
ON EVENT CALL 190
ON SERIAL PORT CALL 171
ONE RECORD SELECT 189
Open document 264
Open external window 309
Open resource file 497
Open window 153
ORDER BY 49
ORDER BY FORMULA 300
ORDER SUBRECORDS BY 107
OUTPUT FORM 54
Outside call 328

P

PAGE BREAK 6
PAGE SETUP 299
PAUSE PROCESS 319
PICTURE LIBRARY LIST 564
PICTURE PROPERTIES 457
Picture size 356
PLATFORM PROPERTIES 365
PLAY 290
POP RECORD 177
Pop up menu 542
Position 15
POST CLICK 466
POST EVENT 467
POST KEY 465
PREVIOUS PAGE 249

598 4th Dimension Language Reference

PREVIOUS RECORD 110
PREVIOUS SUBRECORD 111
PRINT FORM 5
PRINT LABEL 39
PRINT RECORD 71
PRINT SELECTION 60
PRINT SETTINGS 106
Printing page 275
Process number 372
PROCESS PROPERTIES 336
Process state 330
PUSH RECORD 176

Q

QUERY 277
QUERY BY EXAMPLE 292
QUERY BY FORMULA 48
QUERY SELECTION 341
QUERY SELECTION BY FORMULA 207
QUERY SUBRECORDS 108
QUIT 4D 291

R

Random 100
READ ONLY 145
Read only state 362
READ WRITE 146
REAL TO BLOB 552
RECEIVE BUFFER 172
RECEIVE PACKET 104
RECEIVE RECORD 79
RECEIVE VARIABLE 81
Record number 243
Records in selection 76
Records in set 195
Records in subselection 7

4th Dimension Language Reference 599

Records in table 83
REDRAW 174
REDRAW LIST 382
REDRAW WINDOW 456
REDUCE SELECTION 351
REJECT 38
RELATE MANY 262
RELATE MANY SELECTION 340
RELATE ONE 42
RELATE ONE SELECTION 349
REMOVE FROM SET 561
REMOVE PICTURE FROM LIBRARY 567
Replace string 233
REPORT 197
Request 163
RESOLVE POINTER 394
RESOURCE LIST 500
RESOURCE TYPE LIST 499
RESUME PROCESS 320
Round 94

S

SAVE LIST 384
SAVE OLD RELATED ONE 45
SAVE PICTURE TO FILE 358
SAVE RECORD 53
SAVE RELATED ONE 43
SAVE SET 184
SAVE VARIABLES 75
SCAN INDEX 350
SCREEN COORDINATES 438
SCREEN DEPTH 439
Screen height 188
Screen width 187
SEARCH BY INDEX 64
SELECT LIST ITEM 381
SELECT LIST ITEM BY REFERENCE 630

600 4th Dimension Language Reference

SELECT LOG FILE 345
Selected list item 379
Selected record number 246
SELECTION TO ARRAY 260
SELECTION RANGE TO ARRAY 368
Self 308
Semaphore 143
SEND HTML FILE 619
SEND PACKET 103
SEND RECORD 78
SEND VARIABLE 80
Sequence number 244
SET ABOUT 316
SET BLOB SIZE 606
SET CHANNEL 77
SET CHOICE LIST 237
SET COLOR 271
SET CURSOR 469
SET DEFAULT CENTURY 392
SET DOCUMENT CREATOR 531
SET DOCUMENT POSITION 482
SET DOCUMENT PROPERTIES 478
SET DOCUMENT SIZE 480
SET DOCUMENT TYPE 530
SET ENTERABLE 238
SET FIELD TITLES 602
SET FILTER 235
SET FORMAT 236
Set group properties 614
SET HTML ROOT 634
SET INDEX 344
SET LIST ITEM 385
SET LIST ITEM PROPERTIES 386
SET LIST PROPERTIES 387
SET MENU ITEM 348
SET MENU ITEM KEY 423
SET MENU ITEM MARK 208
SET MENU ITEM STYLE 425

4th Dimension Language Reference 601

SET PICTURE RESOURCE 503
SET PICTURE TO CLIPBOARD 521
SET PICTURE TO LIBRARY 566
SET PLATFORM INTERFACE 367
SET PRINT PREVIEW 364
SET PROCESS VARIABLE 370
SET QUERY DESTINATION 396
SET QUERY LIMIT 395
SET REAL COMPARISON LEVEL 623
SET RESOURCE 509
SET RESOURCE NAME 514
SET RESOURCE PROPERTIES 516
SET RGB COLOR 628
SET SCREEN DEPTH 537
SET STRING RESOURCE 507
SET TABLE TITLES 601
SET TEXT RESOURCE 505
SET TEXT TO CLIPBOARD 523
SET TIMEOUT 268
Set user properties 612
SET VISIBLE 603
SET WEB DISPLAY LIMITS 620
SET WEB TIMEOUT 622
SET WINDOW RECT 444
SET WINDOW TITLE 213
Shift down 543
SHOW MENU BAR 431
SHOW PROCESS 325
SHOW TOOL BAR 433
Sin 17
Size of array 274
SORT ARRAY 229
SORT BY INDEX 170
SORT LIST 391
Square root 539
START TRANSACTION 239
START WEB SERVER 617
Std deviation 26

602 4th Dimension Language Reference

STOP WEB SERVER 618
String 10
STRING LIST TO ARRAY 511
Structure file 489
Substring 12
Subtotal 97
Sum 1
Sum squares 28
System folder 487

T

Table 252
Table name 256
Tan 19
Temporary folder 486
Test clipboard 400
Test path name 476
TEXT TO BLOB 554
Tickcount 458
Time 179
Time string 180
TRACE 157
Trigger level 398
TRIGGER PROPERTIES 399
True 214
Trunc 95
Type 295

4th Dimension Language Reference 603

U

Undefined 82
UNION 120
UNLOAD RECORD 212
Uppercase 13
USE ASCII MAP 205
USE NAMED SELECTION 332
USE SET 118
User in group 338

V

VALIDATE TRANSACTION 240
VARIABLE TO BLOB 532
VARRIABLE TO VARIABLE 635
Variance 27
Version type 495
VOLUME ATTRIBUTES 472
VOLUME LIST 471

W

Win to Mac 464
Window kind 445
WINDOW LIST 442
Window process 446
Windows Alt down 563
Windows Ctrl down 562

Y

Year of 25

See Also
Command name, Commands by Number, EXECUTE.

604 4th Dimension Language Reference

Commands by Number Language

version 6.0
__

This table lists the 4D commands by number, with their names. Command numbers
must be used with the command Command Name.

Note: Unlisted numbers are currently not used.

1 Sum
2 Average
3 Max
4 Min
5 PRINT FORM
6 PAGE BREAK
7 Records in subselection
8 Int
9 Dec
10 String
11 Num
12 Substring
13 Uppercase
14 Lowercase
15 Position
16 Length
17 Sin
18 Cos
19 Tan
20 Arctan
21 Exp
22 Log
23 Day of
24 Month of
25 Year of
26 Std deviation
27 Variance
28 Sum squares

4th Dimension Language Reference 605

29 Before
30 During
31 After
32 Modified
33 Current date
34 Not
35 Old
36 End selection
37 End subselection
38 REJECT
39 PRINT LABEL
40 DIALOG
41 ALERT
42 RELATE ONE
43 SAVE RELATED ONE
44 OLD RELATED ONE
45 SAVE OLD RELATED ONE
46 DEFAULT TABLE
47 ALL RECORDS
48 QUERY BY FORMULA
49 ORDER BY
50 FIRST RECORD

51 NEXT RECORD
52 LOAD RECORD
53 SAVE RECORD
54 OUTPUT FORM
55 INPUT FORM
56 ADD RECORD
57 MODIFY RECORD
58 DELETE RECORD
59 DISPLAY SELECTION
60 PRINT SELECTION
61 FIRST SUBRECORD
62 NEXT SUBRECORD
63 EXECUTE
64 SEARCH BY INDEX
65 CREATE RELATED ONE

606 4th Dimension Language Reference

66 DELETE SELECTION
67 MENU BAR
68 CREATE RECORD
70 APPLY TO SELECTION
71 PRINT RECORD
72 CREATE SUBRECORD
73 APPLY TO SUBSELECTION
74 LOAD VARIABLES
75 SAVE VARIABLES
76 Records in selection
77 SET CHANNEL
78 SEND RECORD
79 RECEIVE RECORD
80 SEND VARIABLE
81 RECEIVE VARIABLE
82 Undefined
83 Records in table
84 EXPORT DIF
85 EXPORT SYLK
86 IMPORT DIF
87 IMPORT SYLK
88 MESSAGE
89 CLEAR VARIABLE
90 Char
91 Ascii
93 INVERT BACKGROUND
94 Round
95 Trunc
96 DELETE SUBRECORD
97 Subtotal
98 Mod
99 Abs
100 Random

101 Level
102 Date
103 SEND PACKET
104 RECEIVE PACKET

4th Dimension Language Reference 607

105 DISPLAY RECORD
106 PRINT SETTINGS
107 ORDER SUBRECORDS BY
108 QUERY SUBRECORDS
109 ALL SUBRECORDS
110 PREVIOUS RECORD
111 PREVIOUS SUBRECORD
112 In header
113 In break
114 Day number
116 CREATE SET
117 CLEAR SET
118 USE SET
119 ADD TO SET
120 UNION
121 INTERSECTION
122 DIFFERENCE
140 CREATE EMPTY SET
143 Semaphore
144 CLEAR SEMAPHORE
145 READ ONLY
146 READ WRITE
147 Locked
148 GRAPH TABLE
149 ENABLE MENU ITEM
150 DISABLE MENU ITEM

151 BEEP
152 Menu selected
153 Open window
154 CLOSE WINDOW
155 ON ERR CALL
156 ABORT
157 TRACE
158 NO TRACE
159 DELETE DOCUMENT
160 ERASE WINDOW
161 GOTO XY

608 4th Dimension Language Reference

162 CONFIRM
163 Request
164 FONT
165 FONT SIZE
166 FONT STYLE
167 EXPORT TEXT
168 IMPORT TEXT
169 GRAPH
170 SORT BY INDEX
171 ON SERIAL PORT CALL
172 RECEIVE BUFFER
174 REDRAW
175 MESSAGES OFF
176 PUSH RECORD
177 POP RECORD
178 Current time
179 Time
180 Time string
181 MESSAGES ON
182 Current user
184 SAVE SET
185 LOAD SET
186 CHANGE PASSWORD
187 Screen width
188 Screen height
189 ONE RECORD SELECT
190 ON EVENT CALL
191 In footer
192 ENABLE BUTTON
193 DISABLE BUTTON
194 BUTTON TEXT
195 Records in set
197 REPORT
198 Before selection
199 Before subselection
200 LAST RECORD
201 LAST SUBRECORD
202 ADD SUBRECORD

4th Dimension Language Reference 609

203 MODIFY SUBRECORD
204 MODIFY SELECTION
205 USE ASCII MAP
206 GOTO AREA
207 QUERY SELECTION BY FORMULA
208 SET MENU ITEM MARK
209 GET HIGHLIGHT
210 HIGHLIGHT TEXT
212 UNLOAD RECORD
213 SET WINDOW TITLE
214 True
215 False
218 ARRAY STRING
219 ARRAY REAL
220 ARRAY INTEGER
221 ARRAY LONGINT
222 ARRAY TEXT
223 ARRAY BOOLEAN
224 ARRAY DATE
225 DUPLICATE RECORD
226 COPY ARRAY
227 INSERT ELEMENT
228 DELETE ELEMENT
229 SORT ARRAY
230 Find in array
231 Insert string
232 Delete string
233 Replace string
234 Change string
235 SET FILTER
236 SET FORMAT
237 SET CHOICE LIST
238 SET ENTERABLE
239 START TRANSACTION
240 VALIDATE TRANSACTION
241 CANCEL TRANSACTION
242 GOTO RECORD
243 Record number

610 4th Dimension Language Reference

244 Sequence number
245 GOTO SELECTED RECORD
246 Selected record number
247 GOTO PAGE
248 NEXT PAGE
249 PREVIOUS PAGE
250 FIRST PAGE
251 LAST PAGE
252 Table
253 Field
254 Count tables
255 Count fields
256 Table name
257 Field name
258 GET FIELD PROPERTIES
259 Count parameters
260 SELECTION TO ARRAY
261 ARRAY TO SELECTION
262 RELATE MANY
263 OLD RELATED MANY
264 Open document
265 Append document
266 Create document
267 CLOSE DOCUMENT
268 SET TIMEOUT
269 ACCEPT
270 CANCEL
271 SET COLOR
273 Is in set
274 Size of array
275 Printing page
276 Current form page
277 QUERY
278 Last object
279 ARRAY PICTURE
280 ARRAY POINTER
281 EDIT ACCESS
282 C_INTEGER

4th Dimension Language Reference 611

283 C_LONGINT
284 C_TEXT
285 C_REAL
286 C_PICTURE
287 ARRAY TO LIST
288 LIST TO ARRAY
289 CHANGE ACCESS
290 PLAY
291 QUIT 4D
292 QUERY BY EXAMPLE
293 C_STRING
294 Is a variable
295 Type
297 FLUSH BUFFERS
298 GRAPH SETTINGS
299 PAGE SETUP
300 ORDER BY FORMULA
301 C_POINTER
302 BREAK LEVEL
303 ACCUMULATE
304 Get pointer
305 C_BOOLEAN
306 C_TIME
307 C_DATE
308 Self
309 Open external window
310 AUTOMATIC RELATIONS
311 IDLE
314 Modified record
315 Nil
316 SET ABOUT
317 New process
319 PAUSE PROCESS
320 RESUME PROCESS
321 FILTER EVENT
322 Current process
323 DELAY PROCESS
324 HIDE PROCESS

612 4th Dimension Language Reference

325 SHOW PROCESS
326 BRING TO FRONT
327 Frontmost process
328 Outside call
329 CALL PROCESS
330 Process state
331 COPY NAMED SELECTION
332 USE NAMED SELECTION
333 CLEAR NAMED SELECTION
334 CUT NAMED SELECTION
335 Count tasks
336 PROCESS PROPERTIES
338 User in group
339 DISTINCT VALUES
340 RELATE MANY SELECTION
341 QUERY SELECTION
342 Count users
343 Count user processes
344 SET INDEX
345 SELECT LOG FILE
346 Activated
347 Deactivated
348 SET MENU ITEM
349 RELATE ONE SELECTION
350 SCAN INDEX

351 REDUCE SELECTION
352 C_GRAPH
353 LOCKED ATTRIBUTES
355 COMPRESS PICTURE
356 Picture size
357 LOAD COMPRESS PICTURE FROM FILE
358 SAVE PICTURE TO FILE
359 COMPRESS PICTURE FILE
361 ADD DATA SEGMENT
362 Read only state
363 Current default table
364 SET PRINT PREVIEW

4th Dimension Language Reference 613

365 PLATFORM PROPERTIES
366 MAP FILE TYPES
367 SET PLATFORM INTERFACE
368 SELECTION RANGE TO ARRAY
369 Database event
370 SET PROCESS VARIABLE
371 GET PROCESS VARIABLE
372 Process number
373 Execute on server
375 New list
376 APPEND TO LIST
377 CLEAR LIST
378 GET LIST ITEM
379 Selected list item
380 Count list items
381 SELECT LIST ITEM
382 REDRAW LIST
383 Load list
384 SAVE LIST
385 SET LIST ITEM
386 SET LIST ITEM PROPERTIES
387 SET LIST PROPERTIES
388 Form event
389 FILTER KEYSTROKE
390 Keystroke
391 SORT LIST
392 SET DEFAULT CENTURY
393 Add to date
394 RESOLVE POINTER
395 SET QUERY LIMIT
396 SET QUERY DESTINATION
397 In transaction
398 Trigger level
399 TRIGGER PROPERTIES
400 Test clipboard

401 GET CLIPBOARD
402 CLEAR CLIPBOARD

614 4th Dimension Language Reference

403 APPEND TO CLIPBOARD
404 Count menus
405 Count menu items
411 APPEND MENU ITEM
412 INSERT MENU ITEM
413 DELETE MENU ITEM
422 Get menu item
423 SET MENU ITEM KEY
424 Get menu item key
425 SET MENU ITEM STYLE
426 Get menu item style
428 Get menu item mark
430 Get menu title
431 SHOW MENU BAR
432 HIDE MENU BAR
433 SHOW TOOL BAR
434 HIDE TOOL BAR
437 Count screens
438 SCREEN COORDINATES
439 SCREEN DEPTH
440 Menu bar height
441 Menu bar screen
442 WINDOW LIST
443 GET WINDOW RECT
444 SET WINDOW RECT
445 Window kind
446 Window process
447 Frontmost window
448 Next window
449 Find window
450 Get window title

452 DRAG WINDOW
456 REDRAW WINDOW
457 PICTURE PROPERTIES
458 Tickcount
459 Milliseconds
460 FONT LIST

4th Dimension Language Reference 615

461 Font number
462 Font name
463 Mac to Win
464 Win to Mac
465 POST KEY
466 POST CLICK
467 POST EVENT
468 GET MOUSE
469 SET CURSOR
470 Get platform interface
471 VOLUME LIST
472 VOLUME ATTRIBUTES
473 FOLDER LIST
474 DOCUMENT LIST
475 CREATE DIRECTORY
476 Test path name
477 GET DOCUMENT PROPERTIES
478 SET DOCUMENT PROPERTIES
479 Get document size
480 SET DOCUMENT SIZE
481 Get document position
482 SET DOCUMENT POSITION
483 Current machine
484 Current machine owner
485 ACI folder
486 Temporary folder
487 System folder
488 Gestalt
489 Structure file
490 Data file
491 Application file
492 Compiled application
493 Application version
494 Application type
495 Version type
496 Create resource file
497 Open resource file
498 CLOSE RESOURCE FILE

616 4th Dimension Language Reference

499 RESOURCE TYPE LIST
500 RESOURCE LIST

501 DELETE RESOURCE
502 GET PICTURE RESOURCE
503 SET PICTURE RESOURCE
504 Get text resource
505 SET TEXT RESOURCE
506 Get string resource
507 SET STRING RESOURCE
508 GET RESOURCE
509 SET RESOURCE
510 Get indexed string
511 STRING LIST TO ARRAY
512 ARRAY TO STRING LIST
513 Get resource name
514 SET RESOURCE NAME
515 Get resource properties
516 SET RESOURCE PROPERTIES
517 GET ICON RESOURCE
519 Mac to ISO
520 ISO to Mac
521 SET PICTURE TO CLIPBOARD
522 GET PICTURE FROM CLIPBOARD
523 SET TEXT TO CLIPBOARD
524 Get text from clipboard
525 DOCUMENT TO BLOB
526 BLOB TO DOCUMENT
527 DATA SEGMENT LIST
528 Document type
529 Document creator
530 SET DOCUMENT TYPE
531 SET DOCUMENT CREATOR
532 VARIABLE TO BLOB
533 BLOB TO VARIABLE
534 COMPRESS BLOB
535 EXPAND BLOB
536 BLOB PROPERTIES

4th Dimension Language Reference 617

537 SET SCREEN DEPTH
538 Command name
539 Square root
540 MOVE DOCUMENT
541 COPY DOCUMENT
542 Pop up menu
543 Shift down
544 Macintosh control down
545 Macintosh option down
546 Macintosh command down
547 Caps lock down
548 INTEGER TO BLOB
549 BLOB to integer
550 LONGINT TO BLOB

551 BLOB to longint
552 REAL TO BLOB
553 BLOB to real
554 TEXT TO BLOB
555 BLOB to text
556 LIST TO BLOB
557 BLOB to list
558 COPY BLOB
559 INSERT IN BLOB
560 DELETE FROM BLOB
561 REMOVE FROM SET
562 Windows Ctrl down
563 Windows Alt down
564 PICTURE LIBRARY LIST
565 GET PICTURE FROM LIBRARY
566 SET PICTURE TO LIBRARY
567 REMOVE PICTURE FROM LIBRARY
600 COPY SET

618 4th Dimension Language Reference

601 SET TABLE TITLES
602 SET FIELD TITLES
603 SET VISIBLE
604 C_BLOB
605 BLOB size
606 SET BLOB SIZE
607 DRAG AND DROP PROPERTIES
608 Drop position
609 GET USER LIST
610 GET GROUP LIST
611 GET USER PROPERTIES
612 Set user properties
613 GET GROUP PROPERTIES
614 Set group properties
615 DELETE USER
616 Is user deleted
617 START WEB SERVER
618 STOP WEB SERVER
619 SEND HTML FILE
620 SET WEB DISPLAY LIMITS
621 Is a list
622 SET WEB TIMEOUT
623 SET REAL COMPARISON LEVEL
624 DELETE LIST ITEM
625 INSERT LIST ITEM
626 Copy list
627 Current form table
628 SET RGB COLOR
629 List item position
630 SELECT LIST ITEM BY REFERENCE
631 GET LIST ITEM PROPERTIES
632 GET LIST PROPERTIES
633 List item parent
634 SET HTML ROOT
635 VARIABLE TO VARIABLE

4th Dimension Language Reference 619

See Also
Command name, Commands by Name, EXECUTE.

620 4th Dimension Language Reference

TRACE Language

version 3
__

TRACE

Parameter Type Description
This command does not require any parameters

Description
You use TRACE to trace methods during development of a database.

The TRACE command turns on the 4th Dimension debugger for the current process. The
debugger window is displayed before the next line of code is executed, and continues to
be displayed for each line of code that is executed. You can also turn on the debugger by
pressing the Alt key (Windows) or the Option key (Macintosh) and the mouse button
while code is executing.

In compiled databases, the TRACE command is ignored.

4D Server: If you call TRACE from a project method executed within the context of a
Stored Procedure, the debugger window appears on the Server machine.

Tips

1. Do not place TRACE calls when using a form whose On Activate and On Deactivate
events have been enabled. Each time the debugger window appears, these events will be
invoked; you will then loop infinitely between these events and the debugger window. If
you end up in this situation, you can get out of it by switching to the Design
environment.

To do so, click in an event window or the debugger window. Then proceed as follows:
• If the call to TRACE is in a project method or an object method (methods reloaded at
execution), delete it. This will stop the infinite loop.
• If the call to TRACE is in the form method, it will not be reloaded until you exit the
form, which is impossible because you are stuck in a loop. So, either reopen the database
or abort the process in question. If the process cannot be aborted, then you have to
reopen the database.

2. If you call the TRACE command from within a form or an object method executed
during the update of the form at the screen, you will also end up in an infinite repetition
of updates and debugger window apparitions. At this point, press Alt + Shift (Windows) or
Option-Shift (Macintosh). This will disable the update events for the current window and
consequently stop to call TRACE via the form or object methods. Then, you can switch to
the Design environment and remove the call to TRACE.

4th Dimension Language Reference 621

Note that these two tips also apply to the same situations generated by the presence of
permanent break points in your code. Regarding Tip 1, no matter where the break point
is located, you can remove it and thereby get out of debugger window apparitions
without reopening the database.

Example
The following code expects the process variable BUILD_LANG to be equal to “US” or “FR”.
If this is not the case, it calls the project method DEBUG:

` ...
Case of

: (BUILD_LANG="US")
vsBHCmdName:=[Commands]CM US Name

: (BUILD_LANG="FR")
vsBHCmdName:=[Commands]CM FR Name

Else
DEBUG ("Unexpected BUILD_LANG value")

End case

The DEBUG project method is listed here:

` DEBUG Project Method
` DEBUG (Text)
` DEBUG (Optional Debug Information)

C_TEXT ($1)

If (<>vbDebugOn) ` Interprocess variable set in the On Startup Method
If (Compiled Application)

If (Count parameters>=1)
ALERT ($1+Char(13)+"Call Designer at x911")

End if
Else

Þ TRACE
End if

End if

See Also
NO TRACE.

622 4th Dimension Language Reference

NO TRACE Language

version 3
__

NO TRACE

Parameter Type Description
This command does not require any parameters

Description
You use NO TRACE to trace methods during development of a database.

NO TRACE turns off the debugger engaged by TRACE, by an error, or by the user. Using
NO TRACE has the same effect as clicking the No Trace button in the debugger.

In compiled databases, the NO TRACE command is ignored.

See Also
TRACE.

4th Dimension Language Reference 623

624 4th Dimension Language Reference

23 Math

4th Dimension Language Reference 625

626 4th Dimension Language Reference

Abs Math

version 3
__

Abs (number) ® Number

Parameter Type Description
number Number ® Number for which to return the absolute value

Function result Number ¬ Absolute value of number

Description
Abs returns the absolute (unsigned, positive) value of number. If number is negative, it is
returned as positive. If number is positive, it is returned unchanged.

Example
The following example returns the absolute value of –10.3, which is 10.3:

Þ vlVector:=Abs(–10.3)

4th Dimension Language Reference 627

Int Math

version 3
__

Int (number) ® Number

Parameter Type Description
number Number ® Number whose integer portion is returned

Function result Number ¬ Integer portion of number

Description
Int returns the integer portion of number. Int truncates a negative number away from
zero.

Examples
The following example illustrates how Int works for both positive and negative numbers.
Note that the decimal portion of the number is removed:

Þ vlResult:=Int (123.4) ` vlResult gets 123
Þ vlResult:=Int(–123.4) ` vlResult gets –124

See Also
Dec.

628 4th Dimension Language Reference

Dec Math

version 3
__

Dec (number) ® Number

Parameter Type Description
number Number ® Number whose decimal portion is returned

Function result Number ¬ Decimal part of number

Description
Dec returns the decimal (fractional) portion of number. The value returned is always
positive or zero.

Examples
The following example takes a monetary value expressed as a real number, and extracts
the dollar part and the cents part. If vrAmount is 7.31, then vlDollars is set to 7 and vlCents
is set to 31:

vlDollars:=Int (vrAmount) ` Get the dollars
Þ vlCents:=Dec(vrAmount) * 100 ` Get the fractional part

See Also
Int.

4th Dimension Language Reference 629

Round Math

version 3
__

Round (round; places) ® Number

Parameter Type Description
round Number ® Number to be rounded
places Number ® Number of decimal places used for rounding

Function result Number ¬ Number rounded to the number of
decimal places specified by Places

Description
Round returns number rounded to the number of decimal places specified by places.

If places is positive, number is rounded to places decimal places. If places is negative,
number is rounded on the left of the decimal point.

If the digit following places is 5 though 9, Round rounds toward positive infinity for a
positive number, and toward negative infinity for a negative number. If the digit
following places is 0 through 4, Round rounds toward zero.

Examples
The following example illustrates how Round works with different arguments. Each line
assigns a number to the vlResult variable. The comments describe the results:

Þ vlResult:=Round (16.857; 2) ` vlResult gets 16.86
Þ vlResult:=Round (32345.67; –3) ` vlResult gets 32000
Þ vlResult:=Round (29.8725; 3) ` vlResult gets 29.873
Þ vlResult:=Round (–1.5; 0) ` vlResult gets –2

See Also
Trunc.

630 4th Dimension Language Reference

Trunc Math

version 3
__

Trunc (number; places) ® Number

Parameter Type Description
number Number ® Number to be truncated
places Number ® Number of decimal places used for truncating

Function result Number ¬ Number with its decimal part truncated to the
number of decimal places specified by Places

Description
Trunc returns number with its decimal part truncated to the number of decimal places
specified by places. Trunc always truncates toward negative infinity.

If places is positive, number is truncated to places decimal places. If places is negative,
number is truncated on the left of the decimal point.

Examples
The following example illustrates how Trunc works with different arguments. Each line
assigns a number to the vlResult variable. The comments describe the results:

Þ vlResult := Trunc (216.897; 1) ` vlResult gets 216.8
Þ vlResult := Trunc (216.897; –1) ` vlResult gets 210
Þ vlResult := Trunc (–216.897; 1) ` vlResult gets –216.9
Þ vlResult := Trunc (–216.897; –1) ` vlResult gets –220

See Also
Round.

4th Dimension Language Reference 631

Random Math

version 3
__

Random ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Random number

Description
Random returns a random integer value between 0 and 32,767 (inclusive).

To define a range of integers, use this formula:

(Random%(End–Start+1))+Start

The value start is the first number in the range, and the value end is the last.

Example
The following example assigns a random integer between 10 and 30 to the vlResult
variable:

Þ vlResult:=(Random%21)+10

632 4th Dimension Language Reference

Mod Math

version 3
__

Mod (number1; number2) ® Number

Parameter Type Description
number1 Number ® Number to divide
number2 Number ® Number to divide by

Function result Number ¬ Returns the remainder

Description
The command Mod returns the remainder of the Integer division of number1 by
number2.

Note: Mod accepts Integer, Long Integer, and Real expressions. However, if number1 or
number2 are real numbers, the numbers are first rounded and then Mod is calculated.

You can also use the % operator to calculate the remainder (see Numeric Operators).

WARNING: The % operator returns valid results with Integer and Long Integer
expressions. To calculate the modulo of real values, you must use the Mod command.

Examples
The following example illustrates how the Mod function works with different arguments.
Each line assigns a number to the vlResult variable. The comments describe the results:

Þ vlResult:=Mod(3;2) ` vlResult gets 1
Þ vlResult:=Mod(4;2) ` vlResult gets 0
Þ vlResult:=Mod(3.5;2) ` vlResult gets 0

See Also
Numeric Operators.

4th Dimension Language Reference 633

Square root Math

version 6.0
__

Square root (number) ® Number

Parameter Type Description
number Number ® Number whose square root is calculated

Function result Number ¬ Square root of the number

Description
Square root returns the square root of number.

Examples
1. The line:

Þ $vrSquareRootOfTwo := Square root (2)

assigns the value 1.414213562373 to the variable $vrSquareRootOfTwo.

2. The following method returns the hypotenuse of the right triangle whose two legs are
passed as parameters:

` Hypotenuse method
` Hypotenuse (real ; real) -> real
` Hypotenuse (legA ; legB) -> Hypotenuse

C_REAL($0;$1;$2)
Þ $0 := Square root(($1^2)+($2^2))

For instance, Hypotenuse (4;3) returns 5.

See Also
Numeric Operators.

634 4th Dimension Language Reference

Log Math

version 3
__

Log (number) ® Number

Parameter Type Description
number Number ® Number for which to return the log

Function result Number ¬ Log of number

Description
Log returns the natural (Napierian) log of number. Log is the inverse function of Exp.

Note: 4D provides the predefined constant e number (2.71828...).

Example
The following line displays 1:

Þ ALERT(String(Log(Exp(1)))

See Also
Exp.

4th Dimension Language Reference 635

Exp Math

version 3
__

Exp (number) ® Number

Parameter Type Description
number Number ® Number to evaluate

Function result Number ¬ Natural log base by the power of number

Description
Exp raises the natural log base (e = 2.71828...) by the power of number. Exp is the inverse
function of Log.

Note: 4D provides the predefined constant e number (2.71828...).

Example
The following example assigns the exponential of 1 to vrE (the log of vrE is 1):

Þ vrE := Exp (1) ` vrE gets 2.17828...

See Also
Log.

636 4th Dimension Language Reference

Sin Math

version 3
__

Sin (number) ® Number

Parameter Type Description
number Number ® Number, in radians, whose sine is returned

Function result Number ¬ Sine of number

Description
Sin returns the sine of number, where number is expressed in radians.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

See Also
Arctan, Cos, Tan.

4th Dimension Language Reference 637

Cos Math

version 3
__

Cos (number) ® Number

Parameter Type Description
number Number ® Number, in radians, whose cosine is returned

Function result Number ¬ Cosine of number

Description
Cos returns the cosine of number, where number is expressed in radians.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

See Also
Arctan, Sin, Tan.

638 4th Dimension Language Reference

Tan Math

version 3
__

Tan (number) ® Number

Parameter Type Description
number Number ® Number, in radians, whose tangent is returned

Function result Number ¬ Tangent of number

Description
Tan returns the tangent of number, where number is expressed in radians.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

See Also
Arctan, Cos, Sin.

4th Dimension Language Reference 639

Arctan Math

version 3
__

Arctan (number) ® Number

Parameter Type Description
number Number ® Tangent for which to calculate the angle

Function result Number ¬ Angle in radians

Description
Arctan returns the angle, expressed in radians, of the tangent number.

Note: 4D provides the predefined constants Pi, Degree, and Radian. Pi returns the Pi
number (3.14159...), Degree returns one degree expressed in radians (0.01745...), and
Radian returns one radian expressed in degrees (57.29577...).

Examples
The following example shows the value of Pi:

Þ ALERT("Pi is equal to: "+String(Arctan(1)*4))

See Also
Cos, Sin, Tan.

640 4th Dimension Language Reference

SET REAL COMPARISON LEVEL Math

version 6.0
__

SET REAL COMPARISON LEVEL (epsilon)

Parameter Type Description
epsilon Number ® Epsilon value for real equality comparisons

Description
The command SET REAL COMPARISON LEVEL sets the epsilon value used by 4th Dimension
to compare real values and expressions for equality.

A computer always performs approximative real computations; therefore, testing real
numbers for equality should take this approximation into account. 4th Dimension does
this when comparing real numbers by testing whether or not the difference between the
two numbers exceeds a certain value. This value is called the epsilon and works this way:

Given two real numbers a and b, if Abs(a-b) is greater than the epsilon, the numbers are
considered not equal; otherwise, the numbers are considered equal.

By default, 4th Dimension, sets the epsilon value to 10 power minus 6 (10^-6). Examples:

• 0.00001=0.00002 returns False, because the difference 0.00001 is greater than 10^-6.
• 0.000001=0.000002 returns True, because the difference 0.000001 is not greater than
10^-6.
• 0.000001=0.000003 returns False, because the difference 0.000002 is greater than 10^-6.

Using SET REAL COMPARISON LEVEL, you can increase or decrease the epsilon value as you
require.

Note: If you want to execute a query or an "Order by" on a numeric indexed field whose
values are lower than 10^-6, make sure that the SET REAL COMPARISON LEVEL command is
executed before construction of the index.

WARNING: Typically, you will not need to use this command to change the default
epsilon value.

IMPORTANT: Changing the epsilon only affects real comparison for equality. It has no
effect on other real computations nor on the display of real values.

See Also
Comparison Operators.

4th Dimension Language Reference 641

Display of Real Numbers Math

version 6.0
__

Preliminary Note
If you do not deal with cross-platform development, you can skip this section.

On computers, floating point arithmetic is more a technology than a mathematical
science. For example, you learned in school that one-third (1/3) can be written as an
infinite number of threes after the decimal point. A computer, on the other hand, does
not know this and must calculate the expression. In the same way, you know
conceptually that three times one third is equal to one; a computer calculates the
expression to get the result. Depending on the type of computer you use, one-third is
calculated as a limited number of threes after the decimal point. This number is called the
“precision” of the machine.

On 68K-based Macintosh, the precision number is 19; this means that 1/3 is calculated
with 19 significant digits. On Windows and Power Macintosh, this number is 15; so 1/3 is
displayed with 15 significant digits. If you display the expression 1/3 in the Debugger
window of 4th Dimension, you will get 0.3333333333333333333 on 68K-based
Macintosh and something like 0.3333333333333333148 on Windows or Power
Macintosh. Note that the last three digits are different because the precision on Windows
and Power Macintosh is less than on the 68K-based Macintosh. Yet, if you display the
expression (1/3)*3, the result is 1 on both machines.

If your floating point arithmetic computations deal with the number of square feet in
your backyard, you will say “Fine with me!” because you do not care about the digits after
the decimal point. On the other hand, if you are filling out an IRS form, you may, in
certain circumstances, care about the accuracy of your computer. However, remember
that 19 or 15 digits after the decimal point are quite sufficient even if you manage
billions of dollars of revenue.

Why does the value 1/3 seem different on 68K Macintosh and onWindows or Power
Macintosh?

On 68K-based Macintosh, the operating system stores real numbers on 10 bytes (80 bits),
while on Windows and Power Macintosh, it stores them on 8 bytes (64 bits). This is why
real numbers have up to 19 significant digits on 68K-based Macintosh and up to 15
significant digits on Windows and Power Macintosh.

So, why does the expression (1/3)*3 return 1 on both machines?

642 4th Dimension Language Reference

A computer can only make approximate computations. Therefore, while comparing or
computing numbers, a computer does not treat real numbers as mathematical objects but
as approximate values. In our example, 0.3333... multiplied by 3 gives 0.9999...; the
difference between 0.9999... and 1 is so small that the machine considers the result equal
to 1, and consequently returns 1. For details on this subject, see the discussion for the
command SET REAL COMPARISON LEVEL.

There is dual behavior of real numbers, so we must make the distinction between:
• How they are calculated and compared
• How they are displayed on the screen or printer

Originally, 4th Dimension handled real numbers using the standard 10-byte data type
provided by the operating system of the 68K-based Macintosh. Consequently, real values
stored in the data file on disk are saved using this format. In order to maintain
compatibility between the 68K, Power Macintosh, and Windows versions of 4th
Dimension, the 4th Dimension data files still hold the real values using the 10-byte data
type. Because floating point arithmetic is performed on Windows or Power Macintosh
using the 8 byte format, 4th Dimension converts the values from 10 bytes to 8 bytes, and
vice versa. Therefore, if you load a record containing real values, which have been saved
on 68K-based Macintosh, onto Windows or Power Macintosh, it is possible to lose some
precision (from 19 to 15 significant digits). Yet, if you load a record containing real
values, which have been saved on Windows or Power Macintosh, on a 68K-based
Macintosh, there will be no loss of precision. Basically, if you use a database on 68K or
Power Macintosh and Windows, count on floating point arithmetic with 15 significant
digits, not 19.

Using Customizer Plus, you can set the number of digits to be skipped when simplifying
the display of real numbers on 68K or Power Macintosh and Windows. The default
settings are: no digits on 68K and five digits on Power Macintosh and Windows.

4th Dimension Language Reference 643

644 4th Dimension Language Reference

24 Menus

4th Dimension Language Reference 645

646 4th Dimension Language Reference

Managing Menus Menus

version 6.0 (Modified)
__

Terminology
The documentation of Menus commands uses the terms menu command and menu item
interchangeably when describing a line in a menu.

Menu Bars
__

Menu bars are identified by number, rather than by name. The first menu bar is Menu Bar
#1. It is also the default menu bar. To open an application with a menu bar other than
Menu Bar #1, you must use the MENU BAR command in the On Startup database method.

Each menu command can have one project method attached to it. If you do not assign a
method to a menu command, choosing that menu command causes 4th Dimension to
exit the Custom Menus environment and go to the User environment. If the user is
working with the 4th Dimension Custom Menus version or does not have access to the
User environment, this means quitting to the Desktop.

Every menu bar comes equipped with three menus—the File, Edit and Help menus
(Windows) or the Apple, File and Edit menus (Macintosh).

• The File menu has only one menu command—Quit. Quit has no method associated
with it; that is how it signals 4th Dimension to exit the Custom Menus environment.
You can rename the File menu, add menu commands to it or keep it as is. If it is renamed,
it will no longer appear to the left of the Edit menu. It is recommended that you always
keep Quit as the last menu command in the File menu.

• The Edit menu contains the standard editing menu commands. The Edit menu is not
displayed in the Menu editor and cannot be modified.

• On Windows, the Help menu contains About 4th Dimension and any Windows Help
files that may be available for the application. The Help menu is not displayed in the
Menu editor and cannot be modified, except for the About menu command, which can
be modified using the SET ABOUT command.

• On Macintosh, the Apple menu contains About 4th Dimension and any applications
located in the Apple Menu Items system folder. The Apple menu is not displayed in the
Menu editor and cannot be modified, except for the About menu command, which can
be modified using the SET ABOUT command.

4th Dimension Language Reference 647

Menu Numbers and Menu Command Numbers
__

Like menu bars, menus are numbered. The Edit and Help or Apple menus are not included
in the count, because they cannot be modified. Instead, File is menu 1. Thereafter, menus
are numbered sequentially from left to right (2, 3, 4, and so on). Menu numbering is
important when you are working, for example, with the Menu selected function. When a
menu is associated with a form, the menu numbering scheme is different. The first
appended menu begins with the number 2049. To refer to an appended menu, add 2048
to the normal menu number.

The menu commands within each menu are numbered sequentially from the top of the
menu to the bottom. The topmost menu command is item 1.

Associated Menu Bars
__

You can associate a menu bar with a form by using the Menu Bar... menu command from
the Form menu in the Form editor. Such a menu bar is called a “form menu bar” in this
document.

The menus on a form menu bar are appended to the current menu bar when the form is
displayed. The menus are appended for input forms in both the User and Custom Menus
environments and for output forms in the Custom Menus environment.

Form menu bars are specified by a menu bar number. If the number of the menu bar
displayed with the current form is the same as the number of the menu bar appended to
the form, the menu bar is not appended.

If you specify a negative number for a form menu bar, 4th Dimension uses the absolute
value of the menu bar. For example, if you specify –3 as the menu bar, Menu Bar #3 is
used. When a form menu bar is specified with a negative number, the menu commands
for all the menus in the menu bar (splash screen and form) will execute the methods that
are attached to them.

If you do not specify a negative number for a form menu bar, choosing a menu
command from that appended menu bar will not execute its method. Instead, an On
Menu Selected event will be sent to the form method, and you can use Menu selected to
test for the selected menu.

648 4th Dimension Language Reference

Modifying Menu Items Programmatically
__

4th Dimension provides the following commands for adding, deleting, inserting or
modifying menu items in a menu of the menu bar currently displayed or installed in a
process:

• ENABLE MENU ITEM
• DISABLE MENU ITEM
• SET MENU ITEM
• SET MENU ITEM STYLE
• SET MENU ITEM MARK
• SET MENU ITEM
• APPEND MENU ITEM
• INSERT MENU ITEM
• DELETE MENU ITEM

The scope of each of these commands is the current use of the menu bar. As soon as you
call MENU BAR again, all the menus and menu items will return to their original state as
defined in the Design environment Menu Bar Editor.

Each of these commands expects a menu and a menu item number.

As explained, menus are numbered 1 to N from left to right. For example, File is usually
the first menu. On Windows, the Edit and Help menus are excluded from this
numbering. On Macintosh, the Apple and Edit menus are excluded.

Note that the command Count menus does not take these menus into account. For
example, if you have a menu bar composed of the File, Customers and Invoices menus,
Count menus will return 3, ignoring the system menus maintained by 4D.

Menu items are numbered 1 to N from top to bottom, including separator lines.

Menus that are inserted in the menu bar by means of a menu bar associated with a form,
and therefore appended to the current menu bar, are numbered from left to right starting
with the number 2049 (2048 + 1 to N).

The command Menu selected returns menu and menu item numbers using that
convention.

Warning: These commands cannot access the system menus maintained by 4D (Edit and
Help on Windows, Apple and Edit on Macintosh).

Connected Menus: Menus can be connected to menu bars. If a connected menu is
modified using one of these commands, every other instance of the menu will reflect
these changes. For more information about connecting menus, refer to the 4th Dimension
Design Reference Manual.

4th Dimension Language Reference 649

MENU BAR Menus

version 3
__

MENU BAR (menuBar{; process}{; *})

Parameter Type Description
menuBar Number ® Number of the menu bar
process Number ® Process reference number
* ® Save menu bar state

Description
MENU BAR replaces the current menu bar with the menu bar specified by menuBar for the
current process only.

The optional process parameter changes the menu bar of the specified process to menuBar.
The optional * parameter allows you to save the state of the menu bar. If this parameter is
omitted, MENU BAR reinitializes the menu bar when the command is executed.

For example, suppose that MENU BAR(1) is executed. Next, several menu commands are
disabled using the DISABLE MENU ITEM command.

If MENU BAR(1) is executed a second time, either from the same process or from a
different process, all menu commands will revert to their initial enabled state.

If MENU BAR(1;*) is executed, the menu bar will retain the same state as before, and the
menu commands that were disabled will remain disabled.

Note: If you do not use the optional process parameter, * can be the second parameter. In
other words, MENU BAR(1;2;*) and MENU BAR(1; *) are both valid statements.

When a user enters the Custom Menus environment, the first menu bar is displayed
(Menu Bar #1). You can change this menu bar when opening a database by specifying the
desired menu bar in the On Startup database method or in the startup method for an
individual user.

Examples
1. The following example changes the current menu bar to menu bar #3 and resets the
states of the menu commands to their original states:

Þ MENU BAR (3)

650 4th Dimension Language Reference

2. The following example changes the current menu bar to menu bar #3 and saves the
states of the menu commands. Menu commands that were previously disabled will appear
disabled.

Þ MENU BAR (3;*)

3. The following example sets the current menu bar to menu bar #3 while records are
being modified. After the records have been modified, the menu bar is reset to menu bar
#2, with the menu state saved:

Þ MENU BAR(3)
ALL RECORDS([Customers])
MODIFY SELECTION([Customers])

Þ MENU BAR(2;*)

See Also
Managing Menus.

4th Dimension Language Reference 651

HIDE MENU BAR Menus

version 6.0
__

HIDE MENU BAR

Parameter Type Description
This command does not require any parameters

Description
The command HIDE MENU BAR makes the menu bar invisible.

If the menu bar was already hidden, the command does nothing.

Example
The following method displays a record in full-screen display (Macintosh) until you click
the mouse button:

HIDE TOOL BAR
Þ HIDE MENU BAR

Open window(-1;-1;1+Screen width;1+Screen height;Alternate dialog box)
INPUT FORM([Paintings];"Full Screen 800")
DISPLAY RECORD([Paintings])
Repeat

GET MOUSE($vlX;$vlY;$vlButton)
Until($vlButton#0)
CLOSE WINDOW
SHOW MENU BAR
SHOW TOOL BAR

Note: On Windows, the window will be limited to the bounds of the application window.

See Also
HIDE TOOL BAR, SHOW MENU BAR, SHOW TOOL BAR.

652 4th Dimension Language Reference

SHOW MENU BAR Menus

version 6.0
__

SHOW MENU BAR

Parameter Type Description
This command does not require any parameters

Description
The command SHOW MENU BAR makes the menu bar visible.

If the menu bar was already visible, the command does nothing.

Example
See example for the command HIDE MENU BAR.

See Also
HIDE MENU BAR, HIDE TOOL BAR, SHOW TOOL BAR.

4th Dimension Language Reference 653

SET ABOUT Menus

version 3
__

SET ABOUT (itemText; method)

Parameter Type Description
itemText String ® New About menu item text
method String ® Method to execute when menu item is chosen

Description
The command SET ABOUT changes the About 4th Dimension menu command in the
Help (Windows) or Apple (Macintosh) menu to ItemText.

After the call, when a user selects this menu command, method will be called. The
method can open a dialog box to give version information about your database.

The 4th Dimension icon, 4th Dimension version number, 4D Compiler version number,
and a single-line copyright notice will be appended across the top of the dialog box.

Note: Your application compilation version number is displayed, too, if you have
activated the Automatic Version option in your 4D Compiler project.

Examples
1. The following example replaces the About 4th Dimension menu command with the
About Scheduler menu command. The ABOUT method displays a custom About box:

Þ SET ABOUT(“About Scheduler…”; “ABOUT”)

2. The following example resets the About 4th Dimension menu command back to the
original About box:

Þ SET ABOUT("About 4th Dimension®";"")

654 4th Dimension Language Reference

Menu selected Menus

version 3
__

Menu selected ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Menu command selected
Menu number in high word
Menu item number in low word

Description
Menu selected is used only when forms are displayed. It detects which menu command
has been chosen from a menu.

Tip: Whenever possible, use methods associated with menu commands in an associated
menu bar (with a negative menu bar number) instead of using Menu selected. Associated
menu bars are easier to manage, since it is not necessary to test for their selection.
However, if you use the commands APPEND MENU ITEM or INSERT MENU ITEM, you have
to use Menu selected because the menu items added by these commands do not have
associated methods.

Menu selected returns the menu-selected number, a long integer. To find the menu
number, divide Menu selected by 65,536 and convert the result to an integer. To find the
menu command number, calculate the modulo of Menu selected with the modulus
65,536. Use the following formulas to calculate the menu number and menu command
number:

Þ Menu := Menu selected \ 65536
Þ menu command := Menu selected % 65536

Starting with version 6, you can also extract these values using the bitwise operators as
follows:

Þ Menu := (Menu selected & 0xFFFF0000) >> 16
Þ menu command := Menu selected & 0xFFFF

If no menu commands is selected, Menu selected returns 0.

4th Dimension Language Reference 655

Example
The following form method uses Menu selected to supply the menu and menu command
arguments to SET MENU ITEM MARK:

Case of
: (Form event=On Menu Selected)

Þ If (Menu selected # 0)
Þ SET MENU ITEM MARK (Menu selected\65536;Menu
selected%65536;Char(18))

End if
End case

See Also
Managing Menus.

656 4th Dimension Language Reference

Count menus Menus

version 6.0
__

Count menus {(process)} ® Number

Parameter Type Description
process Number ® Process reference number

Function result Number ¬ Number of menus in the current menu bar

Description
The command Count menus returns the number of menus present in the menu bar.

If you omit the process parameter, Count menus applies to the menu bar for the current
process. Otherwise, Count menus applies to the menu bar for the process whose reference
number is passed in process.

See Also
Count menu items.

4th Dimension Language Reference 657

Count menu items Menus

version 6.0
__

Count menu items (menu{; process}) ® Number

Parameter Type Description
menu Number ® Menu number
process Number ® Process reference number

Function result Number ¬ Number of menu items in the menu

Description
The command Count menu items returns the number of menu items present in the menu
whose number is passed in menu.

If you omit the process parameter, Count menu items applies to the menu bar for the
current process. Otherwise, Count menu items applies to the menu bar for the process
whose reference number is passed in process.

See Also
Count menus.

658 4th Dimension Language Reference

Get menu title Menus

version 6.0
__

Get menu title (menu{; process}) ® String

Parameter Type Description
menu Number ® Menu number
process Number ® Process reference number

Function result String ¬ Title of the menu

Description
The command Get menu title returns the title of the menu whose number is passed in
menu.

If you omit the process parameter, Get menu title applies to the menu bar for the current
process. Otherwise, Get menu title applies to the menu bar for the process whose reference
number is passed in process.

See Also
Count menus.

4th Dimension Language Reference 659

Get menu item Menus

version 6.0
__

Get menu item (menu; menuItem{; process}) ® String

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Process reference number

Function result String ¬ Text of the menu item

Description
The command Get menu item returns the text of the menu item whose menu and item
numbers are passed in menu and menuItem.

If you omit the process parameter, Get menu item applies to the menu bar for the current
process. Otherwise, Get menu item applies to the menu bar for the process whose reference
number is passed in process.

See Also
SET MENU ITEM.

660 4th Dimension Language Reference

SET MENU ITEM Menus

version 3
__

SET MENU ITEM (menu; menuItem; itemText{; process})

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
itemText String ® New text for the menu item
process Number ® Process reference number

Description
The command SET MENU ITEM changes the text of the menu item whose menu and item
numbers are passed in menu and menuItem, to the text passed in itemText.

If you omit the process parameter, SET MENU ITEM applies to the menu bar for the
current process. Otherwise, SET MENU ITEM applies to the menu bar for the process whose
reference number is passed in process.

See Also
Get menu item.

4th Dimension Language Reference 661

Get menu item style Menus

version 6.0
__

Get menu item style (menu; menuItem{; process}) ® Number

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Process reference number

Function result Number ¬ Current menu item style

Description
The command Get menu item style returns the font style of the menu item whose menu
and item numbers are passed in menu and menuItem.

If you omit the process parameter, Get menu item style applies to the menu bar for the
current process. Otherwise, Get menu item style applies to the menu bar for the process
whose reference number is passed in process.

Get menu item style returns a combination (one or a sum) of the following predefined
constants:

Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the styles Plain or a combination of Bold, Italic, and Underline are
available.

Example
To test if a menu item is displayed in bold, you write:

Þ If ((Get menu item style($vlMenu;$vlItem) & Bold)#0)
`...

End if

See Also
SET MENU ITEM STYLE.

662 4th Dimension Language Reference

SET MENU ITEM STYLE Menus

version 6.0
__

SET MENU ITEM STYLE (menu; menuItem; itemStyle{; process})

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
itemStyle Number ® New menu item style
process Number ® Process reference number

Description
The command SET MENU ITEM STYLE changes the font style of the menu item whose
menu and item numbers are passed in menu and menuItem according to the font style
passed in itemStyle.

If you omit the process parameter, SET MENU ITEM STYLE applies to the menu bar for the
current process. Otherwise, SET MENU ITEM STYLE applies to the menu bar for the process
whose reference number is passed in process.

You specify the font style of the item in the itemStyle parameter. You pass a combination
(one or a sum) of the following predefined constants:

Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the styles Plain or a combination of Bold, Italic, and Underline are
available.

See Also
Get menu item style.

4th Dimension Language Reference 663

Get menu item mark Menus

version 6.0
__

Get menu item mark (menu; menuItem{; process}) ® String

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Process reference number

Function result String ¬ Current menu item mark

Description
The command Get menu item mark returns the check mark of the menu item whose
menu and item numbers are passed in menu and menuItem.

If you omit the process parameter, Get menu item mark applies to the menu bar for the
current process. Otherwise, Get menu item mark applies to the menu bar for the process
whose reference number is passed in process.

If the menu item has no mark, Get menu item mark returns an empty string.

Note: See discussion of check marks on Macintosh and Windows in the description of the
command SET MENU ITEM MARK.

Example
The following example toggles the check mark of a menu item:

Þ SET ITEM MARK($vlMenu;$vlItem;
Char(18)*Num(Get menu item mark($vlMenu;$vlItem)=""))

See Also
SET MENU ITEM MARK.

664 4th Dimension Language Reference

SET MENU ITEM MARK Menus

version 3
__

SET MENU ITEM MARK (menu; item; mark{; process})

Parameter Type Description
menu Number ® Menu number
item Number ® Item number
mark String ® New menu item mark
process Number ® Process reference number

Description
The command SET MENU ITEM MARK changes the check mark of the menu item whose
menu and item numbers are passed in menu and menuItem to the first character of the
string passed in mark.

If you omit the process parameter, SET MENU ITEM MARK applies to the menu bar for the
current process. Otherwise, SET MENU ITEM MARK applies to the menu bar for the process
whose reference number is passed in process.

If you pass an empty string, any mark is removed from the menu item. Otherwise:
• On Macintosh, the first character of the string becomes the mark of the menu item.
Usually, you will pass Char (18), which is the check mark character for Macintosh menus.
• On Windows, the menu item is assigned the standard check mark.

Example
See example for the command Get item mark.

See Also
Get menu item mark.

4th Dimension Language Reference 665

Get menu item key Menus

version 6.0
__

Get menu item key (menu; menuItem{; process}) ® Number

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Process reference number

Function result Number ¬ ASCII code of menu item key

Description
The command Get menu item key returns the ASCII code of the Ctrl (Windows) or
Command (Macintosh) shortcut for the menu item whose menu and item numbers are
passed in menu and menuItem.

If you omit the process parameter, Get menu item key applies to the menu bar for the
current process. Otherwise, Get menu item key applies to the menu bar for the process
whose reference number is passed in process.

If the menu item has no shortcut, Get menu item key returns 0 (zero).

See Also
SET MENU ITEM KEY.

666 4th Dimension Language Reference

SET MENU ITEM KEY Menus

version 6.0
__

SET MENU ITEM KEY (menu; menuItem; itemKey{; process})

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
itemKey Number ® ASCII code of new menu item key
process Number ® Process reference number

Description
The command SET MENU ITEM KEY changes the Ctrl (Windows) or Command
(Macintosh) shortcut for the the menu item whose menu and item numbers are passed in
menu and menuItem, to the character whose ASCII code is passed in itemKey.

If you omit the process parameter, SET MENU ITEM KEY applies to the menu bar for the
current process. Otherwise, SET MENU ITEM KEY applies to the menu bar for the process
whose reference number is passed in process.

If you pass 0 (zero) in itemKey, any shortcut is removed from the menu item.

Note: For consistency in the user interface, use uppercase characters, digits or symbols
that are available on the keyboard, without using any modifier key other than the Ctrl
(Windows) or Command (Macintosh) key.

See Also
Get menu item key.

4th Dimension Language Reference 667

DISABLE MENU ITEM Menus

version 3
__

DISABLE MENU ITEM (menu; menuItem{; process})

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Proces reference number

Description
The command DISABLE MENU ITEM disables the menu item whose menu and item
numbers are passed in menu and menuItem.

If you omit the process parameter, DISABLE MENU ITEM applies to the menu bar for the
current process. Otherwise, DISABLE MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

Tip: To enable/disable all items of a menu at once, pass 0 (zero) in menuItem.

See Also
ENABLE MENU ITEM.

668 4th Dimension Language Reference

ENABLE MENU ITEM Menus

version 3
__

ENABLE MENU ITEM (menu; menuItem{; process})

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Proces reference number

Description
The command ENABLE MENU ITEM enables the menu item whose menu and item
numbers are passed in menu and menuItem.

If you omit the process parameter, ENABLE MENU ITEM applies to the menu bar for the
current process. Otherwise, ENABLE MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

Tip: To enable/disable all items of a menu at once, pass 0 (zero) in menuItem.

See Also
DISABLE MENU ITEM.

4th Dimension Language Reference 669

APPEND MENU ITEM Menus

version 6.0
__

APPEND MENU ITEM (menu; itemText{; process})

Parameter Type Description
menu Number ® Menu number
itemText String ® Text for the new menu items
process Number ® Process reference number

Description
The command APPEND MENU ITEM appends new menu items to the menu whose
number is passed in menu.

If you omit the process parameter, APPEND MENU ITEM applies to the menu bar for the
current process. Otherwise, APPEND MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

APPEND MENU ITEM allows you to append one or several menu items in one call.

You define the items to be appended with the parameter itemText as follows:
• Separate each item from the next one with a semi-colon (;). For example,
 "ItemText1;ItemText2;ItemText3".
• To disable an item: Place an opening parenthesis (() in the item text.
• To specify a separation line: Pass "(-" as item text.
• To specify a font style for a line: In the item text, place a less than sign (<) followed by
one of these characters:

<B Bold
<I Italic
<U Underline
<O Outline (Macintosh only)
<S Shadow (Macintosh only)

• To add a check mark to an item: In the item text, place an exclamation mark (!)
followed by the character you want as a check mark. On Macintosh, the character is
displayed; on Windows, a check mark is displayed no matter what character you passed.
• To add an icon to an item: In the item text, place a circumflex accent (^) followed by a
character whose ASCII code minus 48 is the resource ID of a MacOS-based icon resource.
• To add a shortcut to an item: In the item text, place a slash (/) followed by the shortcut
character for the item.

670 4th Dimension Language Reference

Note: Use menus that have a reasonable number of items. If you want to display more
than 50 items, think about a using scrollable area in a form instead of a menu.

Note: APPEND MENU ITEM accepts up to 32,000 characters, while INSERT MENU ITEM
accepts up to 255 characters.

Important: The new items do not have any associated method. Therefore, they must be
managed from within a form method using the Menu selected command.

Example
This example appends the names of the available fonts to the Font menu, which in this
example is the sixth menu of the current menu bar:

` In the On Startup database method
` The font list is loaded and menu item text is built

FONT LIST(àasAvailableFont)
àatFontMenuItems:=""
For ($vlFont;1;Size of array(àasAvailableFont))

àatFontMenuItems:=àatFontMenuItems+";"+àasAvailableFont{$vlFont}
End for

Then, in any form or project method, you can write:

Þ APPEND MENU ITEM(6;àatFontMenuItems)

See Also
DELETE MENU ITEM, INSERT MENU ITEM.

4th Dimension Language Reference 671

INSERT MENU ITEM Menus

version 6.0
__

INSERT MENU ITEM (menu; afterItem; itemText{; process})

Parameter Type Description
menu Number ® Menu number
afterItem Number ® Menu item number
itemText String ® Text for the menu item to be inserted
process Number ® Process reference number

Description
The command INSERT MENU ITEM inserts new menu items into the menu whose number
is passed in menu after the existing menu item whose number is passed in afterItem.

If you omit the process parameter, INSERT MENU ITEM applies to the menu bar for the
current process. Otherwise, INSERT MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

INSERT MENU ITEM allows to you insert one or several menu items in one call.

INSERT MENU ITEM works like APPEND MENU ITEM, except for the following differences:
• INSERT MENU ITEM enables you to insert items anywhere in the menu, while
APPEND MENU ITEM always adds them at the end of the menu.
• With INSERT MENU ITEM, the item definition passed in itemText is limited to 255
characters, while with APPEND MENU ITEM, itemText is limited to 32,000 characters.

See the description of the command APPEND MENU ITEM for details about the the item
definition passed in itemText.

Important: The new items do not have any associated method. Therefore, they must be
managed from within a form method using the Menu selected command.

See Also
APPEND MENU ITEM.

672 4th Dimension Language Reference

DELETE MENU ITEM Menus

version 6.0
__

DELETE MENU ITEM (menu; menuItem{; process})

Parameter Type Description
menu Number ® Menu number
menuItem Number ® Menu item number
process Number ® Process reference number

Description
The command DELETE MENU ITEM deletes the menu item whose menu and item numbers
are passed in menu and menuItem.

If you omit the process parameter, DELETE MENU ITEM applies to the menu bar for the
current process. Otherwise, DELETE MENU ITEM applies to the menu bar for the process
whose reference number is passed in process.

Note: For consistency in the user interface, do not keep a menu with no items.

See Also
APPEND MENU ITEM, INSERT MENU ITEM.

4th Dimension Language Reference 673

674 4th Dimension Language Reference

25 Messages

4th Dimension Language Reference 675

676 4th Dimension Language Reference

MESSAGES OFF Messages

version 3
__

MESSAGES OFF

Parameter Type Description
This command does not require any parameters

Description
The commands MESSAGES ON and MESSAGES OFF turn on and off the progress meters
displayed by 4th Dimension while executing time-consuming operations. By default,
messages are on.

The following table shows User environment operations that display the progress meter:
Apply Formula Quick Report Order by
Export Data Import Data Graph
Query by Form Query by Formula Query Editor

The following table lists the commands that display the progress meter:
APPLY TO SELECTION IMPORT SYLK QUERY
DISTINCT VALUES IMPORT TEXT QUERY BY FORMULA
EXPORT DIF RELATE MANY SELECTION QUERY BY FORM
EXPORT SYLK RELATE ONE SELECTION QUERY SELECTION
EXPORT TEXT REDUCE SELECTION QUERY SELECTION BY FORMULA
GRAPH TABLE REPORT ORDER BY FORMULA
IMPORT DIF SCAN INDEX ORDER BY

Example
The following example turns off the progress meter before doing a sort, and then turns it
back on after completing the sort:

Þ MESSAGES OFF
ORDER BY ([Addresses];[Addresses]ZIP;>;[Addresses]Name2;>)
MESSAGES ON

4th Dimension Language Reference 677

MESSAGES ON Messages

version 3
__

MESSAGES ON

Parameter Type Description
This command does not require any parameters

Description
See the description of the MESSAGES OFF command.

678 4th Dimension Language Reference

ALERT Messages

version 6.0 (modified)
__

ALERT (message{; ok button title})

Parameter Type Description
message String ® Message to display in the alert dialog box
ok button title String ® OK button title

Description
The ALERT command displays an alert dialog box composed of a note icon, a message, and
an OK button.

You pass the message to be displayed in the parameter message. This message can be up to
255 characters long. However, if the message does not fit into the message area, it can
appear truncated, depending on its length and the width of the characters.

By default, the title of the OK button is “OK.” To change the title of the OK button, pass
the new custom title into the optional parameter ok button title. If necessary, the OK
button width is resized toward the left, according to the width of the custom title you
pass.

Tip: Do not call the ALERT command from the section of a form or object method that
handles the On Activate or On Deactivate form events; this will cause an endless loop.

Examples
1. This example displays an alert showing information about a company. Note that the
displayed string contains carriage returns, which cause the string to wrap to the next line:

Þ ALERT("Company: "+[Companies]Name+Char(13)+"People in company: "+
String(Records in selection([People]))+Char(13)+"Number of parts they supply: "+

String (Records in selection([Parts])))

4th Dimension Language Reference 679

This line of code displays the following alert box (on MacOS):

2. The line:

Þ ALERT("I'm sorry Dave, I can't do that.";"Alas!")

displays the alert dialog box (on MacOS) shown:

680 4th Dimension Language Reference

3. The line:

Þ ALERT("You no longer have the access privileges for deleting these records.";"Well,
I swear I did not know that")

displays the alert dialog box (On Macintosh) shown:

See Also
CONFIRM, Request.

4th Dimension Language Reference 681

CONFIRM Messages

version 6.0 (Modified)
__

CONFIRM (message{; OK button title{; cancel button title}})

Parameter Type Description
message String ® Message to display in the confirmation dialog box
OK button title String ® OK button title
cancel button title String ® Cancel button title

Description
The CONFIRM command displays a confirm dialog box composed of a note icon, a
message, an OK button, and a Cancel Button.

You pass the message to be displayed in the message parameter. This message can be up to
255 characters long. If the message does not fit into the message area, it can appear
truncated, depending on its length and the width of the characters.

By default, the title of the OK button is “OK” and that of the Cancel button is “Cancel.”
To change the titles of these buttons, pass the new custom titles into the optional
parameters ok button title and cancel button title. If necessary, the width of the buttons is
resized toward the left, according to the width of the custom titles you pass.

The OK button is the default button. If the user clicks the OK button or presses Enter to
accept the dialog box, the OK system variable is set to 1. If the user clicks the Cancel
button to cancel the dialog box, the OK system variable is set to 0.

Tip: Do not call the CONFIRM command from the section of a form or object method
that handles the On Activate or On Deactivate form events; this will cause an endless loop.

Examples
1. The line:

Þ CONFIRM("WARNING: You will not be able to revert this operation.")
If (OK=1)

ALL RECORDS([Old Stuff])
DELETE SELECTION([Old Stuff])

Else
ALERT ("Operation canceled.")

End if

682 4th Dimension Language Reference

will display the confirm dialog box (on Windows) shown here:

2. The line:

Þ CONFIRM("Do you really want to close this account?";"Yes";"No")

will display the confirm dialog box (on Windows) shown here:

3. You are writing a 4D application for the international market. You wrote a project
method that returns the correct localized text from its English version. You have also
populated an array named <>asLocalizedUIMessages,where you store the most common
words. In doing so, the line:

Þ CONFIRM(INTL Text ("Do you want to add a new Memo?");
<>asLocalizedUIMessages{kLoc_YES};<>asLocalizedUIMessages{kLoc_NO})

could display the French confirm dialog box (on Windows) shown here:

4th Dimension Language Reference 683

4. The line:

Þ CONFIRM("WARNING: If your pursue this operation, some records will be "+
"irremediably affected."+Char(13)+"What do you want to do?";

"Do NOT continue";"Continue")

will display the confirm dialog box (on Macintosh) shown here:

See Also
ALERT, Request.

684 4th Dimension Language Reference

Request Messages

version 6.0 (Modified)
__

Request (message{; default response{; OK button title{; Cancel button title}}}) ® String

Parameter Type Description
message String ® Message to display in the request dialog box
default response String ® Default data for the enterable text area
OK button title String ® OK button title
Cancel button title String ® Cancel button title

Function result String ¬ Value entered by user

Description
The command Request displays a request dialog box composed of a message, a text input
area, an OK button, and a Cancel Button.

You pass the message to be displayed in the message parameter. This message can be up to
255 characters long. If the message does not fit into the message area, it can appear
truncated, depending on its length and the width of the characters.

By default, the title of the OK button is “OK” and that of the Cancel button is “Cancel.”
To change the titles of these buttons, pass the new custom titles into the optional
parameters ok button title and cancel button title. If necessary, the width of the buttons is
resized toward the left, according to the width of the custom titles you pass.

The OK button is the default button. If you click the OK button or press Enter to accept
the dialog box, the OK system variable is set to 1. If you click the Cancel button to cancel
the dialog box, the OK system variable is set to 0.

The user can enter text into the text input area. To specify a default value, pass the default
text in the default response parameter. If the user clicks OK, Request returns the text. If
the user clicks Cancel, Request returns an empty string (""). If the response should be a
numeric or a date value, convert the string returned by Request to the proper type with
the Num or Date functions.

Tip: Do not call the Request command from the section of a form or object method that
handles the On Activate or On Deactivate form event; this will cause an endless loop.

Tip: If you need to get several pieces of information from the user, design a form and
present it with DIALOG, rather than presenting a succession of Request dialog boxes.

4th Dimension Language Reference 685

Examples
1. The line:

Þ $vsPrompt := Request ("Please enter your name:")

will display the request dialog box (on Windows) shown here:

2. The line:

Þ vsPrompt := Request ("Name of the Employee:";"";"Create Record";"Cancel")
If (OK=1)

ADD RECORD ([Employees])
` Note: vsPrompt is then copied into the field [Employees]Last name
` during the On Load event in the form method

End if

will display the request dialog box (on Windows) shown here:

3. The line:

Þ $vdPrompt := Date (Request ("Enter the new date:";String (Current date)))

will display the request dialog box (on Windows) shown here:

See Also
ALERT, CONFIRM.

686 4th Dimension Language Reference

MESSAGE Messages

version 3
__

MESSAGE (message)

Parameter Type Description
message String ® Message to display

Description
The MESSAGE command is usually used to inform the user of some activity. It displays
message on the screen in a special message window that opens and closes each time you
call MESSAGE, unless you work with a window you previously opened using Open window
(see the following details). The message is temporary and is erased as soon as a form is
displayed or the method stops executing. If another MESSAGE is executed, the old
message is erased.

If a window is opened with Open window, all subsequent calls to MESSAGE display the
messages in that window. The window behaves like a terminal:
• Successive messages do not erase previous messages when displayed in the window.
Instead, they are concatenated onto existing messages.
• If a message is wider than the window, 4th Dimension automatically performs text
wrap.
• If a message has more lines than the window, 4th Dimension automatically scrolls the
message window.
• To control line breaks, include carriage returns — Char(13) — into your message.
• To display the text at a particular place in the window, call GOTO XY.
• To erase the contents of the window, call ERASE WINDOW .
• The window is only an output window and does not redraw when other windows
overlap it.

4th Dimension Language Reference 687

4th Dimension uses the Message Font and Message Font Size properties to display
messages. You can change these settings in the Database Properties dialog box:

You can choose the font and the font size (within limits) at your convenience. However,
if you combine the use of MESSAGE and GOTO XY, it is a good idea to choose a fixed
width font, such as Terminal on Windows or Monaco on Macintosh.

Examples
1. The following example processes a selection of records and calls MESSAGE to inform the
user about the progress of the operation:

For($vlRecord;1;Records in selection([anyTable]))
Þ MESSAGE ("Processing record #"+String($vlRecord))

` Do Something with the record
NEXT RECORD([anyTable])

End for

The following window appears and disappears at each MESSAGE call:

688 4th Dimension Language Reference

2. In order to avoid this "blinking" window, you can display the messages in a window
opened using Open window, as in this example:

Open window(50;50;500;250;5;"Operation in Progress")
For($vlRecord;1;Records in selection([anyTable]))

Þ MESSAGE ("Processing record #"+String($vlRecord))
` Do Something with the record

NEXT RECORD([anyTable])
End for
CLOSE WINDOW

This provides the following result (shown here on Macintosh):

3. Adding a carriage return makes a better presentation:

Open window(50;50;500;250;5;"Operation in Progress")
For($vlRecord;1;Records in selection([anyTable]))

Þ MESSAGE ("Processing record #"+String($vlRecord)+Char(13))
` Do Something with the record

NEXT RECORD([anyTable])
End for
CLOSE WINDOW

This provides the following result (shown here on Macintosh):

4th Dimension Language Reference 689

4. Using GOTO XY and writing some additional lines:

Open window(50;50;500;250;5;"Operation in Progress")
$vlNbRecords:=Records in selection([anyTable])
$vhStartTime:=Current time
For($vlRecord;1;$vlNbRecords)

GOTO XY(5;2)
Þ MESSAGE ("Processing record #"+String($vlRecord)+Char(13))

` Do Something with the record
NEXT RECORD([anyTable])
GOTO XY(5;5)
$vlRemaining:=(($vlNbRecords/$vlRecord)-1)*(Current time-$vhStartTime)

Þ MESSAGE ("Estimated remaining time: "+Time string($vlRemaining))
End for
CLOSE WINDOW

This provides the following result (shown here on Windows):

See Also
CLOSE WINDOW, ERASE WINDOW, GOTO XY, Open window.

690 4th Dimension Language Reference

GOTO XY Messages

version 3
__

GOTO XY (x; y)

Parameter Type Description
x Number ® x (horizontal) position of cursor
y Number ® y (vertical) position of cursor

Description
The GOTO XY command is used in conjunction with the MESSAGE command when you
display messages in a window opened using Open window.

GOTO XY positions the character cursor (an invisible cursor) to set the location of the
next message in the window.

The upper-left corner is position 0,0. The cursor is automatically placed at 0,0 when a
window is opened and after ERASE WINDOW is executed.

After GOTO XY positions the cursor, you can use MESSAGE to display characters in the
window.

Tip: Using a fixed-width (monospaced) font, such as Terminal on Windows and Monaco
on Macintosh, for the message, gives the best display results with GOTO XY and
MESSAGE. See the description of the MESSAGE command for more information.

Examples
1. See example for the command MESSAGE.

2. See example for the command Milliseconds.

3. The following example:

Open window(50;50;300;300;5;"This is only a test")
For ($vlRow;0;9)

GOTO XY($vlRow;0)
MESSAGE(String($vlRow))

End for
For ($vlLine;0;9)

GOTO XY(0;$vlLine)
MESSAGE(String($vlLine))

End for
$vhStartTime:=Current time
Repeat
Until ((Current time-$vhStartTime)>†00:00:30†)

4th Dimension Language Reference 691

displays the following window (on Macintosh) for 30 seconds:

See Also
MESSAGE.

692 4th Dimension Language Reference

26 Named Selections

4th Dimension Language Reference 693

694 4th Dimension Language Reference

Named Selections Named Selections

version 3
__

Named selections provide an easy way to manipulate several selections simultaneously. A
named selection is an ordered list of records for a table in a process. This ordered list can
be given a name and kept in memory. Named selections offer a simple means to preserve
in memory the order of the selection and the current record of the selection.

The following commands enable you to work with named selections:
• COPY NAMED SELECTION
• CUT NAMED SELECTION
• USE NAMED SELECTION
• CLEAR NAMED SELECTION

Named selections are created with the COPY NAMED SELECTION and CUT NAMED
SELECTION commands. Named selections are generally used to work on one or more
selections and to save and later restore an ordered selection. There can be many named
selections for each table in a process. To reuse a named selection as the current selection,
call USE NAMED SELECTION. When you are done with a named selection, use CLEAR
NAMED SELECTION.

Named selections can be process or interprocess in scope.

A named selection is an interprocess named selection if its name is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

The scope of an interprocess named selection is identical to the scope of an interprocess
variable. An interprocess named selection can be accessed from any process.

A named selection whose name is not prefixed with the symbols (<>) is process in scope
and is available only within the process in which it was created.

With 4D Client and 4D Server, an interprocess named selection is available only to the
processes of the client that created it. An interprocess named selection is not available to
other client machines.

Warning: Creating a named selection requires access to the selection of the table. Since
selections are kept on the server and a local process does not have access to server data, do
not use named selections within local processes.

4th Dimension Language Reference 695

Named Selections and Sets

The differences between sets and named selections are:
• A named selection is an ordered list of records; a set is not.
• Sets are very memory efficient, because they require only one bit for each record in the
file. Named selections require 4 bytes for each record in the selection.
• Unlike sets, named selections cannot be saved to disk.
• Sets have the standard Intersection, Union and Difference operations; named selections
cannot be combined with other named selections.

The similarities between named selections and sets are:
• Like a set, a named selection exists in memory.
• A named selection and a set store references to a record. If records are modified or
deleted, the named selection or the set can become invalid.
• Like a set, a named selection “remembers” the current record as of the time the named
selection was created.

696 4th Dimension Language Reference

COPY NAMED SELECTION Named Selections

version 3
__

COPY NAMED SELECTION ({table; }name)

Parameter Type Description
table Table ® Table from which to copy selection, or

Default table, if omitted
name String ® Name of the named selection to create

Description
COPY NAMED SELECTION copies the current selection of table to the named selection
name. The default table for the process is used if the optional table parameter is not
specified. The parameter name contains a copy of the selection. The current selection and
the current record of Table for the process are not changed.

A named selection does not actually contain the records, but only an ordered list of
references to records. Each reference to a record takes 4 bytes in memory. This means that
when a selection is copied using the COPY NAMED SELECTION command, the amount of
memory required is 4 bytes multiplied by the number of records in the selection. Since
named selections reside in memory, you should have enough memory for the named
selection as well as the current selection of the table in the process.

Use the CLEAR NAMED SELECTION command to free the memory used by name.

Example
The following example allows you to check if there are other overdue invoices in the
[People] table. The selection is sorted and then saved. We search for all records where
invoices are due. Then we reuse the selection and clear the named selection in memory.
Clearing the named selection in memory is optional, in case the database designer wants
to keep the sorted selection for future use:

ALL RECORDS([People])
`Allow the user to sort the selection

ORDER BY([People])
` Save the sorted selection as a named selection

Þ COPY NAMED SELECTION([People];"UserSort")
` Search for records where invoices are due

QUERY([People];[People]InvoiceDue=True)
` If records are found

4th Dimension Language Reference 697

If (Records in selection([People])>0)
` Alert the user

ALERT("Yes, there are overdue invoices on table.")
End if

` Reuse the sorted named selection
USE NAMED SELECTION("UserSort")

` Remove the selection from memory
CLEAR NAMED SELECTION("UserSort")

See Also
CLEAR NAMED SELECTION, CUT NAMED SELECTION, USE NAMED SELECTION.

698 4th Dimension Language Reference

CUT NAMED SELECTION Named Selections

version 3
__

CUT NAMED SELECTION ({table; }name)

Parameter Type Description
table Table ® Table from which to cut selection, or

Default table, if omitted
name String ® Name of the named selection to create

Description
CUT NAMED SELECTION creates a named selection name and moves the current selection
of table to it. This command differs from COPY NAMED SELECTION in that it does not
copy the current selection, but moves the current selection of table itself.

After the command has been executed, the current selection of table in the current
process becomes empty. Therefore, CUT NAMED SELECTION should not be used while a
record is being modified.

CUT NAMED SELECTION is more memory efficient than COPY NAMED SELECTION. With
COPY NAMED SELECTION, 4 bytes times the number of selected records is duplicated in
memory. With CUT NAMED SELECTION, only the reference to the list is moved.

Example
The following method empties the current selection of a table [Customers]:

Þ CUT NAMED SELECTION([Customers]; "ToBeCleared")
CLEAR NAMED SELECTION("ToBeCleared")

See Also
CLEAR NAMED SELECTION, COPY NAMED SELECTION, USE NAMED SELECTION.

4th Dimension Language Reference 699

USE NAMED SELECTION Named Selections

version 3
__

USE NAMED SELECTION (name)

Parameter Type Description
name String ® Name of named selection to be used

Description
USE NAMED SELECTION uses the named selection name as the current selection for the
table to which it belongs.

When you create a named selection, the current record is “remembered” by the named
selection. USE NAMED SELECTION retrieves the position of this record and makes the
record the new current record; this command loads the current record. If the current
record was modified after name was created, the record should be saved before USE NAMED
SELECTION is executed, in order to avoid losing the modified information.

• If COPY NAMED SELECTION was used to create name, the named selection name is copied
to the current selection of the table to which name belongs. The named selection name
exists in memory until it is cleared. Use the CLEAR NAMED SELECTION command to clear
the named selection and free the memory used by name.

• If CUT NAMED SELECTION was used to create name, the current selection is set to name
and name no longer exists in memory.

Remember that a named selection is a representation of a selection of records at the
moment that the named selection is created. If the records represented by the named
selection change, the named selection may no longer be accurate. Therefore, a named
selection represents a group of records that does not change frequently. A number of
things can invalidate a named selection: modifying a record of the named selection,
deleting a record of the named selection, or changing the criterion that determined the
named selection.

Also note that during a transaction, temporary record addresses are used. If a named
selection is created during a transaction, it may contain addresses that will no longer be
valid when the transaction is validated or cancelled, because the records will receive their
final and actual address after the transaction is validated.

See Also
COPY NAMED SELECTION, CUT NAMED SELECTION, USE NAMED SELECTION.

700 4th Dimension Language Reference

CLEAR NAMED SELECTION Named Selections

version 3
__

CLEAR NAMED SELECTION (name)

Parameter Type Description
name String ® Name of named selection to be cleared

Description
CLEAR NAMED SELECTION clears name from memory and frees the memory used by name.
CLEAR NAMED SELECTION does not affect tables, selections, or records. Since named
selections use memory, it is good practice to clear named selections when they are no
longer needed.

If name was created using the CUT NAMED SELECTION command and then manipulated
using the USE NAMED SELECTION command, name no longer exists in memory. In this
case, the CLEAR NAMED SELECTION command does not need to be used.

See Also
COPY NAMED SELECTION, CUT NAMED SELECTION, USE NAMED SELECTION.

4th Dimension Language Reference 701

702 4th Dimension Language Reference

27 Object Properties

4th Dimension Language Reference 703

704 4th Dimension Language Reference

Object Properties Object Properties

version 6.0
__

Object Properties commands
The Object Properties commands are:
• FONT
• FONT SIZE
• FONT STYLE
• ENABLE BUTTON
• DISABLE BUTTON
• BUTTON TEXT
• SET CHOICE LIST
• SET ENTERABLE
• SET VISIBLE
• SET FORMAT
• SET FILTER
• SET COLOR
• SET RGB COLOR

The Object Properties commands act on the properties of objects present in forms. They
enable you to change the appearance and behavior of the objects while using the forms
in the User or Custom menus environment.

Important: The scope of these commands is the form currently being used; changes
disappear when you exit the form.

Accessing Objects using their Object Names or their Data Source Names
The Object Properties commands share the same generic syntax described here:

COMMAND NAME({*;} object { ; additional parameters specific to each command)

If you specify the optional * parameter, you indicate an object name (a string) in object.

4th Dimension Language Reference 705

You can use the @ character within that name if you want to address several objects of
the form in one call. The following table shows examples of object names you can specify
to this command.

Object Names Objects affected by the call
mainGroupBox Only the object mainGroupBox.
main@ The objects whose name starts with “main”.
@GroupBox The objects whose name ends with “GroupBox”.
@Group@ The objects whose name contains “Group”.
main@Btn The objects whose name starts with “main” and ends with “Btn”.
@ All the objects present in the form.

If you omit the optional * parameter, you indicate a field or a variable in object. In this
case, you specify a field or variable reference (field or variable objects only) instead of a
string.

Note: This second syntax is compatible with the previous version of 4th Dimension.

See Also
BUTTON TEXT, DISABLE BUTTON, ENABLE BUTTON, FONT, FONT SIZE, FONT STYLE, SET
CHOICE LIST, SET ENTERABLE, SET FILTER, SET FORMAT, SET RGB COLOR, SET VISIBLE.

706 4th Dimension Language Reference

FONT Object Properties

version 6.0 (Modified)
__

FONT ({*; }object; font)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
font String | Number ® Font name or Font number

Description
FONT sets the form objects specified by object to be displayed using the font whose name
or number you pass in font.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

Examples
1. The following example sets the font for a button named bOK:

Þ FONT (bOK; "Arial")

2. The following example sets the font for all the form objects whose name contains
"info":

Þ FONT (*;"@info@"; "Times")

See Also
FONT SIZE, FONT STYLE.

4th Dimension Language Reference 707

FONT SIZE Object Properties

version 6.0 (Modified)
__

FONT SIZE ({*; }object; size)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
size Number ® Font size in points

Description
FONT SIZE sets the form objects specified by object to be displayed using the font size you
pass in size.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

The size is any integer between 1 and 255. If the exact font size does not exist, characters
are scaled.

The area for the object, as defined in the form, must be large enough to display the data
in the new size. Otherwise, the text may be truncated or not displayed at all.

Examples
1. The following example sets the font size for a variable named vtInfo:

Þ FONT SIZE (vtInfo; 14)

2. The following example sets the font size for all the form objects whose name starts
with "hl":

Þ FONT SIZE (*;"hl@"; 14)

See Also
FONT, FONT STYLE.

708 4th Dimension Language Reference

FONT STYLE Object Properties

version 6.0 (Modified)
__

FONT STYLE ({*; }object; styles)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
styles Number ® Font style

Description
FONT STYLE sets the form objects specified by object to be displayed using the font style
you pass in styles.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

You pass in styles a sum of the constants describing your font style selection. The
following are the predefined constants provided by 4D:
Constant Type Value
Plain Long Integer 0
Bold Long Integer 1
Italic Long Integer 2
Underline Long Integer 4
Outline Long Integer 8
Shadow Long Integer 16
Condensed Long Integer 32
Extended Long Integer 64

Note: On Windows, only the Plain, Bold, Italic and Underline styles are available.

4th Dimension Language Reference 709

Examples
1. This example sets the font style for a button named bAddNew. The font style is set to
bold italic:

Þ FONT STYLE (bAddNew; Bold + Italic)

2. This example sets the font style to Plain for all form objects with names starting with
“vt”:

Þ FONT STYLE (*;"vt@"; Plain)

See Also
FONT, FONT SIZE.

710 4th Dimension Language Reference

ENABLE BUTTON Object Properties

version 6.0 (Modified)
__

ENABLE BUTTON ({*; }object)

Parameter Type Description
* ® If specified, object is an Object Name (String)

If omitted, object is a Variable
object Form Object ® Object Name (if * is specified), or

Variable (if * is omitted)

Description
The command ENABLE BUTTON enables the form objects specified by object.

An enabled button or object reacts to mouse clicks and shortcuts.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

This command (despite what its name suggests) can be applied to the following types of
object:
• Button, Default Button, 3D Button, Invisible Button, Highlight Button
• Radio Button, 3D Radio Button, Radio Picture
• Check Box, 3D Check Box
• Pop-up menu, Drop-down List, Combo Box, Menu/Drop-down list
• Thermometer, Ruler

Note: It is not practical to use this command with an object that is assigned an automatic
action, because 4D changes the state of the control when needed.

Examples
1. This example enables the button bValidate:

Þ ENABLE BUTTON(bValidate)

2. This example enables all form objects that have names containing “btn”:

Þ ENABLE BUTTON(*;"@btn@")

3. See example for the command BUTTON TEXT.

See Also
BUTTON TEXT, DISABLE BUTTON.

4th Dimension Language Reference 711

DISABLE BUTTON Object Properties

version 6.0 (Modified)
__

DISABLE BUTTON ({*; }object)

Parameter Type Description
* ® If specified, object is an Object Name (String)

If omitted, object is a Variable
object Form Object ® Object Name (if * is specified), or

Variable (if * is omitted)

Description
The command DISABLE BUTTON disables the form objects specified by object.

A disabled button or object does not react to mouse clicks and shortcuts, and is displayed
dimmed or grayed out.

Note: Disabling a button or an object does not prevent you from changing its value
programmatically.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

This command (despite what its name suggests) can be applied to the following types of
object:
• Button, Default Button, 3D Button, Invisible Button, Highlight Button
• Radio Button, 3D Radio Button, Radio Picture
• Check Box, 3D Check Box
• Pop-up menu, Drop-down List, Combo Box, Menu/Drop-down list
• Thermometer, Ruler

Note: It is not practical to use this command with an object that is assigned an automatic
action, because 4D changes the state of the control when needed.

712 4th Dimension Language Reference

Examples
1. This example disables the button bValidate:

Þ DISABLE BUTTON(bValidate)

2. This example disables all form objects that have names containing “btn”:

Þ DISABLE BUTTON(*;"@btn@")

3. See example for the command BUTTON TEXT.

See Also
BUTTON TEXT, ENABLE BUTTON.

4th Dimension Language Reference 713

BUTTON TEXT Object Properties

version 6.0 (Modified)
__

BUTTON TEXT ({*; }object; buttonText)

Parameter Type Description
* ® If specified, object is an Object Name (String)

If omitted, object is a Variable
object Form Object ® Object Name (if * is specified), or

Variable (if * is omitted)
buttonText String ® New title for the button

Description
The command BUTTON TEXT changes the title of the buttons specified by object to the
value you pass in buttonText.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

BUTTON TEXT affects only buttons that display text: buttons, check boxes, and radio
buttons.

Usually, you will apply this command to one button at a time. The button area must be
large enough to accommodate the text; if it is not, the text is truncated. Do not use
carriage returns in buttonText.

Example
The following example is the object method of a search button located in the footer area
of an output form displayed using MODIFIED SELECTION. The method searches a table;
depending on the search results, it enables or disables a button labeled bDelete and
changes its title:

714 4th Dimension Language Reference

QUERY ([People]; [People]Name = vName)
Case of

: (Records in selection ([People]) = 0) ` No people found
Þ BUTTON TEXT (bDelete;" Delete")

DISABLE BUTTON (bDelete)
: (Records in selection ([People]) = 1) ` One person found

Þ BUTTON TEXT (bDelete;"Delete Person")
ENABLE BUTTON (bDelete)

: (Records in selection([People]) > 1) ` Many people found
Þ BUTTON TEXT (bDelete;"Delete People")

ENABLE BUTTON (bDelete)
End case

See Also
DISABLE BUTTON, ENABLE BUTTON.

4th Dimension Language Reference 715

SET FORMAT Object Properties

version 6.0 (Modified)
__

SET FORMAT ({*; }object; displayFormat)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
displayFormat String ® New display format for the object

Description
SET FORMAT sets the display format for the objects specified by object to the format you
pass in displayFormat.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

SET FORMAT can be used for both input forms and output forms (displayed or printed)
and can be applied to fields, enterable/non-enterable variables, and numeric scrollable
areas.

You use a display format suitable to the type of data present in the object:
• To format Boolean fields, pass two values, separated by a semicolon (;).

• To format Date fields or variables, pass Char(n) in displayFormat, where n is one of the
following predefined constants provided by 4D:
Constant Type Value
Short Long Integer 1
Abbreviated Long Integer 2
Long Long Integer 3
MM DD YYYY Long Integer 4
Month Date Year Long Integer 5
Abbr Month Date Long Integer 6
MM DD YYYY Forced Long Integer 7

716 4th Dimension Language Reference

• To format Time fields or variables, pass Char(n) in displayFormat, where n is one of the
following predefined constants provided by 4D:
Constant Type Value
HH MM SS Long Integer 1
HH MM Long Integer 2
Hour Min Sec Long Integer 3
Hour Min Long Integer 4
HH MM AM PM Long Integer 5

• To format Picture fields or variables, pass Char(n) in displayFormat, where n is one of the
following predefined constants provided by 4D:
Constant Type Value
Truncated Centered Long Integer 1
Scaled to Fit Long Integer 2
On Background Long Integer 3
Truncated non Centered Long Integer 4
Scaled to fit proportional Long Integer 5
Scaled to fit prop centered Long Integer 6

For more information about alphanumeric and numeric display formats, see the
4th Dimension Design Reference manual.

Note: In displayFormat, to use display formats you may have predefined in the Database
Properties dialog box, prefix the name of the format with a vertical bar (|).

Examples
1. The following line of code formats the [Employee]Date Hired field to Month Date Year.

Þ SET FORMAT ([Employee]Date Hired; Char(Month Date Year))

2. The following example changes the format for a [Company]ZIP Code field according to
the length of the value stored in the field:

If (Length ([Company]ZIP Code) = 9)
Þ SET FORMAT ([Company]ZIP Code; "#####–####")

Else
Þ SET FORMAT ([Company]ZIP Code; "#####")

End if

3. The following example sets the format of a Boolean field to display Married and
Unmarried, instead of the default Yes and No:

Þ SET FORMAT ([Employee]Marital Status;"Married;Unmarried")

See Also
SET FILTER.

4th Dimension Language Reference 717

SET FILTER Object Properties

version 6.0 (Modified)
__

SET FILTER ({*; }object; entryFilter)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
entryFilter String ® New data entry filter for the enterable area

Description
SET FILTER sets the entry filter for the objects specified by object to the filter you pass in
entryFilter.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

SET FILTER can be used for input and dialog forms and can be applied to fields and
enterable variables that accept an entry filter in Design environment.

Passing an empty string in entryFilter removes the current entry filter for the objects.

Note: This command cannot be used with fields located in a subform’s list form.

Note: In entryFilter, to use entry filters you may have predefined in the Database
Properties dialog box, prefix the name of the filter with a vertical bar (|).

Examples

1. The following example sets the entry filter for a postal code field. If the address is in
the U.S., the filter is set to ZIP codes. Otherwise, it is set to allow any entry:

If ([Companies]Country = "US") ` Set the filter to a ZIP code format
Þ SET FILTER ([Companies]ZIP Code; "&9#####")

Else ` Set the filter to accept alpha and numeric and uppercase the alpha
Þ SET FILTER ([Companies]ZIP Code; "~@")

End if

718 4th Dimension Language Reference

2. The following example allows only the letters “a,” “b,” “c,” or “g” to be entered in two
places in the field Field:

Þ SET FILTER([Table]Field ;"&"+Char(Double quote)+ "a;b;c;g"+
Char(Double quote)+"##")

Note: This example sets the entry filter to &"a;b;c;g"##.

See Also
SET FORMAT.

4th Dimension Language Reference 719

SET CHOICE LIST Object Properties

version 6.0 (Modified)
__

SET CHOICE LIST ({*; }object; list)

Parameter Type Description
* ® If specified, object is an Object Name (String)

If omitted, object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
list String ® Name of the list to use as Choice list

(as defined in Design environment)

Description
The command SET CHOICE LIST sets the choice list for the objects specified by object to
the hierarchical list (defined in the Design environment List Editor) whose name you pass
in list.

This command can be applied in an input or dialog form, to fields and enterable variables
whose value can be entered as text. The list is displayed during data entry when the user
selects the text area.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

Note: This command cannot be used with fields located in a subform’s list form.

Example
The following example sets a choice list for a shipping field. If the shipping is overnight,
then the choice list is set to shippers who can ship overnight. Otherwise, it is set to the
standard shippers:

If ([Shipments]Overnight)
Þ SET CHOICE LIST([Shipments]Shipper; "Fast Shippers")

Else
Þ SET CHOICE LIST([Shipments]Shipper; "Normal Shippers")

End if

720 4th Dimension Language Reference

SET ENTERABLE Object Properties

version 6.0 (Modified)
__

SET ENTERABLE ({*; }entryArea; enterable)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
entryArea Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
enterable Boolean ® True for enterable; False for non-enterable

Description
The command SET ENTERABLE makes the form objects specified by object either enterable
or non-enterable.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
specify a field or variable reference (field or variable objects only) instead of a string. For
more information about object names, see the section Object Properties.

Using this command is equivalent to selecting Enterable or Non-enterable for a field or
variable in the Form Editor’s Object Properties window. This command works in subforms
only if it is in the form method of the subform.

When the entryArea is enterable (TRUE), the user can move the cursor into the area and
enter data. When the entryArea is non-enterable (FALSE), the user cannot move the cursor
into the area and cannot enter data. Making an object non-enterable does not prevent
you from changing its value programmatically.

Example
The following example sets a shipping field, depending on the weight of the shipment. If
the shipment is 1 ounce or less, then the shipper is set to US Mail and the field is set to be
non-enterable. Otherwise, the field is set to be enterable.

If ([Shipments]Weight<=1)
[Shipments]Shipper:="US Mail"

Þ SET ENTERABLE([Shipments]Shipper;False)
Else

SET ENTERABLE([Shipments]Shipper;True)
End if

See Also
DISABLE BUTTON, ENABLE BUTTON, SET VISIBLE.

4th Dimension Language Reference 721

SET VISIBLE Object Properties

version 6.0
__

SET VISIBLE ({*; }object; visible)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object parameter is a Field or a
Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
visible Boolean ® True for visible, False for invisible

Description
The command SET VISIBLE shows or hides the objects specified by object.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

If you pass visible equal to TRUE, the objects are shown. If you pass visible equal to FALSE,
the objects are hidden.

Example
Here is a typical form in the Design environment:

The objects in the Employer Information group box each have an object name that
contains the expression “employer” (including the group box). When the Currently
Employed check box is checked, the objects must be visible; when the check box is
unchecked, the objects must be invisible.

722 4th Dimension Language Reference

Here is the object method of the check box:

 ` cbCurrentlyEmployed Check Box Object Method
Case of

: (Form event=On Load)
cbCurrentlyEmployed:=1

: (Form event=On Clicked)
` Hide or Show all the objects whose name contains "emp"

SET VISIBLE(*;"@emp@";cbCurrentlyEmployed # 0)
` But always keep the check box itself visible

SET VISIBLE(cbCurrentlyEmployed;True)
End case

Therefore, in the User or Custom Menus environments, the form looks like:

or:

See Also
DISABLE BUTTON, ENABLE BUTTON, SET ENTERABLE.

4th Dimension Language Reference 723

SET COLOR Object Properties

version 6.0 (Modified)
__

SET COLOR ({*; }object; color)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Field or variable ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
color Number ® New colors for the object

Description
The command SET COLOR sets the foreground and background colors of the form objects
specified by object.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

The color parameter specifies both foreground and background colors. The color is
calculated as:

Color:=–(Foreground+(256 * Background))

where foreground and background are color numbers (from 0 to 255) within the color
palette.
Color is always a negative number. For example, if the foreground color is to be 20 and
the background color is to be 10, then color is – (20 + (256 * 10)) or –2580.

Note: You can see the color palette in the Form Editor’s Object Properties window.

724 4th Dimension Language Reference

The numbers of the commonly used colors are provided by the following predefined
constants:

Constant Type Value
White Long Integer 0
Yellow Long Integer 1
Orange Long Integer 2
Red Long Integer 3
Purple Long Integer 4
Dark Blue Long Integer 5
Blue Long Integer 6
Light Blue Long Integer 7
Green Long Integer 8
Dark Green Long Integer 9
Dark Brown Long Integer 10
Dark Grey Long Integer 11
Light Grey Long Integer 12
Brown Long Integer 13
Grey Long Integer 14
Black Long Integer 15

Note: While SET COLOR works with indexed colors within the default 4D color palette,
version 6 introduces the command SET RGB COLOR, which allows you to work with any
RGB color.

Example
The following example sets the color for a button named bInfo. The color is set to the
values of the two variables named vForeground and vBackground:

Þ SET COLOR (bInfo; – (vForeground + (256 * vBackground)))

See Also
SET RGB COLOR.

4th Dimension Language Reference 725

SET RGB COLOR Object Properties

version 6.0
__

SET RGB COLOR ({*; }object; foregroundColor; backgroundColor)

Parameter Type Description
* ® If specified, Object is an Object Name (String)

If omitted, Object is a Field or a Variable
object Form Object ® Object Name (if * is specified), or

Field or Variable (if * is omitted)
foregroundColor Number ® RGB color value for Foreground color
backgroundColor Number ® RGB color value for Background color

Description
The command SET RGB COLOR changes the foreground and background colors of the
objects specified by object and the optional * parameters.

If you specify the optional * parameter, you indicate an object name (a string) in object. If
you omit the optional * parameter, you indicate a field or a variable in object. In this case,
you specify a field or variable reference (field or variable objects only) instead of a string.
For more information about object names, see the section Object Properties.

You indicate RGB color values in foreground and background. An RGB value is a 4-byte
Long Integer whose format (0x00RRGGBB) is described in the following table (bytes are
numbered from 0 to 3, from right to left):

Byte Description
3 Must be zero if absolute RGB color
2 Red component of the color (0..255)
1 Green component of the color (0..255)
0 Blue component of the color (0..255)

The following table shows some examples of RGB color values:

Value Description
0x00000000 Black
0x00FF0000 Bright Red
0x0000FF00 Bright Green
0x000000FF Bright Blue
0x007F7F7F Gray
0x00FFFF00 Bright Yellow
0x00FF7F7F Red Pastel
0x00FFFFFF White

726 4th Dimension Language Reference

Alternatively, you can specify one of the four automatic colors used by 4th Dimension for
drawing objects whose colors are set automatically. The following predefined constants
are provided by 4th Dimension:

Constant Type Value
Default foreground color Long Integer -1
Default background color Long Integer -2
Default dark shadow color Long Integer -3
Default light shadow color Long Integer -4

These colors (on a standard system) are shown here:

WARNING: On Windows, these automatic colors are system dependent. If you change
your system colors in the Colors Windows Control Panel, 4th Dimension will adjust its
automatic colors accordingly. Use the automatic color values for setting objects to the
system colors, not for setting them to the example colors shown above.

Examples
This form contains the two non-enterable variables vsColorValue and vsColor as well as the
three thermometers: thRed, thGreen, and thBlue.

4th Dimension Language Reference 727

Here are the methods for these objects:

` vsColorValue non-enterable Object Method
Case of

: (Form event=On Load)
vsColorValue:="0x00000000"

End case

` vsColor non-enterable variable Object Method
Case of

: (Form event=On Load)
vsColor:=""

Þ SET RGB COLOR(vsColor;0x00FFFFFF;0x0000)
End case

` thRed Thermometer Object Method
CLICK IN COLOR THERMOMETER

` thGreen Thermometer Object Method
CLICK IN COLOR THERMOMETER

` thBlue Thermometer Object Method
CLICK IN COLOR THERMOMETER

The project method called by the three thermometers is:

` CLICK IN COLOR THERMOMETER Project Method
Þ SET RGB COLOR(vsColor;0x00FFFFFF;(thRed << 16)+(thGreen << 8)+thBlue)

vsColorValue:=String((thRed << 16)+(thGreen << 8)+thBlue;"&x")
If (thRed=0)

vsColorValue:=Substring(vsColorValue;1;2)+"0000"+Substring(vsColorValue;3)
End if

Note the use of the Bitwise operators for calculating the color value from the thermometer
values.

728 4th Dimension Language Reference

In the User or Custom Menus environments, the form looks like this:

See Also
Bitwise Operators, SET COLOR.

4th Dimension Language Reference 729

730 4th Dimension Language Reference

28 Obsolete commands

4th Dimension Language Reference 731

732 4th Dimension Language Reference

SEARCH BY INDEX Obsolete commands

version 3
__

SEARCH BY INDEX

This command is still present in 4th Dimension for compatibility with 4D version 1. For
any new programming, use the command QUERY.

WARNING: This command will disappear in future versions. Please do not use it.

4th Dimension Language Reference 733

SORT BY INDEX Obsolete commands

version 3
__

SORT BY INDEX

This command is still present in 4th Dimension for compatibility with 4D version 1. For
any new programming, use the command ORDER BY.

WARNING: This command will disappear in future versions. Please do not use it.

734 4th Dimension Language Reference

ON SERIAL PORT CALL Obsolete commands

version 3
__

ON SERIAL PORT CALL (serialMethod{; process})

Parameter Type Description
serialMethod String ® Method to be invoked
process String ® Process name

Description
This command has been retained for compatibility with 4th Dimension version 2. In
most cases, it would be more efficient to use the RECEIVE BUFFER command.

ON SERIAL PORT CALL installs serialMethod as an interrupt method for managing serial
port events in a separate process. The interrupt method is automatically called by
4th Dimension when a character enters the serial port buffer opened with SET CHANNEL.
An empty string for serialMethod turns off serial port event handling. The optional
process parameter names the process created by the ON SERIAL PORT CALL command. If
process is prefixed with a dollar sign ($), process is a local process.

Since the interrupt method has been installed as a separate process, it runs concurrently
with all other processes.

4th Dimension automatically calls the interrupt method when the serial port buffer
contains one or more characters. If you decide to do nothing with the buffer contents,
remember to clear the buffer contents by calling RECEIVE BUFFER. If you do not clear the
buffer, 4th Dimension will call your installed method again and again.

Warning: With 4th Dimension version 3 , it is better to create your own process in which
you can handle the serial port any way you want. From this process, you can receive or
send data from and to the serial port, then communicate the data to other processes using
interprocess communication. The use of ON SERIAL PORT CALL is discouraged.

4th Dimension Language Reference 735

Example
The following line installs an interrupt method called Interruption:

Þ ON SERIAL PORT CALL ("Interruption")

The Interruption method takes whatever is in the serial buffer and concatenates it into a
variable called <>GotIt. This variable can then be read later by other parts of the
application. Here is the Interruption method:

RECEIVE BUFFER ($v) ` Read the serial port buffer
<>GotIt := <>GotIt + $v ` Save the data

The following line removes the interrupt method:

Þ ON SERIAL PORT CALL ("")

736 4th Dimension Language Reference

29 On a Series

4th Dimension Language Reference 737

738 4th Dimension Language Reference

On a Series On a Series

version 3
__

The functions of this theme perform calculations on a series of values.

The Average, Max, Min, Sum, Sum squares, Std deviation, and Variance functions can be
applied to fields or subfields. In the case of a field, they are applied to a selection of
records. In the case of a subfield, they are applied to a selection of the subrecords of the
current record. Note that the
Sum squares, Std deviation, and Variance functions can be used on a field only during
printing.

These functions work on numeric data only. Each of these functions returns a numeric
value.

Using a field
When Average, Max, Min, or Sum are used on a field outside a printing operation, they
may have to load each record in the current selection to calculate the result. If there are
many records, this process may take some time. To avoid this, index the field.

When these functions are used in a report, they behave differently than at other times.
This is because the report itself must load each record. Use these functions in a form or
object method when printing with the PRINT SELECTION command or when printing by
choosing Print from the File menu in the User environment.

When you use these functions in a report, the values that are returned are reliable only at
break level 0, and only when break processing is turned on. This means that they are
useful only at the end of a report, after all the records have been processed.

You would use these functions only in an object method for a non-enterable area that is
included in the B0 Break area.

Remember that the field passed as a parameter to the statistical function must be a
numeric.

See Also
Average, Max, Min, Std deviation, Sum, Sum Squares, Variance.

4th Dimension Language Reference 739

Sum On a Series

version 3
__

Sum (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the sum

Function result Number ¬ Sum for series

Description
The command Sum returns the sum (total of all values) for series. If series is an indexed
field, the index is used to total the values.

Example
The following example is an object method for a variable that vTotal placed in a form.
The object method assigns the sum of all salaries to vTotal:

Þ vTotal:=Sum([Employees]Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

Note: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
ACCUMULATE, Average, BREAK LEVEL, Max, Min, ORDER BY, PRINT SELECTION, Subtotal.

740 4th Dimension Language Reference

Average On a Series

version 3
__

Average (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the average

Function result Number ¬ Arithmetic mean (average) of series

Description
Average returns the arithmetic mean (average) of series. If series is an indexed field, the
index is used to find the average.

Example
The following example sets the variable vAverage that is in the B0 Break area of an output
form. The line of code is the object method for vAverage. The object method is not
executed until the level 0 break:

Þ vAverage := Average ([Employees] Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

Note: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
ACCUMULATE, BREAK LEVEL, Max, Min, ORDER BY, PRINT SELECTION, Subtotal, Sum.

4th Dimension Language Reference 741

Min On a Series

version 3
__

Min (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the minimum value

Function result Number ¬ Minimum value in series

Description
Min returns the minimum value in series. If series is an indexed field, the index is used to
find the minimum value.

Examples
1. The following example is an object method for the variable vMin placed in the break 0
portion of the form. The variable is printed at the end of the report. The object method
assigns the minimum value of the field to the variable, which is then printed in the last
break of the report:

Þ vMin:=Min([Employees]Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

2. The following example finds the lowest sale amount of an employee and displays the
result in an alert box. The sales amounts are stored in the subfield [Employees]SalesDollars:

Þ ALERT ("Minimum sale = " + String(Min([Employees]SalesDollars)))

See Also
Execute on server, Execute on server, GET PROCESS VARIABLE, Max, Processes, SET PROCESS
VARIABLE.

742 4th Dimension Language Reference

Max On a Series

version 3
__

Max (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the maximum value

Function result Number ¬ Maximum value in series

Description
Max returns the maximum value in series. If series is an indexed field, the index is used to
find the maximum value.

Example
The following example is an object method for the variable vMax placed in the break 0
portion of the form. The variable is printed at the end of the report. The object method
assigns the maximum value of the field to the variable, which is then printed in the last
break of the report.

Þ vMax := Max ([Employees] Salary)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Employees])
ORDER BY ([Employees];[Employees]LastNm;>)
BREAK LEVEL (1)
ACCUMULATE ([Employees]Salary)
OUTPUT FORM ([Employees];"PrintForm")
PRINT SELECTION ([Employees])

Note: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Min.

4th Dimension Language Reference 743

Std deviation On a Series

version 3
__

Std deviation (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the standard
deviation

Function result Number ¬ Standard deviation of series

Description
Std deviation returns the standard deviation of series. If series is an indexed field, the index
is used to find the standard deviation. You can only use a field with this function when
printing a report.

Example
The following example is an object method for the variable vDeviate. The object method
assigns the standard deviation for a data series to vDeviate:

Þ vDeviate := Std deviation ([Table1]DataSeries)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Table1])
ORDER BY ([Table1];[Table1]DataSeries;>)
BREAK LEVEL (1)
ACCUMULATE ([Table1]DataSeries)
OUTPUT FORM ([Table1];"PrintForm")
PRINT SELECTION ([Table1])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Average, Sum, Sum Squares, Variance.

744 4th Dimension Language Reference

Variance On a Series

version 3
__

Variance (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the variance

Function result Number ¬ Variance of series

Description
Variance returns the variance for series. If series is an indexed field, the index is used to
find the variance. You can only use a field with this function when printing a report.

Example
The following example is an object method for the variable var. The object method
assigns the sum of squares for a data series to var:

Þ var:= Variance (Students]Grades)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Students])
ORDER BY ([Students];[Students]Class;>)
BREAK LEVEL (1)
ACCUMULATE ([Students]Grades)
OUTPUT FORM ([Students];"PrintForm")
PRINT SELECTION ([Students])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Average, Std deviation, Sum, Sum squares.

4th Dimension Language Reference 745

Sum squares On a Series

version 3
__

Sum squares (series) ® Number

Parameter Type Description
series Field or subfield ® Data for which to return the sum of squares

Function result Number ¬ Sum of squares of series

Description
Sum squares returns the sum of the squares of series. If series is an indexed field, the index
is used to find the sum of the squares. You can only use a field with this function when
printing a report.

Example
The following example is an object method for the variable vSquares. The object method
assigns the sum of squares for a data series to vSquares. The vSquares variable is printed in
the last break of the report:

Þ vSquares:=Sum squares ([Table1]DataSeries)

The following method is called to print the records in the selection and to activate break
processing:

ALL RECORDS ([Table1])
ORDER BY ([Table1];[Table1]DataSeries;>)
BREAK LEVEL (1)
ACCUMULATE ([Table1]DataSeries)
OUTPUT FORM ([Table1];"PrintForm")
PRINT SELECTION ([Table1])

NOTE: The parameter to the BREAK LEVEL command should be equal to the number of
breaks in your report. For more information about break processing, refer to the printing
commands.

See Also
Average, Std deviation, Sum, Variance.

746 4th Dimension Language Reference

30 Operators

4th Dimension Language Reference 747

748 4th Dimension Language Reference

Operators Operators

version 6.0
__

Operators are symbols used to specify operations performed between expressions. They:
• Perform calculations on numbers, dates, and times.
• Perform string operations, Boolean operations on logical expressions, and specialized
operations on pictures.
• Combine simple expressions to generate new expressions.

Precedence
The order in which an expression is evaluated is called precedence. 4 th Dimension has a
strict left-to-right precedence, in which algebraic order is not observed. For example:

3 + 4 * 5

returns 35, because the expression is evaluated as 3 + 4, yielding 7, which is then
multiplied by 5, with the final result of 35.

To override the left-to-right precedence, you MUST use parentheses. For example:

3 + (4 * 5)

returns 23 because the expression (4 * 5) is evaluated first, because of the parentheses. The
result is 20, which is then added to 3 for the final result of 23.

Parentheses can be nested inside other sets of parentheses. Be sure that each left
parenthesis has a matching right parenthesis to ensure proper evaluation of expressions.
Lack of, or incorrect use of parentheses can cause unexpected results or invalid
expressions. Furthermore, if you intend to compile your applications with 4D Compiler,
you must have matching parentheses—the compiler detects a missing parenthesis as a
syntax error.

The Assignment Operator
You MUST distinguish the assignment operator := from the other operators. Rather than
combining expressions into a new one, the assignment operator copies the value of the
expression to the right of the assignment operator into the variable or field to the left of
the operator. For example, the following line places the value 4 (the number of characters
in the word Acme) into the variable named MyVar. MyVar is then typed as a numeric
value.

MyVar := Length ("Acme")

Important: Do NOT confuse the assignment operator := with the equality comparison
operator =.

4th Dimension Language Reference 749

The other operators provided by the 4D language are described in the following sections:

String Operators
See the section String Operators.

Numeric Operators
See the section Numeric Operators.

Date Operators
See the section Date Operators.

Time Operators
See the section Time Operators.

Comparison Operators
See the section Comparison Operators.

Logical Operators
See the section Logical Operators.

Picture Operators
See the section Picture Operators.

Bitwise Operators
See the section Bitwise Operators.

See Also
Constants, Data Types, Identifiers.

750 4th Dimension Language Reference

String Operators Operators

version 6.0
__

An expression that uses a string operator returns a string. The following table shows the
string operators:

Operation Syntax Returns Expression Value
Concatenation String + String String "abc" + "def" "abcdef"
Repetition String * Number String "ab" * 3 "ababab"

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Numeric
Operators, Operators, Picture Operators, Time Operators.

4th Dimension Language Reference 751

Numeric Operators Operators

version 6.0
__

An expression that uses a numeric operator returns a number. The following table shows
the numeric operators:

Operation Syntax Returns Expression Value
Addition Number + Number Number 2 + 3 5
Subtraction Number – Number Number 3 – 2 1
Multiplication Number * Number Number 5 * 2 10
Division Number /Number Number 5 / 2 2.5
Longint division Number \ Number Number 5 \ 2 2
Modulo Number % Number Number 5 % 2 1
Exponentiation Number ^ Number Number 2 ^ 3 8

Modulo Operator
The modulo operator % divides the first number by the second number and returns a
whole number remainder. Here are some examples:

• 10 % 2 returns 0 because 10 is evenly divided by 2.
• 10 % 3 returns 1 because the remainder is 1.
• 10.5 % 2 returns 0 because the remainder is not a whole number.

WARNING: The modulo operator % returns significant values with numbers that are in
the Long Integer range (from minus 2^31 to 2^31 minus one). To calculate the modulo
with numbers outside of this range, use the Mod command.

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Operators,
Picture Operators, String Operators, Time Operators.

752 4th Dimension Language Reference

Date Operators Operators

version 6.0
__

An expression that uses a date operator returns a date or a number, depending on the
operation. All date operations will result in an accurate date, taking into account the
change between years and leap years. The following table shows the date operators:

Operation Syntax Returns Expression Value
Date difference Date – Date Number !1/20/97! – !1/1/97! 19
Day addition Date + Number Date !1/20/97! + 9 !1/29/97!
Day subtraction Date – Number Date !1/20/97! – 9 !1/11/97!

See Also
Bitwise Operators, Comparison Operators, Logical Operators, Numeric Operators, Operators,
Picture Operators, String Operators, Time Operators.

4th Dimension Language Reference 753

Time Operators Operators

version 6.0
__

An expression that uses a time operator returns a time or a number, depending on the
operation. The following table shows the time operators:

Operation Syntax Returns Expression Value
Addition Time + Time Time ?02:03:04? + ?01:02:03? ?03:05:07?
Subtraction Time – Time Time ?02:03:04? – ?01:02:03? ?01:01:01?
Addition Time + Number Number ?02:03:04? + 65 7449
Subtraction Time – Number Number ?02:03:04? – 65 7319
Multiplication Time * Number Number ?02:03:04? * 2 14768
Division Time / Number Number ?02:03:04? / 2 3692
Longint division Time \ Number Number ?02:03:04? \ 2 3692
Modulo Time % Number Number ?02:03:04? % 2 0

Tips

(1) To obtain a time expression from an expression that combines a time expression with
a number, use the commands Time and Time string.
Example:

` The following line assigns to $vlSeconds the number of seconds that will be elasped
` between midnight and one hour from now

$vlSeconds:=Current Time+3600

` The following line assigns to $vHSoon the time it will be in one hour
$vhSoon:=Time(Time string(Current time+3600))

The second line could be written in a simpler way:

` The following line assigns to $vHSoon the time it will be in one hour
$vhSoon:=Current time+?00:01:00?

However, while developing your application, you may encounter situations where a delay,
expressed in seconds and added to a time value, is only available to you as a numeric
value.
In this case, use the next tip.

754 4th Dimension Language Reference

(2) Some situations may require you to convert a time expression into a numeric
expression.

For example, you open a document using Open document, which returns a Document
Reference (DocRef) that is formally a time expression. Later, you want to pass that DocRef
to a 4D Extension routine that expects a numeric value as document reference. In such a
case, use the addition with 0 (zero) to get a numeric value from the time value, but
without changing its value.
Example:

` Select and open a document
$vhDocRef:=Open document("")
If (OK=1)

` Pass the DocRef time expression
` as a numeric expresssion to a 4D Extension routine

DO SOMETHING SPECIAL (0+$vhDocRef)
End if

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Numeric
Operators, Operators, Picture Operators, String Operators.

4th Dimension Language Reference 755

Comparison Operators Operators

version 6.0
__

The tables in this section show the comparison operators as they apply to string, numeric,
date, time, and pointer expressions. An expression that uses a comparison operator returns
a Boolean value, either TRUE or FALSE.

String Comparisons
Operation Syntax Returns Expression Value
Equality String = String Boolean "abc" = "abc" True

"abc" = "abd" False
Inequality String # String Boolean "abc" # "abd" True

"abc" # "abc" False
Greater than String > String Boolean "abd" > "abc" True

"abc" > "abc" False
Less than String < String Boolean "abc" < "abd" True

"abc" < "abc" False
Greater than or equal to String >= String Boolean "abd" >= "abc" True

"abc" >= "abd" False
Less than or equal to String <= String Boolean "abc" <= "abd" True

"abd" <= "abc" False

Numeric Comparisons
Operation Syntax Returns Expression Value
Equality Number = Number Boolean 10 = 10 True

10 = 11 False
Inequality Number # Number Boolean 10 #11 True

10 # 10 False
Greater than Number > Number Boolean 11 > 10 True

10 > 11 False
Less than Number < Number Boolean 10 < 11 True

11 < 10 False
Greater than or equal to Number >= Number Boolean 11 >= 10 True

10 >= 11 False
Less than or equal to Number <= Number Boolean 10 <= 11 True

11 <= 10 False

756 4th Dimension Language Reference

Date Comparisons
Operation Syntax Returns Expression Value
Equality Date = Date Boolean !1/1/97! =!1/1/97! True

!1/20/97! =!1/1/97! False
Inequality Date # Date Boolean !1/20/97! # !1/1/97! True

!1/1/97! # !1/1/97! False
Greater than Date > Date Boolean !1/20/97! > !1/1/97! True

!1/1/97! > !1/1/97! False
Less than Date < Date Boolean !1/1/97! < !1/20/97! True

!1/1/97! < !1/1/97! False
Greater than or equal to Date >= Date Boolean !1/20/97! >=!1/1/97! True

!1/1/97!>=!1/20/97! False
Less than or equal to Date <= Date Boolean !1/1/97!<=!1/20/97! True

!1/20/97!<=!1/1/97! False

Time Comparisons
Operation Syntax Returns Expression Value
Equality Time = Time Boolean ?01:02:03? = ?01:02:03? True

?01:02:03? = ?01:02:04? False
Inequality Time # Time Boolean ?01:02:03? # ?01:02:04? True

?01:02:03? # ?01:02:03? False
Greater than Time > Time Boolean ?01:02:04? > ?01:02:03? True

?01:02:03? > ?01:02:03? False
Less than Time < Time Boolean ?01:02:03? < ?01:02:04? True

?01:02:03? < ?01:02:03? False
Greater than or equal to Time >= Time Boolean ?01:02:03? >=?01:02:03? True

?01:02:03? >=?01:02:04? False
Less than or equal to Time <= Time Boolean ?01:02:03? <=?01:02:03? True

?01:02:04? <=?01:02:03? False

4th Dimension Language Reference 757

Pointer comparisons
With:

` vPtrA and vPtrB point to the same object
vPtrA:=->anObject
vPtrB:=->anObject

` vPtrC points to another object
vPtrC:=->anotherObject

Operation Syntax Returns Expression Value
Equality Pointer = Pointer Boolean vPtrA = vPtrB True

vPtrA = vPtrC False
Inequality Pointer # Pointer Boolean vPtrA # vPtrC True

vPtrA # vPtrB False

More about string comparisons

• Strings are compared on a character-by-character basis.

• When strings are compared, the case of the characters is ignored; thus, "a"="A" returns
TRUE. To test if the case of two characters is different, compare their ASCII codes. For
example, the following expression returns FALSE:

Ascii ("A") = Ascii ("a") ` because 65 is not equal to 97

• When strings are compared, diacritical characters are compared using the system
character comparison table of your computer. For example, the following expressions
return TRUE:

"n" = "ñ"
"n" = "Ñ"
"A"="å"

` and so on

• The wildcard character (@) can be used in any string comparison to match any number
of characters. For example, the following expression is TRUE:

"abcdefghij" = "abc@"

The wildcard character must be used within the second operand (the string on the right
side) in order to match any number of characters. The following expression is FALSE,
because the @ is considered only as a one character in the first operand:

"abc@" = "abcdefghij"

758 4th Dimension Language Reference

The wildcard means “one or more characters or nothing”. The following expressions are
TRUE:

"abcdefghij" = "abcdefghij@"
"abcdefghij" = "@abcdefghij"
"abcdefghij" = "abcd@efghij"
"abcdefghij" = "@abcdefghij@"
"abcdefghij" = "@abcde@fghij@"

On the other hand, whatever the case, a string comparison with two consecutive
wildcards will always return FALSE. The following expression is FALSE:

"abcdefghij" = "abc@@"

Tip
If you obtain a string from data entry, that string may contain the @ character—you
cannot treat this wildcard like the other characters. Let’s consider the following example:

$vsValue:=Request("Enter the value you are looking for:")
If (OK=1)

QUERY ([Customers];[Customers]Name=$vsValue+"@")
End if

A value is requested, using the Request command. Then this value is used for a “begins
with” query. Two consecutive @ characters, as explained previously, forces the comparison
result to FALSE, so you can append the @ to the value only if the last character is not
already a @.
You can do so in this revised example:

$vsValue:=Request("Enter the value you are looking for:")
If (OK=1)

If (Ascii($vsValue[[Length($vsValue)]])#64)
$vsValue:=$vsValue+"@"

End if
QUERY ([Customers];[Customers]Name=$vsValue)

End if

You must use the Ascii command, because the following expression (if $vsValue is not
empty) always returns TRUE:

$vsValue[[Length($vsValue)]]="@"

4th Dimension Language Reference 759

Continuing with this example, the string entered in the request dialog box may contain
several @ characters and even strings like "@@D@OE@@@". The following code will
eliminate all the @ characters present in a string:

` No at signs Project Method
` No at signs (String) -> String
` No at signs (Any string) -> String with no @

$0:=""
For ($vlChar;1;Length($1))

If (Ascii($1[[$vlChar]])#64)
$0:=$0+$1[[$vlChar]]

End if
End for

In other words, this small project method does the same thing as the command Replace
string. However, it is necessary (and it uses ASCII codes) because the following Replace
string expression will always return an empty string:

Replace String($vsValue;"@";"") ` All characters are removed

Finally, the example becomes:

$vsValue:=Request("Enter the value you are looking for:")
If (OK=1)

QUERY ([Customers];[Customers]Name=Not at signs ($vsValue)+"@")
End if

With this code, the query will always be a “begins with” query, no matter what string is
entered in the request dialog box.

See Also
Bitwise Operators, Date Operators, Logical Operators, Numeric Operators, Operators, Picture
Operators, Time Operators.

760 4th Dimension Language Reference

Logical Operators Operators

version 6.0
__

4th Dimension supports two logical operators that work on Boolean expressions:
conjunction (AND) and inclusive disjunction (OR). A logical AND returns TRUE if both
expressions are TRUE. A logical OR returns TRUE if at least one of the expressions is TRUE.

4th Dimension also provides the Boolean functions True, False, and Not. For more
information, see the descriptions of these commands.

The following table shows the logical operators:

Operation Syntax Returns Expression Value
AND Boolean & Boolean Boolean ("A" = "A") & (15 # 3) True

("A" = "B") & (15 # 3) False
("A" = "B") & (15 = 3) False

OR Boolean | Boolean Boolean ("A" = "A") | (15 # 3) True
("A" = "B") | (15 # 3) True
("A" = "B") | (15 = 3) False

The following is the truth table for the AND logical operator:

Expr1 Expr2 Expr1 & Expr2
True True True
True False False
False True False
False False False

The following is the truth table for the OR logical operator:

Expr1 Expr2 Expr1 | Expr2
True True True
True False True
False True True
False False False

Tip
If you need to calculate the exclusive disjunction between Expr1 and Expr2, evaluate:

(Expr1 | Expr2) & Not(Expr1 & Expr2)

See Also
Bitwise Operators, Comparison Operators, Date Operators, Numeric Operators, Operators,
Picture Operators, String Operators, Time Operators.

4th Dimension Language Reference 761

Picture Operators Operators

version 6.0
__

An expression that uses a picture operator returns a picture. The following table shows the
picture operators.

Operation Syntax Action
Horizontal concatenation Pict1 + Pict2 Add Pict2 to the right of Pict1
Vertical concatenation Pict1 / Pict2 Add Pict2 to the bottom of Pict1
Exclusive superimposition Pict1 & Pict2 Perform an XOR on Pict1 and Pict2
Inclusive superimposition Pict1 | Pict2 Perform a OR on Pict1 and Pict2
Horizontal move Picture + Number Move Picture horizontally Number pixels
Vertical move Picture / Number Move Picture vertically Number pixels
Resizing Picture * Number Resize Picture by Number ratio
Horizontal scaling Picture *+ Number Resize Picture horizontally by Number ratio
Vertical scaling Picture */ Number Resize Picture vertically by Number ratio

The two operators & and | always return a bitmapped picture, no matter what the nature
of the two source pictures. The reason is that 4th Dimension first draws the pictures into
memory bitmaps, then calculates the resulting picture by performing graphical exclusive
or inclusive OR on the pixels of the bitmaps.

The other picture operators return vectorial pictures if the two source pictures are
vectorial. Remember, however, that pictures printed by the display format On
Background are printed bitmapped.

Examples
In the following examples, all of the pictures are shown using the display format On
Background.

Here is the picture circle:

762 4th Dimension Language Reference

Here is the picture rectangle:

In the following examples, each expression is followed by its graphical representation.

• Horizontal concatenation

circle + rectangle ` Place the rectangle on the right of the circle

rectangle + circle ` Place the circle on the right of the rectangle

4th Dimension Language Reference 763

• Vertical concatenation

circle / rectangle ` Place the rectangle under the circle

rectangle / circle ` Place the circle under the rectangle

764 4th Dimension Language Reference

• Exclusive superimposition (XOR)

circle & rectangle ` Exclusive OR of the two pictures

• Inclusive superimposition (OR)

circle | rectangle ` Inclusive OR of the two pictures

4th Dimension Language Reference 765

• Horizontal move

rectangle + 50 ` Move the rectangle 50 pixels to the right

rectangle - 50 ` Move the rectangle 50 pixels to the left

766 4th Dimension Language Reference

• Vertical move

rectangle /50 ` Move down the rectangle by 50 pixels

rectangle /-20 ` Move up the rectangle by 20 pixels

4th Dimension Language Reference 767

• Resize

rectangle * 1.5 ` The rectangle becomes 50% bigger

rectangle * 0.5 ` The rectangle becomes 50% smaller

768 4th Dimension Language Reference

• Horizontal scaling

circle *+3 ` The circle becomes 3 times wider

circle *+ 0.25 ` The circle's width becomes a quarter of what it was

4th Dimension Language Reference 769

• Vertical scaling

circle */ 2 ` The circle becomes twice taller

circle */ 0.25 ` The circle's height becomes a quarter of what it was

See Also
Bitwise Operators, Comparison Operators, Date Operators, Logical Operators, Numeric
Operators, Operators, String Operators, Time Operators.

770 4th Dimension Language Reference

Bitwise Operators Operators

version 6.0
__

The bitwise operators operates on Long Integer expressions or values.

Note: If you pass an Integer or a Real value to a bitwise operator, 4th Dimension evaluates
the value as a Long Integer value before calculating the expression that uses the bitwise
operator.

While using the bitwise operators, you must think about a Long Integer value as an array
of 32 bits. The bits are numbered from 0 to 31, from right to left.

Because each bit can equal 0 or 1, you can also think about a Long Integer value as a value
where you can store 32 Boolean values. A bit equal to 1 means True and a bit equal to 0
means False.

An expression that uses a bitwise operator returns a Long Integer value, except for the Bit
Test operator, where the expression returns a Boolean value. The following table lists the
bitwise operators and their syntax:

Operation Operator Syntax Returns
Bitwise AND & Long & Long Long
Bitwise OR (inclusive) | Long | Long Long
Bitwise OR (exclusive) ^| Long ^| Long Long
Left Bit Shift << Long << Long Long (see note 1)
Right Bit Shift >> Long >> Long Long (see note 1)
Bit Set ?+ Long ?+ Long Long (see note 2)
Bit Clear ?- Long ?- Long Long (see note 2)
Bit Test ?? Long ?? Long Boolean (see note 2)

Notes
(1) For the Left Bit Shift and Right Bit Shift operations, the second operand indicates the
number of positions by which the bits of the first operand will be shifted in the resulting
value. Therefore, this second operand should be between 0 and 32. Note however, that
shifting by 0 returns an unchanged value and shifting by more than 31 bits returns
0x00000000 because all the bits are lost. If you pass another value as second operand, the
result is non significant.
(2) For the Bit Set, Bit Clear and Bit Test operations , the second operand indicates the
number of the bit on which to act. Therefore, this second operand must be between 0
and 31. Otherwise, the expression returns the value of the first operand unchanged for Bit
Set and Bit Clear, and returns False for Bit Test.

4th Dimension Language Reference 771

The following table lists the bitwise operators and their effects:

Operation Description
Bitwise AND Each resulting bit is the logical AND of the bits in the two
operands.

Here is the logical AND table:

1 & 1 ® 1
0 & 1 ® 0
1 & 0 ® 0
0 & 0 ® 0
In other words, the resulting bit is 1 if the two operand bits
are 1; otherwise the resulting bit is 0.

Bitwise OR (inclusive) Each resulting bit is the logical OR of the bits in the two
operands.

Here is the logical OR table:

1 | 1 ® 1
0 | 1 ® 1
1 | 0 ® 1
0 | 0 ® 0
In other words, the resulting bit is 1 if at least one of the
two operand bits is 1; otherwise the resulting bit is 0.

Bitwise OR (exclusive) Each resulting bit is the logical XOR of the bits in the
two operands.
Here is the logical XOR table:

1 ^| 1 ® 0
0 ^| 1 ® 1
1 ^| 0 ® 1
0 ^| 0 ® 0
In other words, the resulting bit is 1 if only one of the
two operand bits is 1; otherwise the resulting bit is 0.

Left Bit Shift The resulting value is set to the first operand value, then the
resulting bits are shifted to the left by the number of positions
indicated by the second operand. The bits on the left are lost
and the new bits on the right are set to 0.
Note: Taking into account only positive values, shifting to the
left by N bits is the same as multiplying by 2^N.

Right Bit Shift The resulting value is set to the first operand value, then the
resulting bits are shifted to the right by the number of position
indicated by the second operand. The bits on the right are lost
and the new bits on the left are set to 0.
Note: Taking into account only positive values, shifting to the
right by N bits is the same as dividing by 2^N.

772 4th Dimension Language Reference

Bit Set The resulting value is set to the first operand value, then the
resulting bit, whose number is indicated by the second operand,
is set to 1. The other bits are left unchanged.

Bit Clear The resulting value is set to the first operand value, then the
resulting bit, whose number is indicated by the second operand,
is set to 0. The other bits are left unchanged.

Bit Test Returns True if, in the first operand, the bit whose number
is indicated by the second operand is equal to 1.
Returns False if, in the first operand, the bit whose number
is indicated by the second operand is equal to 0.

Examples
(1) The following table gives an example of each bit operator:

Operation Example Result
Bitwise AND 0x0000FFFF & 0xFF00FF00 0x0000FF00
Bitwise OR (inclusive) 0x0000FFFF | 0xFF00FF00 0xFF00FFFF
Bitwise OR (exclusive) 0x0000FFFF & 0xFF00FF00 0xFF0000FF
Left Bit Shift 0x0000FFFF << 8 0x000FFFF0
Right Bit Shift 0x0000FFFF >> 8 0x00000FFF
Bit Set 0x00000000 ?+ 16 0x00010000
Bit Clear 0x00010000 ?- 16 0x00000000
Bit Test 0x00010000 ?? 16 True

(2) 4th Dimension provides many predefined constants. The literals of some of these
constants end with “bit” or “mask.” For example, this is the case of the constants
provided in the
Resources properties theme:

Constant Type Value
System heap resource mask Long Integer 64
System heap resource bit Long Integer 6
Purgeable resource mask Long Integer 32
Purgeable resource bit Long Integer 5
Locked resource mask Long Integer 16
Locked resource bit Long Integer 4
Protected resource mask Long Integer 8
Protected resource bit Long Integer 3
Preloaded resource mask Long Integer 4
Preloaded resource bit Long Integer 2
Changed resource mask Long Integer 2
Changed resource bit Long Integer 1

4th Dimension Language Reference 773

These constants enable you to test the value returned by Get resource properties or to
create the value passed to SET RESOURCE PROPERTIES. Constants whose literal ends with
“bit” give the position of the bit you want to test, clear, or set. Constants whose literal
ends with “mask” gives a long integer value where only the bit (that you want to test,
clear, or set) is equal to one.

For example, to test whether a resource (whose properties have been obtained in the
variable $vlResAttr) is purgeable or not, you can write:

If ($vlResAttr ?? Purgeable resource bit) ` Is the resource purgeable?
or:

If (($vlResAttr & Purgeable resource mask) # 0) Is the resource purgeable?

Conversely, you can use these constants to set the same bit. You can write:

$vlResAttr:=$vlResAttr ?+ Purgeable resource bit
or:

$vlResAttr:=$vlResAttr | Purgeable resource bit

(3) This example stores two Integer values into a Long Integer value. You can write:

$vlLong:=($viIntA<<16) | $viIntB ` Store two Integers in a Long Integer

$vlIntA:=$vlLong>>16 ` Extract back the integer stored in the high-word

$viIntB:=$vlLong & 0xFFFF ` Extract back the Integer stored in the low-word

Tip: Be careful when manipulating Long Integer or Integer values with expressions that
combine numeric and bitwise operators. The high bit (bit 31 for Long Integer, bit 15 for
Integer) sets the sign of the value—positive if it is cleared, negative if it is set. Numeric
operators use this bit for detecting the sign of a value, bitwise operators do not care about
the meaning of this bit.

See Also
Comparison Operators, Date Operators, Logical Operators, Numeric Operators, Operators,
Picture Operators, String Operators, Time Operators.

774 4th Dimension Language Reference

31 Printing

4th Dimension Language Reference 775

776 4th Dimension Language Reference

REPORT Printing

version 3
__

REPORT ({table; }document{; *})

Parameter Type Description
table Table ® Table to print, or

Default table, if omitted
document String ® Quick Report document
* ® Suppress the printing dialog boxes

Description
REPORT prints a report for table, created with the Quick Report editor shown here.

The document parameter is a report document that was created with the Quick Report
editor and saved on disk. You save a report document by choosing Save or Save As from
the File menu in the Quick Report editor. The document stores the specifications of the
report, not the records to be printed.

If an empty string ("") is specified for document, REPORT displays an Open File dialog box
and the user can select the report to print. After a report is selected, the dialog boxes for
printing are displayed, unless the * parameter is specified. If this parameter is specified,
these dialog boxes are not displayed. The report is then printed.

If the document parameter specifies a document that does not exist (for example, pass
Char(1) in document), the Quick Report editor is displayed.

4th Dimension Language Reference 777

The Quick Report editor allows users to create their own reports. When the Quick Report
editor is displayed, the menu bar displays the same four menus that manage the editor in
the User environment: File, Edit, Font and Style. The user has complete control over the
editor. See the 4th Dimension User Reference for details on creating reports with the Quick
Report editor.

If the Quick Report editor is not involved, the OK variable is set to 1 if a report is printed;
it is set to 0 (zero) if not (i.e., if the user clicked Cancel in the printing dialog boxes).

Examples
1. The following example lets the user query the [People] table, and then automatically
prints the report “Detailed Listing”:

QUERY ([People])
If (OK=1)

Þ REPORT ([People];"Detailed Listing";*)
End if

2. The following example lets the user query the [People] table, and then lets the user
choose which report to print:

QUERY ([People])
If (OK=1)

Þ REPORT ([People];"")
End if

3. The following example lets the user query the [People] table, and then displays the
Report editor so the user can design, save, load and print any reports:

QUERY ([People])
If (OK=1)

Þ REPORT ([People];Char(1))
End if

See Also
PRINT LABEL, PRINT SELECTION.

778 4th Dimension Language Reference

PRINT LABEL Printing

version 3
__

PRINT LABEL ({table}{; document}{; *})

Parameter Type Description
table Table ® Table to print, or

Default table, if omitted
document String ® Name of disk label document
* ® Suppress the printing dialog boxes

Description
PRINT LABEL enables you to print labels with the data from the selection of table.

If do not specify the document parameter, PRINT LABEL prints the current selection of
table as labels, using the current output form. You cannot use this command to print
subforms. For details about creating forms for labels, refer to the 4th Dimension Design
Reference manual.

If you specify the document parameter, PRINT LABEL enables you to access the Label
Wizard (shown below) or to print an existing Label document stored on disk. See the
following discussion.

4th Dimension Language Reference 779

In both cases, to suppress the printing dialog boxes, pass the optional * parameter. Note
that this parameter has no effect if the Label Wizard is involved.

If the Label Wizard is not involved, the OK variable is set to 1 if all labels are printed;
otherwise, it is set to 0 (zero) (i.e., if user clicked Cancel in the printing dialog boxes).

If you specify the document parameter, the labels are printed with the label setup defined
in document. If document is an empty string (""), PRINT LABEL will present an Open File
dialog box so the user can specify the file to use for the label setup. If document is the
name of a document that does not exist (for example, pass char(1) in document), the
Label Wizard is displayed and the user can define the label setup.

Examples
1. The following example prints labels using the output form of a table. The example uses
two methods. The first is a project method that sets the correct output form and then
prints labels:

ALL RECORDS([Addresses]) ` Select all records
OUTPUT FORM ([Addresses]; "Label Out") ` Select the output form

Þ PRINT LABEL([Addresses]) ` Print the labels
OUTPUT FORM ([Addresses];"Output") ` Restore default output form

The second method is the form method for the form "Label Out". The form contains one
variable named vLabel, which is used to hold the concatenated fields. If the second address
field (Addr2) is blank, it is removed by the method. Note that this task is performed
automatically with the Label Wizard. The form method creates the label for each record:

` [Addresses]; "Label Out" form method
Case of

: (Form event=On Printing Detail)
vLabel:=[Addresses]Name1+" "+[Addresses]Name2+Char(13)+

[Addresses]Addr1+Char(13)
If ([Addresses]Addr2 # "")

vLabel:=vLabel +[Addresses]Addr2+Char(13)
End if
vLabel:=vLabel+[Addresses]City+", "+[Addresses]State+" "+[Addresses]ZipCode

End case

2. The following example lets the user query the [People] table, and then automatically
prints the labels “My Labels”:

QUERY ([People])
If (OK=1)

Þ PRINT LABEL ([People];"My Labels";*)
End if

780 4th Dimension Language Reference

3. The following example lets the user query the [People] table, and then lets the user
choose the labels to be printed:

QUERY ([People])
If (OK=1)

Þ PRINT LABEL ([People];"")
End if

4. The following example lets the user query the [People] table, and then displays the
Label Wizard so the user can design, save, load and print any labels:

QUERY ([People])
If (OK=1)

Þ PRINT LABLE ([People];Char(1))
End if

See Also
PRINT SELECTION, REPORT.

4th Dimension Language Reference 781

PRINT SELECTION Printing

version 3
__

PRINT SELECTION ({table}{; }{*})

Parameter Type Description
table Table ® Table for which to print the selection, or

Default table, if omitted
* ® If specified, suppress the printing dialog boxes

Description
PRINT SELECTION prints the current selection of table. The records are printed with the
current output form of the table in the current process. PRINT SELECTION performs the
same action as the Print menu command in the User environment. If the selection is
empty, PRINT SELECTION does nothing.

By default, PRINT SELECTION displays the printer dialog boxes before printing. You can
suppress these dialog boxes by using the optional * parameter. If the user cancels either of
the printer dialog boxes, the command is canceled and the report is not printed. Using
the optional * causes the report to be printed with the page setup that was in effect when
the form was created, or with the page setup set by the PAGE SETUP command.

During printing, the output form method and/or the form’s object methods are executed
depending on the events that are enabled in the Form and Object Properties windows in
the Design environment, as well as on the events actually occurring:

• An On Header event is generated just before a header area is printed.
• An On Printing Detail event is generated just before a record is printed.
• An On Printing Break event is generated just before a break area is printed.
• An On Printing Footer event is generated just before a footer is printed.

782 4th Dimension Language Reference

You can check whether PRINT SELECTION is printing the first header by testing Before
selection during an On Header event. You can also check for the last footer, by testing End
selection during an On Printing Footer event. For more information, see the description of
these commands, as well as those of Form event and Level.

To print a sorted selection with subtotals or breaks using PRINT SELECTION, you must first
sort the selection. Then, in each Break area of the report, include a variable with an object
method that assigns the subtotal to the variable. You can also use statistical and
arithmetic functions like Sum and Average to assign values to variables. For more
information, see the descriptions of Subtotal, BREAL LEVEL and ACCUMULATE.

Warning: Do not use the PAGE BREAK command with the PRINT SELECTION command.
PAGE BREAK is to be used with the PRINT FORM command.

After a call to PRINT SELECTION, the OK variable is set to 1 if the printing has been
completed. If the printing was interrupted, the OK variable is set to 0 (zero) (i.e., the user
clicked Cancel in the printing dialog boxes).

Example
The following example selects all the records in the [People] table. It then uses the
DISPLAY SELECTION command to display the records and allows the user to highlight the
records to print. Finally, it uses the selected records with the USE SET command, and
prints them with PRINT SELECTION:

ALL RECORDS([People]) ` Select all records
DISPLAY SELECTION ([People]; *) ` Display the records
USE SET ("UserSet") ` Use only records picked by user

Þ PRINT SELECTION([People]) ` Print the records that the user picked

See Also
ACCUMULATE, BREAK LEVEL, Level, PAGE SETUP, Subtotal.

4th Dimension Language Reference 783

Printing page Printing

version 3
__

Printing page ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Page number of page currently being printed

Description
Printing page returns the printing page number. It can be used only when you are
printing with PRINT SELECTION or the Print menu in the User environment.

Example
The following example changes the position of the page numbers on a report so that the
report can be reproduced in a double-sided format. The form for the report has two
variables that display page numbers. A variable in the lower-left corner (vLeftPageNum)
will print the even page numbers. A variable in the lower-right corner (vRightPageNum)
will print the odd page numbers. The example tests for even pages, then clears and sets
the appropriate variables:

Case of
: (Form event=On Printing Footer)

Þ If ((Printing page % 2) = 0) ` Modulo is 0, it is an even page
Þ vLeftPageNum:=String(Printing page) ` Set the left page number

vRightPageNum:="" ` Clear the right page number
Else ` Otherwise it is an odd page

vLeftPageNum:="" ` Clear the left page number
Þ vRightPageNum:=String (Printing page) ` Set the right page number

End if
End case

See Also
PRINT SELECTION.

784 4th Dimension Language Reference

BREAK LEVEL Printing

version 3
__

BREAK LEVEL (level{; pageBreak})

Parameter Type Description
level Number ® Number of break levels
pageBreak Number ® Break level for which to do a page break

Description
BREAK LEVEL specifies the number of break levels in a report performed using PRINT
SELECTION.

Warning: In compiled mode, you must execute BREAK LEVEL and ACCUMULATE before
every report for which you want to do break processing. These commands activate break
processing for a report. See the explanation for the Subtotal command.

The level parameter indicates the deepest level for which you want to perform break
processing. You must have sorted the records with at least that many levels. If you have
sorted more levels, those levels will be printed as sorted, but will not be processed for
breaks.

Each break level that is generated will print the corresponding Break areas and Header
areas in the form. There should be at least as many Break areas in the form as the number
you pass in level. If there are more Break areas, they will be ignored and will not be
printed.

The second, optional, argument, pageBreak, is used to cause page breaks during printing.

Example
The following example prints a report with two break levels. The selection is sorted on
four levels, but the BREAK LEVEL command specifies to break on only two levels. One field
is accumulated with the ACCUMULATE command:

ORDER BY ([Emp]Dept;>;[Emp]Title;>;[Emp]Last;>;[Emp]First;>) ` Sort on four levels
Þ BREAK LEVEL (2) ` Turn on break processing to 2 levels (Dept and Title)

ACCUMULATE ([Emp]Salary) ` Accumulate the salaries
OUTPUT FORM ([Emp];"Dept salary") ` Select the report form
PRINT SELECTION([Emp]) ` Print the report

See Also
ACCUMULATE, ORDER BY, PRINT SELECTION, Subtotal.

4th Dimension Language Reference 785

ACCUMULATE Printing

version 3
__

ACCUMULATE (data{; data2; ...; dataN})

Parameter Type Description
data Field or variable ® Numeric field or variable on which to
accumulate

Description
ACCUMULATE specifies the fields or variables to be accumulated during a form report
performed using PRINT SELECTION.

Warning: In compiled mode, you must execute BREAK LEVEL and ACCUMULATE before
every report for which you want to do break processing. These commands activate break
processing for a report. See the explanation for the Subtotal command.

Use ACCUMULATE when you want to include subtotals for numeric fields or variables in a
form report. ACCUMULATE tells 4th Dimension to store subtotals for each of the Data
arguments. The subtotals are accumulated for each break level specified with the BREAK
LEVEL command.

Execute ACCUMULATE before printing the report with PRINT SELECTION.

Use the Subtotal function in the form method or an object method to return the subtotal
of one of the data arguments.

Example
See the example for the BREAK LEVEL command.

See Also
BREAK LEVEL, ORDER BY, PRINT SELECTION, Subtotal.

786 4th Dimension Language Reference

Subtotal Printing

version 3
__

Subtotal (data{; pageBreak}) ® Number

Parameter Type Description
data Field ® Numeric field or variable to return subtotal
pageBreak Number ® Break level for which to cause a page break

Function result Number ¬ Subtotal of data

Description
Subtotal returns the subtotal for data for the current or last break level. Subtotal works
only when a sorted selection is being printed with PRINT SELECTION or when printing
using Print in the User environment. The data parameter must be of type real, integer, or
long integer. Assign the result of the Subtotal function to a variable placed in the Break
area of the form.

Warning: In compiled mode, you must execute BREAK LEVEL and ACCUMULATE before
every form report for which you want to do break processing and calculate subtotals. See
discussion at the end of the description of this command.

Subtotal should be in the form method or an object method for the form. 4th Dimension
scans the form method and object methods before printing; if Subtotal is present, break
processing will be initiated (in interpreted mode only).

The second, optional, argument to Subtotal is used to cause page breaks during printing. If
pageBreak is 0, Subtotal does not issue a page break. If pageBreak equals 1, Subtotal issues a
page break for each level 1 break. If pageBreak equals 2, Subtotal issues a page break for
each level 1 and level 2 break, and so on.

To have breaks on N sort levels, you must sort the current selection on N + 1 levels (unless
you use BREAK LEVEL or ACCUMULATE, in which case N levels is sufficien). This lets you
sort on a last field, so that the field does not create unwanted breaks. To have the last sort
field generate a break, sort the field twice.

Tip: If you execute Subtotal from within an output form displayed at the screen, an error
will be generated, triggering an infinite loop of updates between the form and the error
window. To get out of this loop, press Alt+Shift (Windows) or Option-Shift (Macintosh)
when you click on the Abort button in the Error window (you may have to do so several
times). This temporarily stops the updates for the form’s window. Select another form as
the output form so the error will occur again. Go back to the Design Environment and
isolate the call to Subtotal into a test Form event=On Printing Break if you use the form
both for display and printing.

4th Dimension Language Reference 787

Example
The following example is a one-line object method in a Break area of a form (B0, the area
above the B0 marker). The vSalary variable is placed in the Break area. The variable is
assigned the subtotal of the Salary field for this break level:

Case of
: (Form event=On Printing Break)

Þ vSalary:=Subtotal ([Employees]Salary)
End case

For more information about designing forms with header and break areas, see the
4th Dimension Design Reference manual.

Activating Break Processing in Form Reports
__

Break processing in form reports can be activated in two ways:
• The first uses the Subtotal function.
• The second uses the BREAK LEVEL and ACCUMULATE commands.
Both methods can achieve the same results, but have different advantages.

Using Subtotal For Break Processing (Interpreted Mode Only)
To turn on break processing with the Subtotal function, the function must appear in the
form method or an object method for a variable located in a Break area of the form.
Before printing the report, 4th Dimension scans the form and object methods for the
Subtotal function.

If 4th Dimension finds the function, break processing is activated. The Subtotal function
does not need to be executed for it to turn on break processing. For example, it could be
in a method of an object that is below the Footer line and therefore would never be
printed or executed.

When Subtotal is used to activate break processing, you must sort on one more level than
you break on. For example, to have two levels of breaks in your report, sort on three
levels.

Using BREAK LEVEL and ACCUMULATE for Break Processing
You can also use the BREAK LEVEL and ACCUMULATE commands to turn on break
processing. To do so, you must execute both of these commands before printing a form
report. In this scheme, the Subtotal function is still required in order to display values on a
form. You do not need to sort on one extra level; you must, of course, sort on at least as
many levels as you need to break on.

788 4th Dimension Language Reference

Comparing the Two Methods
The primary advantage of using Subtotal to initiate break processing is that you do not
need to execute a method prior to printing the report. This is especially useful in the User
environment.

The process to print the report in the User environment is typically like this:
1. Select the records to be printed.
2. Order by (sort) the records, sorting on one extra level.
3. Choose Print from the File menu.

4th Dimension scans the form and object methods, finds the Subtotal function, turns on
break processing, and prints the report. There are two disadvantages to using Subtotal to
trigger break processing:
• You cannot use Subtotal to activate break processing in compiled databases.
• You must sort on one extra level; if you have many records, this may be time
consuming.

Using BREAK LEVEL and ACCUMULATE to activate break processing is the recommended
method when using methods to generate form reports. The process to print a report using
this method is typically like this:
1. Select the records to be printed.
2. Sort the records using ORDER BY. Sort on at least the same number of levels as breaks.
3. Execute BREAK LEVEL and ACCUMULATE.
4. Print the report using PRINT SELECTION.

You must use BREAK LEVEL and ACCUMULATE to activate break processing in compiled
mode. However, the Subtotal function is still necessary in order to display values on a
form.

See Also
ACCUMULATE, BREAK LEVEL, Level, PRINT SELECTION.

4th Dimension Language Reference 789

Level Printing

version 3
__

Level ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Current break or header level

Description
Level is used to determine the current header or break level. It returns the level number
during the On Header and On Printing Break events.

Level 0 is the last level to be printed and is appropriate for printing a grand total. Level
returns 1 when 4th Dimension prints a break on the first sorted field, 2 when
4th Dimension prints a break on the second sorted field, and so on.

Example
This example is a template for a form method. It shows each of the possible events that
can occur while a summary report uses a form as an output form. Level is called when a
header or a break is printed:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
: (Form event=On Header)

` A header area is about to be printed
Case of

: (Before selection($vpFormTable->))
` Code for the first break header goes here

Þ : (Level = 1)
` Code for a break header level 1 goes here

Þ : (Level = 2)

790 4th Dimension Language Reference

` Code for a break header level 2 goes here
` ...

End case
: (Form event=On Printing Details)

` A record is about to be printed
` Code for each record goes here

: (Form event=On Printing Break)
` A break area is about to be printed

Case of
Þ : (Level = 0)

` Code for a break level 0 goes here
Þ : (Level = 1)

` Code for a break level 1 goes here
` ...

End case
: (Form event=On Printing Footer)

If(End selection($vpFormTable->))
` Code for the last footer goes here

Else
` Code for a footer goes here

End if
End case

See Also
ACCUMULATE, BREAK LEVEL, Form event, PRINT SELECTION.

4th Dimension Language Reference 791

PRINT RECORD Printing

version 3
__

PRINT RECORD ({table}{; }{*})

Parameter Type Description
table Table ® Table for which to print the current record or

Default table if omitted
* ® Suppress the printer dialog boxes

Description
PRINT RECORD prints the current record of table, without modifying the current
selection. The current output form is used for printing. If there is no current record for
table, PRINT RECORD does nothing.

You can print subforms and external objects with the PRINT RECORD command. This is
not possible with PRINT FORM.

Note: If there are modifications to the record that have not been saved, this command
prints the modified field values, not the field values located on disk.

If you pass the optional * parameter, the printing dialog boxes are not displayed. In this
case, the record is printed with the default print settings, unless you call PAGE SETUP
before calling PRINT RECORD.

Example
The following example prints the current record of the [Invoices] table. The code is
contained in the object method of a Print button on the input form. When the user
clicks the button, the record is printed using an output form designed for this purpose.

` Select the right output form for printing
OUTPUT FORM([Invoices];"Print One From Data Entry")

` Print the Invoices as it is (without showing the printing dialog boxes)
Þ PRINT RECORD([Invoices];*)

` Restore the previous output form
OUTPUT FORM([Invoices];"Standard Output")

See Also
PRINT FORM.

792 4th Dimension Language Reference

PAGE SETUP Printing

version 3
__

PAGE SETUP ({table; }form)

Parameter Type Description
table Table ® Table owning form, or

Default table, if omitted
form String ® Form to use for page setup

Description
PAGE SETUP sets the page setup for the printer to that stored with form. The page setup is
stored with the form when the form is saved in the Design environment.

In the following three cases, the printing dialog boxes are not displayed and the printing
is performed with the default print settings. :
• Calling PRINT SELECTION to which you pass the optional * parameter
• Calling PRINT RECORD to which you pass the optional * parameter
• Issuing a series of calls to PRINT FORM not preceeded by a call to PRINT SETTINGS.

Calling PAGE SETUP enables you to skip the printing dialog boxes AND to use print
settings other than the default ones.

Example
Several (empty) forms are created for a table named [Design Stuff]. The form “PS100” is
assigned a page setup with a scaling of 100%, the form “PS90” is assigned a page setup
with a scaling of 90%, and so on. The following project method enables you to print the
selection of a table using various scalings without having to specify the scaling in the
printing dialog boxes (which are not displayed), each time:

` AUTOMATIC SCALED PRINTING project method
` AUTOMATIC SCALED PRINTING (Pointer ; String {; Long })
` AUTOMATIC SCALED PRINTING (->[Table]; "Output form" {; Scaling })

If (Count parameters>=3)
Þ PAGE SETUP([Design Stuff];"PS"+String($3))

If (Count parameters>=2)
OUTPUT FORM($1->;$2)

End if
End if
If (Count parameters>=1)

PRINT SELECTION($1->;*)
Else

PRINT SELECTION(*)
End if

4th Dimension Language Reference 793

Once this project method is written, you call it in this way:

` Look for current invoices
QUERY ([Invoices];[Invoices]Paid=False)

` Print Summary Report in 90% reduction
AUTOMATIC SCALED PRINTING (->[Invoices];"Summary Report";90)

` Print Detailed Report in 50% reduction
AUTOMATIC SCALED PRINTING (->[Invoices];"Detailed Report";50)

See Also
PRINT FORM, PRINT RECORD, PRINT SELECTION.

794 4th Dimension Language Reference

PRINT SETTINGS Printing

version 3
__

PRINT SETTINGS

Parameter Type Description
This command does not require any parameters

Description
PRINT SETTINGS displays the printing dialog boxes. First, it displays the Print Setup dialog
box. Then, it displays the Print Job dialog box.

You should include PRINT SETTINGS before any group of PRINT FORM commands. On the
other hand, PRINT SETTINGS has no effect on printing performed with other commands.

The Print Job dialog box contains a Preview on Screen check box that allows the user to
specify to print to the screen. You can preset or reset this check bok by calling SET PRINT
PREVIEW before calling PRINT SETTINGS.

Example
See example for the command PRINT FORM.

System Variables or Sets
If the user clicks OK in both dialog boxes, the OK system variable is set to 1. Otherwise,
the OK system variable is set to 0.

See Also
PAGE BREAK, PRINT FORM, SET PRINT PREVIEW.

4th Dimension Language Reference 795

SET PRINT PREVIEW Printing

version 3
__

SET PRINT PREVIEW (preview)

Parameter Type Description
preview Boolean ® Preview on screen (TRUE), or

No preview (FALSE)

Description
SET PRINT PREVIEW allows you to programmatically check or uncheck the Preview on
Screen option of the Print dialog box. If you pass TRUE in preview, Preview on Screen will
be checked, if you pass FALSE in preview , Preview on Screen will be unchecked. This
setting is local to a process and does not affect the printing of other processes or users.

Example
The following example turns on the Preview on Screen option to display the results of a
query on screen, and then turns it off.

QUERY([Customers])
If (OK=1)

Þ SET PRINT PREVIEW (True)
PRINT SELECTION ([Customers] ; *)

Þ SET PRINT PREVIEW (False)
End if

See Also
PRINT RECORD, PRINT SELECTION, PRINT SETTINGS.

796 4th Dimension Language Reference

PRINT FORM Printing

version 3
__

PRINT FORM ({table; }form)

Parameter Type Description
table Table ® Table owning the form, or

Default table, if omitted
form String ® Form to print

Description
PRINT FORM simply prints form with the current values of fields and variables. It prints
only the Detail area (the area between the Header line and the Detail line) of the form. It
is usually used to print very complex reports that require complete control over the
printing process. PRINT FORM does not do any record processing, break processing, page
breaks, headers, or footers. These operations are your responsibility. PRINT FORM prints
fields and variables in a fixed size frame only.

Since PRINT FORM does not issue a page break after printing the form, it is easy to
combine different forms on the same page. Thus, PRINT FORM is perfect for complex
printing tasks that involve different tables and different forms. To force a page break
between forms, use the PAGE BREAK command.

The printer dialog boxes do not appear when you use PRINT FORM. The report does not
use the print settings that were assigned to the form in the Design environment. There
are two ways to specify the print settings before issuing a series of calls to PRINT FORM:
• Call PRINT SETTINGS. In this case, you let the user choose the settings.
• Call PAGE SETUP. In this case, print settings are specified programmatically.

PRINT FORM builds each printed page in memory. Each page is printed when the page in
memory is full or when you call PAGE BREAK. To ensure the printing of the last page after
any use of PRINT FORM, you must conclude with the PAGE BREAK command. Otherwise,
if the last page is not full, it stays in memory and is not printed.

Warning: Subforms and external objects are not printed with PRINT FORM. To print only
one form with such objects, use PRINT RECORD instead.

PRINT FORM generates only one On Printing Detail event for the form method.

4th Dimension Language Reference 797

Example
The following example performs as a PRINT SELECTION command would. However, the
report uses one of two different forms, depending on whether the record is for a check or
a deposit:

QUERY([Register]) ` Select the records
If (OK=1)

ORDER BY([Register]) ` Sort the records
If (OK=1)

PRINT SETTINGS ` Display Printing dialog boxes
If (OK=1)

For ($vlRecord; 1; Records in selection([Register]))
If ([Register]Type = "Check")

` Use one form for checks
Þ PRINT FORM ([Register]; "Check Out")

Else
` Use another form for deposits

Þ PRINT FORM ([Register]; "Deposit Out")
End if
NEXT RECORD([Register])

End for
PAGE BREAK ` Make sure the last page is printed

End if
End if

End if

See Also
PAGE BREAK, PAGE SETUP, PRINT SETTINGS.

798 4th Dimension Language Reference

PAGE BREAK Printing

version 3
__

PAGE BREAK {(* | >)}

Parameter Type Description
* | > ® * Cancel printing job started

with PRINT FORM, or
> Force one printing job

Description
PAGE BREAK triggers the printing of the data that has been sent to the printer, and ejects
the page. PAGE BREAK is used with PRINT FORM to force page breaks and to print the last
page. Do not use PAGE BREAK with the PRINT SELECTION command. Instead, use Subtotal
or BREAK LEVEL with the optional parameter to generate page breaks.

The * and > parameters are both optional.

The * parameter allows you to cancel a print job started with the PRINT FORM command.
Executing this command immediately stops the print job in progress.

The > parameter modifies the way in which the PAGE BREAK command behaves. This
syntax has two effects:
• It holds the print job open until the PAGE BREAK command is executed again without a
parameter.
• It gives priority to the print job. No other printing can take place until the print job is
finished.
The second option is particularly useful when used with a spooled print job. The >
parameter guarantees that the print job will be spooled to one file. This will reduce
printing time.

Example
See example for the PRINT FORM command.

See Also
PRINT FORM.

4th Dimension Language Reference 799

800 4th Dimension Language Reference

32 Pictures

4th Dimension Language Reference 801

802 4th Dimension Language Reference

Pictures Pictures

version 6.0
__

Supported Formats
The following charts summarize the support for various picture formats on the Macintosh
and Windows platforms.

Cut and Paste: Supported formats

PICT EMF WMF BITMAP
Macintosh Yes - - -
Windows Yes Yes Yes Yes

embedded in embedded in converted to
PicComment PicComment Macintosh PICT

Display: Supported formats

PICT QuickTime embedded WMF
embedded EMF
Macintosh Yes Yes No No
Windows Yes Yes Yes Yes

NT & WIN 95
+ QT 32 bit

ACI_Pack ReadPictureFile supported formats (see Note)

PICT BMP WMF EMF JPEG
Macintosh Yes Yes No No Yes

converted expanded
to Mac PICT to Mac PICT

Windows Yes Yes Yes Yes Yes
converted to embedded in embedded in expanded to
Mac PICT PicComment PicComment Mac PICT

Note: ACI Pack is a 4D Plug-in from ACI, delivered with 4D.

4th Dimension Language Reference 803

Apple QuickTime Compression
__

Apple uses QuickTime to implement new compression technologies, such as JPEG. Apple
has added new opcodes to the original PICT specifications, so Macintosh applications can
handle QuickTime pictures without modification. When the application asks the system
to draw a picture containing embedded QuickTime data, the bitmap is expanded and
displayed if QuickTime is present; the QuickTime opcode is ignored if QuickTime is not
installed. This technology is transparent to the user and takes a minimal amount of
memory, because a 1 megabyte picture can be stored in a 40 kilobyte PICT, and need not
be expanded before it is displayed.

QuickTime Compressor Types
Following is a list of the compressor types available in QuickTime:
• Photo compressor (‘jpeg’): Uses the Joint Photographic Experts Group (JPEG) algorithm
for picture compression. JPEG is an international standard for compressing still pictures.
• Video compressor (‘rpza’): Allows very fast decompression while maintaining good
picture quality.
• Animation compressor (‘rle’): Used with animation and computer-generated video
content.
• Raw compressor (‘raw’): Reduces picture storage requirements by converting a picture’s
pixel depth.
• Graphics compressor (‘smc’): An alternative to animation, but has poorer performance
quality.
• Compact video compressor (‘cdvc’): Similar to video compressor, but obtains higher
compression ratios, better picture quality, and faster playback.

When specifying the compressor type, be sure to include a space in the method parameter
if indicated. If method is an empty string, the picture is loaded but not compressed.

Picture Compression Errors
When you try to use a picture compression command and QuickTime is not installed in
your system, 4th Dimension returns the error code -9955. Other errors generated by
QuickTime can also be returned. You can catch these errors using an error-handling
method installed with ON ERR CALL.

804 4th Dimension Language Reference

Using Apple QuickTime on Windows
__

• Since Altura and 4D are both real 32-bit applications, you need to install 32 bit
QuickTime for Windows (version 2.1.1 b50 or higher).
• QuickTime for Windows does not support Windows 3.11, so there is no way to display a
QuickTime picture in Windows 3.11.
• In order to display the picture, QuickTime for Windows must use a work file on disk.
Each time a QuickTime picture is displayed on screen, it is first written on the disk, then
deleted. Usually, the temporary file remains in the cache and is not really written on the
disk, so the operation is very fast. However, on a slow PC, or on one with insufficient
memory, this operation can be slower.
• QuickTime for Windows can only display QuickTime pictures—there is no way to
compress pictures. This is why the 4D commands dealing with QuickTime compression do
not work on Windows (and will not, until QuickTime for Windows supports
compression). The commands that do not work on Windows are: COMPRESS PICTURE,
COMPRESS PICTURE FILE, LOAD COMPRESS PICTURE FROM FILE.

SAVE PICTURE TO FILE does not use QuickTime, so it works on Windows the same as it
does on Macintosh. It generates Macintosh PICT files, which can be opened on Windows
by advanced graphics applications such as Photoshop.

See Also
COMPRESS PICTURE, COMPRESS PICTURE FILE, LOAD COMPRESS PICTURE FROM FILE,
PICTURE PROPERTIES, Picture size, SAVE PICTURE TO FILE.

4th Dimension Language Reference 805

COMPRESS PICTURE Pictures

version 3
__

COMPRESS PICTURE (picture; method; quality)

Parameter Type Description
picture Picture ® Picture to be compressed

¬ Compressed picture
method String ® 4-character string compression method
quality Number ® Compression quality (1..1000)

Description
The command COMPRESS PICTURE compresses the picture contained in the field or
variable picture.

The parameter method is a 4-character string indicating the compressor type.

The parameter quality is an integer between 1 and 1000 indicating the quality of the
compressed picture. In general, reducing the quality will allow for greater compression of
the picture.

Warning: The compression ratio possible for a given quality depends on the size and
nature of the picture you are compressing. Compressing small pictures may not produce
any decrease in size.

See Also
COMPRESS PICTURE FILE, LOAD COMPRESS PICTURE FROM FILE, Pictures.

806 4th Dimension Language Reference

LOAD COMPRESS PICTURE FROM FILE Pictures

version 3
__

LOAD COMPRESS PICTURE FROM FILE (document; method; quality; picture)

Parameter Type Description
document DocRef ® Document reference number
method String ® 4-character string compression method
quality Number ® Compression quality (1..1000)
picture Picture ¬ Compressed picture

Description
This command compresses a picture loaded from a document on disk.

You can open a PICT document using the Open document function. You can then use the
document reference returned by this function to load and compress the PICT found in
the document. This command loads the picture into memory, compresses it using the
method and quality you have specified, and then returns it into Picture.

The picture is loaded into memory before it is compressed. If there is not enough memory
to load the picture, use COMPRESS PICTURE FILE before calling LOAD COMPRESS PICTURE
FROM FILE.

The parameter method is a 4-character string indicating the compressor type. The
parameter quality is an integer between 1 and 1000 indicating the quality of the
compressed picture. In general, reducing the quality will allow for greater compression of
the picture.

Warning: The compression ratio possible for a given quality depends on the size and
nature of the picture you are compressing. Compressing small pictures may not produce
any decrease in size.

Example
The following example presents an Open File dialog box that allows you to select a PICT
file. The picture in the PICT file is loaded into memory, compressed, and stored in a
picture variable. The file is then closed.

vRef:=Open document ("";"PICT")
If (OK=1)

Þ LOAD COMPRESS PICTURE FROM FILE(vRef;''jpeg'';500;Picture)
CLOSE DOCUMENT(vRef)

End if

See Also
COMPRESS PICTURE, COMPRESS PICTURE FILE, Pictures, SAVE PICTURE TO FILE.

4th Dimension Language Reference 807

COMPRESS PICTURE FILE Pictures

version 3
__

COMPRESS PICTURE FILE (document; method; quality)

Parameter Type Description
document DocRef ® Document reference number
method String ® 4-character string compression method
quality Number ® Compression quality (1..1000)

Description
This command compresses a picture document on disk. Use this command to compress a
picture that you know cannot be loaded with the available memory. Once compressed, it
can be loaded into memory using LOAD COMPRESS PICTURE FROM FILE.

The parameter method is a 4-character string indicating the compressor type.

The parameter quality is an integer between 1 and 1000 indicating the quality of the
compressed picture. In general, reducing the quality will allow for greater compression of
the picture.

Warning: The compression ratio possible for a given quality depends on the size and
nature of the picture you are compressing. Compressing small pictures may not produce
any decrease in size.

Example
The following example presents the Open File dialog box that allows you to select a PICT
file. Only PICT files will be displayed. The picture is compressed, loaded into memory, and
stored in a picture variable. The file is then closed.

vRef:=Open document ("";"PICT")
If (OK=1)

Þ COMPRESS PICTURE FILE(vRef;''jpeg'';500)
LOAD COMPRESS PICTURE FROM FILE(vRef;'''';500;vPict)
CLOSE DOCUMENT(vRef)

End if

See Also
COMPRESS PICTURE, LOAD COMPRESS PICTURE FROM FILE, SAVE PICTURE TO FILE.

808 4th Dimension Language Reference

SAVE PICTURE TO FILE Pictures

version 3
__

SAVE PICTURE TO FILE (document; picture)

Parameter Type Description
document DocRef ® Document reference number
picture Picture ® Picture to be saved

Description
This command saves picture in a document that was created using the Create document
function.

Example
The following example creates a document and saves a picture in it:

vRef:=Create document("";"PICT")
If (OK=1)

Þ SAVE PICTURE TO FILE(vRef;vPict)
CLOSE DOCUMENT(vRef)

End if

See Also
COMPRESS PICTURE FILE, LOAD COMPRESS PICTURE FROM FILE.

4th Dimension Language Reference 809

Picture size Pictures

version 3
__

Picture size (picture) ® Number

Parameter Type Description
picture Picture ® Picture for which to return the size in bytes

Function result Number ¬ Size in bytes of the picture

Description
This function returns the size of picture in bytes.

See Also
PICTURE PROPERTIES.

810 4th Dimension Language Reference

PICTURE PROPERTIES Pictures

version 6.0
__

PICTURE PROPERTIES (picture; width; height{; hOffset{; vOffset{; mode}}})

Parameter Type Description
picture Picture ® Picture for which to get information
width Number ¬ Width of the picture expressed in pixels
height Number ¬ Height of the picture expressed in pixels
hOffset Number ¬ Horizontal offset when displayed

on background
vOffset Number ¬ Vertical offset when displayed on background
mode Number ¬ Transfer mode when displayed on background

Description
The command PICTURE PROPERTIES returns information about the picture you pass in
picture.

The parameters width and height return the width and height of the picture.

The parameters hOffset, vOffset, and mode return the horizontal and vertical positions and
the transfer mode of the picture when displayed on the background in a form.

See Also
Picture size.

4th Dimension Language Reference 811

PICTURE LIBRARY LIST Pictures

version 6.0.2
__

PICTURE LIBRARY LIST (picRefs; picNames)

Parameter Type Description
picRefs Numeric Array ¬ Reference numbers of the

Picture Library graphics
picNames String Array ¬ Names of the Picture Library graphics

Description
The command PICTURE LIBRARY LIST returns the reference numbers and names of the
pictures currently stored in the Picture Library of the database.

After the call, you retrieve the reference numbers in the array picRefs and the names in
the array picNames. The two arrays are synchronized: the nth element of picRefs is the
reference number of the Picture Library graphic whose name is returned in the nth
element of picNames.

The array picRefs can be a Real, Long Integer or Integer array. In interpreted mode, if the
array is not declared prior to the call to PICTURE LIBRARY LIST, a Long Integer array is
created by default.

The array picNames can be a String or Text array. In interpreted mode, if the array is not
declared prior to the call PICTURE LIBRARY LIST, a Text array is created by default.

The maximum length of a Picture Library graphic name is 31 characters. If you use a
String array as picNames, declare it with a large enough fixed length to avoid having a
truncated name returned.

If there are no pictures in the Picture Library, both arrays are returned empty.

To obtain the number of pictures currently stored in the Picture Library, use the Size of
array command to get the size of one of the two arrays.

Examples
1. The following code returns the catalog of the Picture Library in the arrays alPicRef and
asPicName:

Þ PICTURE LIBRARY LIST(alPicRef;asPicName)

812 4th Dimension Language Reference

2. The following example tests whether or not the Picture Library is empty:

PICTURE LIBRARY LIST(alPicRef;asPicName)
If (Size of array(alPicRef)=0)

ALERT("The Picture Library is empty.")
Else

ALERT("The Picture Library contains "+String(Size of array(alPicRef))+" pictures.")
End if

3. The following example exports the Picture Library to a document on disk:

Þ PICTURE LIBRARY LIST($alPicRef;$asPicName)
$vlNbPictures:=Size of array($alPicRef)
If ($vlNbPictures>0)

SET CHANNEL(12;"")
If (OK=1)

$vsTag:="4DV6PICTURELIBRARYEXPORT"
SEND VARIABLE($vsTag)
SEND VARIABLE($vlNbPictures)
gError:=0
For($vlPicture;1;$vlNbPictures)

$vlPicRef:=$alPicRef{$vlPicture}
$vsPicName:=$asPicName{$vlPicture}

Þ GET PICTURE FROM LIBRARY(alPicRef{$vlPicture};$vgPicture)
If (OK=1)

SEND VARIABLE($vlPicRef)
SEND VARIABLE($vsPicName)
SEND VARIABLE($vgPicture)

Else
$vlPicture:=$vlNbPictures+1
gError:=-108

End if
End for
SET CHANNEL(11)
If (gError#0)

ALERT("The Picture Library could not be exported, retry with more memory.")
DELETE DOCUMENT (Document)

End if
End if

Else
ALERT("The Picture Library is empty.")

End if

See Also
GET PICTURE FROM LIBRARY, REMOVE PICTURE FROM LIBRARY, SET PICTURE TO LIBRARY.

4th Dimension Language Reference 813

GET PICTURE FROM LIBRARY Pictures

version 6.0.2
__

GET PICTURE FROM LIBRARY (picRef; picture)

Parameter Type Description
picRef Number ® Reference number of Picture Library graphic
picture Picture Variable ¬ Picture from the Picture Library

Description
The GET PICTURE FROM LIBRARY command returns in the picture parameter the
Picture Library graphic whose reference number is passed in picRef.

If there is no picture with that reference number, GET PICTURE FROM LIBRARY leaves
picture unchanged.

Examples
1. The following example returns in vgMyPicture the picture whose reference number is
stored in the local variable $vlPicRef:

Þ GET PICTURE FROM LIBRARY($vlPicRef;vgMyPicture)

2. See the third example for the command PICTURE LIBRARY LIST.

See Also
PICTURE LIBRARY LIST, REMOVE PICTURE FROM LIBRARY, SET PICTURE TO LIBRARY.

System Variables and Sets
If the Picture Library exists, the OK variable is set to 1. Otherwise, OK is set to zero.

Error Handling
If there is not enough memory to return the picture, an error -108 is generated. You can
catch this error using an error-handling method.

814 4th Dimension Language Reference

SET PICTURE TO LIBRARY Pictures

version 6.0.2
__

SET PICTURE TO LIBRARY (picture; picRef; picName)

Parameter Type Description
picture Picture ® New picture
picRef Number ® Reference number of Picture Library graphic
picName String ® New name of the picture

Description
The command SET PICTURE TO LIBRARY creates a new picture or replaces a picture in the
Picture Library.

Before the call, you pass:
• the picture reference number in picRef (range 1...32767)
• the picture itself in picture.
• the name of the picture in picName (maximum length: 31 characters).

If there is an existing Picture Library graphic with the same reference number, the picture
contents are replaced and the picture is renamed according to the values passed in picture
and picName.

If there is no Picture Library graphic with the reference number passed in picRef, a new
picture is added to the Picture Library.

4D Server: SET PICTURE TO LIBRARY cannot be used from within a method executed on
the server machine (stored procedure or trigger). If you call SET PICTURE TO LIBRARY on a
server machine, nothing happens—the call is ignored.

Warning: Design objects (hierarchical list items, menu items, etc.) may refer to Picture
Library graphics. Use caution when modifying a Picture Library graphic
programmatically.

Note: If you pass an empty picture in picture or a negative or null value in picRef, the
command does nothing.

4th Dimension Language Reference 815

Examples
1. No matter what the current contents of the Picture Library, the following example
adds a new picture to the Picture Library by first looking for a unique picture reference
number:

Þ PICTURE LIBRARY LIST($alPicRef;$asPicNames)
Repeat

$vlPicRef:=1+Abs(Random)
Until (Find in array($alPicRef;$vlPicRef)<0)

Þ SET PICTURE TO LIBRARY(vgPicture;$vlPicRef;"New Picture")

2. The following example imports into the Picture Library the pictures (stored in a
document on disk) created by the third example for the command PICTURE LIBRARY LIST:

SET CHANNEL(10;"")
If (OK=1)

RECEIVE VARIABLE($vsTag)
If ($vsTag="4DV6PICTURELIBRARYEXPORT")

RECEIVE VARIABLE($vlNbPictures)
If ($vlNbPictures)

For($vlPicture;1;$vlNbPictures)
RECEIVE VARIABLE($vlPicRef)
If (OK=1)

RECEIVE VARIABLE($vlPicName)
End if
If (OK=1)

RECEIVE VARIABLE ($vgPicture)
End if
If (OK=1)

Þ SET PICTURE TO LIBRARY($vgPicture;$vlPicRef;$vlPicName)
Else

$vlPicture:=$vlNbPictures+1
ALERT("This file looks like being damaged.")

End if
End for

Else
ALERT("This file looks like being damaged.")

End if
Else

ALERT("The file “"+Document+"” is not a Picture Library export file.")
End if
SET CHANNEL(11)

End

816 4th Dimension Language Reference

See Also
GET PICTURE FROM LIBRARY, PICTURE LIBRARY LIST, REMOVE PICTURE FROM LIBRARY.

System Variables and Sets
None is affected.

Error Handling
If there is not enough memory to add the picture to the Picture Library, an error -108 is
generated. Note that I/O errors may also be returned (i.e., the structure file is locked). You
can catch these errors using an error-handling method.

4th Dimension Language Reference 817

REMOVE PICTURE FROM LIBRARY Pictures

version 6.0.2
__

REMOVE PICTURE FROM LIBRARY (picRef)

Parameter Type Description
npicRef Number ® Reference number of Picture Library graphic

Description
The command REMOVE PICTURE FROM LIBRARY removes from the Picture Library the
picture whose reference number is passed in picRef.

If there is no picture with that reference number, the command does nothing.

4D Server: REMOVE PICTURE FROM LIBRARY cannot be used from within a method
executed on the server machine (stored procedure or trigger). If you call REMOVE PICTURE
FROM LIBRARY on a server machine, nothing happens—the call is ignored.

Warning: Design objects (hierarchical list items, menu items, etc.) may refer to Picture
Library graphics. Use caution when deleting a Picture Library graphic programmatically.

Examples
1. The following example deletes the picture #4444 from the Picture Library.

Þ REMOVE PICTURE FROM LIBRARY(4444)

2. The following example deletes from the Picture Library any pictures whose names
begin with a dollar sign ($):

PICTURE LIBRARY LIST($alPicRef;$asPicName)
For($vlPicture;1;Size of array($alPicRef))

If ($asPicName{$vlPicture}="$@")
Þ REMOVE PICTURE FROM LIBRARY($alPicRef{$vlPicture})

End if
End for

See Also
GET PICTURE FROM LIBRARY, PICTURE LIBRARY LIST, SET PICTURE TO LIBRARY.

818 4th Dimension Language Reference

33 Process
(Communications)

4th Dimension Language Reference 819

820 4th Dimension Language Reference

Semaphore Process (Communications)

version 3
__

Semaphore (semaphore) ® Boolean

Parameter Type Description
semaphore String ® Semaphore to test and set

Function result Boolean ¬ Semaphore has been successfully set (FALSE) or
Semaphore was already set (TRUE)

Description
A semaphore is a flag shared among workstations (each user’s computer) or among
processes on the same workstation. A semaphore simply exists or does not exist. The
methods that each user is running can test for the existence of a semaphore. By creating
and testing semaphores, methods can communicate between workstations.

The Semaphore function returns TRUE if semaphore exists. If semaphore does not exist,
Semaphore creates it and returns FALSE. Only one user at a time can create a semaphore. If
Semaphore returns FALSE, it means that the semaphore did not exist, but it also means
that the semaphore has been set for the process in which the call has been made.

Semaphore returns FALSE if the semaphore was not set. It also returns FALSE if the
semaphore is already set by the same process in which the call has been made. A
semaphore is limited to 15 characters. If you pass a longer string, the semaphore will be
tested with the truncated string.

There are two types of semaphores in 4th Dimension: local semaphores and global
semaphores.

A local semaphore is accessible by all processes on the same workstation and only on the
workstation. A local semaphore can be created by prefixing the name of the semaphore
with a dollar sign ($). You use local semaphores to monitor operations among processes
executing on the same workstation. For example, a local semaphore can be used to
monitor access to an interprocess array shared by all the processes in your single-user
database or on the workstation.

A global semaphore is accessible to all users and all their processes. You use global
semaphores to monitor operations among users of a multi-user database.

Global and local semaphores are identical in their logic. The difference resides in their
scope, In 4D Server, global semaphores are shared among all the processes running on all
clients. A local semaphore is only shared among the processes running on the client
where it has been created.

4th Dimension Language Reference 821

In 4th Dimension, global or local semaphores have the same scope because you are the
only user. However, if your database is being used in both setups, make sure to use global
or local semaphores depending on what you want to do.

You do not use semaphores to protect record access. This is automatically done by
4th Dimension and 4D Server. Use semaphores to prevent several users from performing
the same operation at the same time.

Examples
1. In this example, you want to prevent two users from doing a global update of the
prices in a Products table. The following method uses semaphores to manage this:

Þ If (Semaphore("UpdatePrices")) ` Try to create the semaphore
ALERT("Another user is already updating prices. Retry later.")

Else
DoUpdatePrices ` Update all the prices
CLEAR SEMAPHORE("UpdatePrices")) ` Clear the semaphore

End if

2. The following example uses a local semaphore. In a database with several processes, you
want to maintain a To Do list. You want to maintain the list in an interprocess array and
not in a table. You use a semaphore to prevent simultaneous access. In this situation, you
only need to use a local semaphore, because your To Do list is only for your use.

The interprocess array is initialized in the Startup method:

ARRAY TEXT(àToDoList;0) ` The To Do list is initially empty

Here is the method used for adding items to the To Do list:

` ADD TO DO LIST project method
` ADD TO DO LIST (Text)
` ADD TO DO LIST (To do list item)

C_TEXT($1)
Þ While (Semaphore("$AccessToDoList"))
 DELAY PROCESS(Current process;1)

End while
$vlElem:=Size of array(àToDoList)+1
INSERT ELEMENT(àToDoList;$vlElem)
àToDoList{$vlElem}:=$1
CLEAR SEMAPHORE("$AccessToDoList") ` Clear the semaphore

You can call the above method from any process.

See Also
CLEAR SEMAPHORE.

822 4th Dimension Language Reference

CLEAR SEMAPHORE Process (Communications)

version 3
__

CLEAR SEMAPHORE (semaphore)

Parameter Type Description
semaphore String ® Semaphore to clear

Description
CLEAR SEMAPHORE erases semaphore previously set by the Semaphore function.

As a rule, all semaphores that have been created should be cleared. If semaphores are not
cleared, they remain in memory until the process that creates them ends. A process can
only clear semaphores that it has created. If you try to clear a semaphore from within a
process that did not create it, nothing happens.

Example
See the example for Semaphore.

See Also
Semaphore.

4th Dimension Language Reference 823

CALL PROCESS Process (Communications)

version 3
__

CALL PROCESS (process)

Parameter Type Description
process Number ® Process number

Description
CALL PROCESS calls the form displayed in the frontmost window of process.

Important: CALL PROCESS only works between processes running on the same machine.

If you call a process that does not exist, nothing happens.

If process (the target process) is not currently displaying a form, nothing happens. The
form displayed in the target process receives an On Outside call event. This event must be
enabled for that form in the Design environment Form Properties window, and you must
manage the event in the form method. If the event is not enabled or if it is not managed
in the form method, nothing happens.

The caller process (the process from which CALL PROCESS is executed) does not “wait”—
CALL PROCESS has an immediate effect. If necessary, you must write a waiting loop for a
reply from the called process, using interprocess variables or using process variables
(reserved for this purpose) that you can read and write between the two processes (using
GET PROCESS VARIABLE and SET PROCESS VARIABLE).

To communicate between processes that do not display forms, use the commands GET
PROCESS VARIABLE and SET PROCESS VARIABLE.

CALL PROCESS has the alternate syntax CALL PROCESS(-1).

In order not to slow down the execution of methods, 4th Dimension does not redraw
interprocess variables each time they are modified. If you pass -1 instead of a process
reference number in the process parameter, 4th Dimension does not call any process.
Instead, it redraws all the interprocess variables currently displayed in all windows of any
process running on the same machine.

Example
See example for On Exit Database Method.

See Also
Form event, GET PROCESS VARIABLE, SET PROCESS VARIABLE.

824 4th Dimension Language Reference

GET PROCESS VARIABLE Process (Communications)

version 6.0
__

GET PROCESS VARIABLE (process; srcVar; dstVar{; srcVar2; dstVar2; ...; srcVarN; dstVarN})

Parameter Type Description
process Number ® Source process number
srcVar Variable ® Source variable
dstVar Variable ¬ Destination variable

Description
The GET PROCESS VARIABLE command reads the srcVar process variables (srvVar2, etc.)
from the source process whose number is passed in process, and returns their current
values in the dstVar variables (dstVar2, etc.) of the current process.

Each source variable can be a variable, an array or an array element. However, see the
restrictions listed later in this section.

In each couple of srcVar;dstVar variables, the two variables must be of compatible types,
otherwise the values you obtain may be meaningless.

The current process “peeks” the variables from the source process—the source process is
not warned in any way that another process is reading the instance of its variables.

4D Server: Using 4D Client, you can write variables in a destination process executed on
the server machine (stored procedure). To do so, put a minus sign before the process ID
number in the process parameter.

TIP: If you do not know the ID number of the server process, you can still use the
interprocess variables of the server. To do so, you can use any negative value in process. In
other words, it is not necessary to know the ID number of the process to be able to use
the Set process variable command with the interprocess variables of the server. This is
useful when a stored procedure is launched using the On server startup database method.
As clients machines do not automatically know the ID number of that process, any
negative value can be passed in the process parameter.

4th Dimension Language Reference 825

Restrictions
GET PROCESS VARIABLE does not accept local variables as source variables.

On the other hand, the destination variables can be interprocess, process or local
variables. You “receive” the values only into variables, not into fields.

GET PROCESS VARIABLE accepts any type of source process or interprocess variable, except:
• Pointers
• Array of pointers
• Two-dimensional arrays

The source process must be a user process; it cannot be a kernel process. If the source
process does not exist, this command has no effect.

Note: In interpreted mode, if a source variable does not exist, the undefined value is
returned. You can detect this by using the Type function to test the corresponding
destination variable.

Examples
1. This line of code reads the value of the text variable vtCurStatus from the process whose
number is $vlProcess. It returns the value in the process variable vtInfo of the current
process:

Þ GET PROCESS VARIABLE($vlProcess;vtCurStatus;vtInfo)

2. This line of code does the same thing, but returns the value in the local variable $vtInfo
for the method executing in the current process:

Þ GET PROCESS VARIABLE($vlProcess;vtCurStatus;$vtInfo)

3. This line of code does the same thing, but returns the value in the variable vtCurStatus
of the current process:

Þ GET PROCESS VARIABLE($vlProcess;vtCurStatus;vtCurStatus)

Note: The first vtCurStatus designates the instance of the variable in the source process
The second vtCurStatus designates the instance of the variable in the current process.

826 4th Dimension Language Reference

4. This example sequentially reads the elements of a process array from the process
indicated by $vlProcess:

GET PROCESS($vlProcess;vl_IPCom_Array;$vlSize)
For($vlElem;1;$vlSize)

Þ GET PROCESS VARIABLE($vlProcess;at_IPCom_Array{$vlElem};$vtElem)
` Do something with $vtElem

End for

Note: In this example, the process variable vl_IPCom_Array contains the size of the array
at_IPCom_Array, and must be maintained by the source process.

5. This example does the same thing as the previous one, but reads the array as a whole,
instead of reading the elements sequentially:

Þ GET PROCESS($vlProcess;at_IPCom_Array;$anArray)
For($vlElem;1;Size of array($anArray))

` Do something with $anArray{$vlElem}
End for

6. This example reads the source process instances of the variables v1,v2,v3 and returns
their values in the instance of the same variables for the current process:

Þ GET PROCESS VARIABLE($vlProcess;v1;v1;v2;v2;v3;v3)

7. See the example for the command DRAG AND DROP PROPERTIES.

See Also
CALL PROCESS, Drag and Drop, DRAG AND DROP PROPERTIES, Processes, SET PROCESS
VARIABLE, VARIABLE TO VARIABLE.

4th Dimension Language Reference 827

SET PROCESS VARIABLE Process (Communications)

version 6.0
__

SET PROCESS VARIABLE (process; dstVar; expr{; dstVar2; expr2; ...; dstVarN; exprN})

Parameter Type Description
process Number ® Destination process number
dstVar Variable ® Destination variable
expr Variable ® Source expression (or source variable)

Description
The SET PROCESS VARIABLE command writes the dstVar process variables (dstVar2, etc.)
of the destination process whose number is passed in process using the values passed in
expr1 (expr2, etc.).

Each destination variable can be a variable or an array element. However, see the
restrictions listed later in this section.

For each couple of dstVar;expr variables, the expression must be of a type compatible with
the destination variable, otherwise you may end up with a meaningless value in the
variable. In interpreted mode, if a destination variable does not exist, it is created and
assigned with the expression.

The current process “pokes” the variables of the destination process—the destination
process is not warned in any way that another process is writing the instance of its
variables.

4D Server: Using 4D Client, you can write variables in a destination process executed on
the server machine (stored procedure). To do so, put a minus sign before the process ID
number in the process parameter.

TIP: If you do not know the ID number of the server process, you can still use the
interprocess variables of the server. To do so, use any negative value in process. In
other words, it is not necessary to know the ID number of the process to be able to use
the Set process variable command with the interprocess variables of the server. This is
useful when a stored procedure is launched using the On server startup database method.
As client machines do not automatically know the ID number of that process, any
negative value can be passed in the process parameter.

828 4th Dimension Language Reference

Restrictions
SET PROCESS VARIABLE does not accept local variables as destination variables.

SET PROCESS VARIABLE accepts any type of destination process or interprocess variable,
except:
• Pointers
• Arrays of any type. To write an array as a whole from one process to another one, use
the command VARIABLE TO VARIABLE. Note, however, that SET PROCESS VARIABLE allows
you to write the element of an array.
• You cannot write the element of an array of pointers or the element of a two-
dimensional array.

The destination process must be a user process; it cannot be a kernel process. If the
destination process does not exist, an error is generated. You can catch this error using
an error-handling method installed with ON ERR CALL.

Examples
1. This line of code sets (to the empty string) the text variable vtCurStatus of the process
whose number is $vlProcess:

Þ SET PROCESS VARIABLE($vlProcess;vtCurStatus;"")

2. This line of code sets the text variable vtCurStatus of the process whose number is
$vlProcess to the value of the variable $vtInfo from the executing method in the current
process:

Þ SET PROCESS VARIABLE($vlProcess;vtCurStatus;$vtInfo)

3. This line of code sets the text variable vtCurStatus of the process whose number is
$vlProcess to the value of the same variable in the current process:

Þ SET PROCESS VARIABLE($vlProcess;vtCurStatus;vtCurStatus)

Note: The first vtCurStatus designates the instance of the variable in the destination
process. The second vtCurStatus designates the instance of the variable in the current
process.

4. This example sequentially sets to uppercase all elements of a process array from the
process indicated by $vlProcess:

GET PROCESS VARIABLE($vlProcess;vl_IPCom_Array;$vlSize)
For($vlElem;1;$vlSize)

GET PROCESS VARIABLE($vlProcess;at_IPCom_Array{$vlElem};$vtElem)
Þ SET PROCESS VARIABLE($vlProcess;at_IPCom_Array{$vlElem};Uppercase($vtElem))

End for

Note: In this example, the process variable vl_IPCom_Array contains the size of the array
at_IPCom_Array and must be maintained by the source/destination process.

4th Dimension Language Reference 829

5. This example writes the destination process instance of the variables v1, v2 and v3
using the instance of the same variables from the current process:

Þ SET PROCESS VARIABLE($vlProcess;v1;v1;v2;v2;v3;v3)

See Also
CALL PROCESS, GET PROCESS VARIABLE, Processes, VARIABLE TO VARIABLE.

830 4th Dimension Language Reference

VARIABLE TO VARIABLE Process (Communications)

version 6.0.2
__

VARIABLE TO VARIABLE (process; dstVar; srcVar{; dstVar2; srcVar2; ...; dstVarN; srcVarN})

Parameter Type Description
process Number ® Destination process number
dstVar Variable ® Destination variable
srcVar Variable ® Source variable

Description
The command VARIABLE TO VARIABLE writes the dstVar process variables (dstVar2, etc.) of
the destination process whose number is passed in process using the values of the
variables srcVar1 srcVar2, etc.

VARIABLE TO VARIABLE has the same action as SET PROCESS VARIABLE, with the following
differences:
• You pass source expressions to SET PROCESS VARIABLE, and therefore cannot pass an
array as a whole. You must exclusively pass source variables to VARIABLE TO VARIABLE, and
therefore can pass an array as a whole.
• Each destination variable of SET PROCESS VARIABLE can be a variable or an array
element, but cannot be an array as a whole. Each destination variable of VARIABLE TO
VARIABLE can be a variable or an array or an array element.

For each couple of dstVar;expr variables, the source variable must be of a type compatible
with the destination variable, otherwise you may end up with a meaningless value in the
variable. In interpreted mode, if a destination variable does not exist, it is created and
assigned with the type and value of the source variable.

The current process “pokes” the variables of the destination process—the destination
process is not warned in any way that another process is writing the instance of its
variables.

Restrictions
VARIABLE TO VARIABLE does not accept local variables as destination variables.

VARIABLE TO VARIABLE accepts any type of destination process or interprocess variables
except:
• Pointers
• Array of pointers
• Two-dimensional arrays

The destination process must be a user process; it cannot be a kernel process. If the
destination process does not exist, an error is generated. You can catch this error using an
error-handling method installed with ON ERR CALL.

4th Dimension Language Reference 831

Example
The following example reads a process array from the process indicated by $vlProcess,
sequentially sets the elements to uppercase and then writes back the array as a whole:

GET PROCESS VARIABLE($vlProcess;at_IPCom_Array;$anArray)
For($vlElem;1;Size of array($anArray))

$anArray{$vlElem}:=Uppercase($anArray{$vlElem})
End for

Þ VARIABLE TO VARIABLE($vlProcess;at_IPCom_Array;$anArray)

See Also
GET PROCESS VARIABLE, Processes, SET PROCESS VARIABLE.

832 4th Dimension Language Reference

34 Process (User
Interface)

4th Dimension Language Reference 833

834 4th Dimension Language Reference

HIDE PROCESS Process (User Interface)

version 3
__

HIDE PROCESS (process)

Parameter Type Description
process Number ® Process number or process to be hidden

Description
HIDE PROCESS hides all windows that belong to process. All interface elements of process
are hidden until the next SHOW PROCESS. The menu bar of the process is also hidden.
This means that opening a window while the process is hidden does not make the screen
redraw or display. If the process is already hidden, the command has no effect.

The only exception to this rule is the Debugger window. If the Debugger window is
displayed when process is a hidden process, process is displayed and becomes the
frontmost process.

If you do not want a process to be displayed when it is created, HIDE PROCESS should be
the first command in the process method. The User/Custom Menus and Cache Manager
processes cannot be hidden using this command.

Even though a process may be hidden, the process is still executing.

Example
The following example hides all the windows belonging to the current process:

Þ HIDE PROCESS (Current process)

See Also
Process state, SHOW PROCESS.

4th Dimension Language Reference 835

SHOW PROCESS Process (User Interface)

version 3
__

SHOW PROCESS (process)

Parameter Type Description
process Number ® Process number of process to be shown

Description
SHOW PROCESS displays all the windows belonging to process. This command does not
bring the windows of process to the frontmost level. To do this, use the BRING TO FRONT
command.
If the process was already displayed, the command has no effect.

Example
The following example displays a process called Customers, if it has been previously
hidden. The process reference to the Customers process is stored in the interprocess
variable <>Customers:

Þ SHOW PROCESS (<>Customers)

See Also
BRING TO FRONT, HIDE PROCESS, Process state.

836 4th Dimension Language Reference

BRING TO FRONT Process (User Interface)

version 3
__

BRING TO FRONT (process)

Parameter Type Description
process Number ® Process number of the process to

pass to the frontmost level

Description
BRING TO FRONT brings all the windows belonging to process to the front. The order of
the windows is retained. If the process is already the frontmost process, the command
does nothing. If the process is hidden, you must use SHOW PROCESS to display the
process, otherwise BRING TO FRONT has no effect.

The User/Custom Menus and Design processes can be brought to the front using this
command.

Example
The following example is a method that can be executed from a menu. It checks to see if
<>vlAddCust_PID is the frontmost process. If not, the method brings it to the front:

If (Frontmost process#<>vlAddCust_PID)
Þ BRING TO FRONT (<>vlAddCust_PID)

End if

See Also
HIDE PROCESS, Process state, SHOW PROCESS.

4th Dimension Language Reference 837

Frontmost process Process (User Interface)

version 3
__

Frontmost process {(*)} ® Integer

Parameter Type Description
* ® Process number for first non-floating window

Function result Integer ¬ Number of the process whose windows
are in the front

Description
Frontmost process returns the number of the process whose window (or windows) are in
the front.

When you have one or more floating windows open, there are two window layers:
• Regular windows
• Floating windows

If the Frontmost process function is used from within a floating window form method or
object method, the function returns the process reference number of the frontmost
floating window in the floating window layer. If you specify the optional * parameter, the
function returns the process reference number of the frontmost active window in the
regular window layer.

Example
See the example for BRING TO FRONT.

See Also
BRING TO FRONT, WINDOW LIST.

838 4th Dimension Language Reference

35 Processes

4th Dimension Language Reference 839

840 4th Dimension Language Reference

Processes Processes

version 6.0
__

Multi-tasking in 4th Dimension is the ability to have distinct database operations that are
executed simultaneously. These operations are called processes.

Multiple processes are like multiple users on the same computer, each working on his or
her own task. This essentially means that each method can be executed as a distinct
database task.

This section covers the following topics:
• Creating and clearing processes
• Elements of a process
• User processes
• Processes created by 4th Dimension
• Local and global processes
• Record locking between processes

Note: This section does not cover stored procedures. See the section Stored Procedures in
the 4D Server Reference manual.

Creating and Clearing Processes
__

There are three ways to create a new process:
• Execute a method in the User environment after checking the New Process check box
in the Execute Method dialog box. The method chosen in the Execute Method dialog
box is the process method.
• Processes can be run by choosing menu commands. In the Design environment’s Menu
Bar editor, select the menu command and click the Start a New Process check box. The
method associated with the menu command is the process method.
• Use the New process function. The method passed as a parameter to the New process
function is the process method.

A process can be cleared under the following conditions. The first two conditions are
automatic:
• When the process method finishes executing
• When the user quits from the database
• If you stop the process procedurally or use the Abort button in the Debugger
• If you choose Abort from the Process menu in the Design environment

A process can create another process. Processes are not organized hierarchically—all
processes are equal, regardless of the process from which they have been created. Once
the “parent” process creates a “child” process, the child process will continue regardless of
whether or not the parent process is still executing.

4th Dimension Language Reference 841

Elements of a Process
__

Each process contains specific elements. There are three types of distinctly different
elements in a process:
• Interface elements: Elements that are necessary to display a process.
• Data elements: Information that is related to the data in the database.
• Language elements: Elements that are used procedurally or are that are important for
developing your own application.

Interface Elements
Interface elements consist of the following:
• Menu bar: Each process can have its own current menu bar. The menu bar of the
frontmost process is the current menu bar for the database.
• One or more windows: Each process can have more than one window open
simultaneously. On the other hand, some processes have no windows at all.
• One active (frontmost) window: Even though a process can have several windows open
simultaneously, each process has only one active window. To have more than one active
window, you must start more than one process.

Data Elements
Data elements refer to the data used by the database. The data elements are:
• Current selection per table: Each process has a separate current selection. One table can
have a different current selection in different processes.
• Current record per table: Each table can have a different current record in each process.

Note: This description of the data elements is valid if your processes are global in scope.
By default, all processes are global. See the “Global and Local Processes” section below.

Language Elements
The language elements of a process are the elements related to programming in
4th Dimension.
• Variables: Every process has its own process variables. See Variables for more
information. Process variables are recognized only within the domain of their native
process.
• Default table: Each process has its own default table. However, note that the DEFAULT
TABLE command is only a typing convention for programming.
• Input and Output forms: Default input and output forms can be set procedurally for
each table in each process.
• Process sets: Each process has its own process sets. UserSet and LockedSet are process sets.
Process sets are cleared as soon as the process method ends.
• On Error Call per process: Each process has its own error-handling method.
• Debugger window: Each process can have its own Debugger window.

842 4th Dimension Language Reference

User Processes
__

User processes are processes that you create to perform certain tasks. They share
processing time with the kernel processes. As an example, Web connection processes are
user processes.

Processes Created by 4th Dimension
__

The following processes are created and managed by 4th Dimension:
• User/Custom Menus process: The User/Custom Menus process consists of the Custom
Menus and the User environments. The default splash screen window in the Custom
Menus environment is also a part of the User/Custom Menus process. This process is
created as soon as 4th Dimension is run.
• Design process: The Design process consists of the Design environment running as a
separate process. It can be closed using the Exit Design Environment menu command in
the File menu of the Design environment. There is no Design process in a compiled
database. The Design process is created only when the user enters the Design
environment for the first time. If the application opens in the User or Custom Menus
environment, by default, the process will not be created.
• Web Server process: The Web Server process runs when the database is published on the
Web. See the section Web Services, Web Connection Processes for more information.
• Cache Manager process: The Cache Manager process manages disk I/ O for the
database. This process is created as soon as 4th Dimension or 4D Server are run.
• Indexing process: The Indexing process manages the indexing of fields in a database as a
separate process. This process is created when an index for a field is built or deleted.
• On Serial Port Manager process: The On Serial Port Manager process has the serial port-
handling method as the process method. This process is created when a serial event
handling method is installed by the ON SERIAL PORT CALL command.
• On Event Manager process: This process is created when an event-handling method is
installed by the ON EVENT CALL command. It executes the event method installed by ON
EVENT CALL whenever there is an event. The event method is the process method for this
process. This process executes continuously, even if no method is executing. Event
handling also occurs in the Design environment.

Global and Local Processes
__

Processes can be either global or local in scope. By default, all processes are global.

Global processes can perform any operation, including accessing and manipulating data.
In most cases, you will want to use global processes.

Local processes should be used only for operations that do not access data. For example,
you can use a local process to run an event-handling method or to control interface
elements such as floating windows.

4th Dimension Language Reference 843

You specify that a process is local in scope through its name. The name of local process
must start with a dollar sign ($).

Warning: If you attempt to access data from a local process, you access it though the
User/Custom Menus process, risking conflicts with operations performed within that
process.

4D Server: Using local processes on the Client side for operations that do not require data
access reserves more processing time for server-intensive tasks.

Record Locking Between Processes
__

A record is locked when another process has successfully loaded the record for
modification. A locked record can be loaded by another process, but cannot be modified.
The record is unlocked only in the process in which the record is being modified. A table
must be in read/write mode for a record to be loaded unlocked.

See Also
Methods, Project Methods, Variables.

844 4th Dimension Language Reference

New process Processes

version 6.0 (modified)
__

New process (method; stack{; name{; param{; param2; ...; paramN}{; *}}}) ® Number

Parameter Type Description
method String ® Method to be executed within the process
stack Number ® Stack size in bytes
name String ® Name of the process created
param Expression ® Parameter(s) to the method
* ® Unique process

Function result Number ¬ Process number for newly created process
or already executing process

Description
The command New process starts a new process (on the same machine) and returns the
process number for that process.

If the process could not be created (for example, if there is not enough memory), New
process returns zero (0) and an error is generated. You can catch this error using an error-
handling method installed using ON ERR CALL.

Process Method: In method, you pass the name of the process method for the new
process. After 4D has set up the context for the new process, it starts executing this
method, which therefore becomes the process method.

Process Stack: In stack, you pass the amount of memory allocated for the stack of the
process. It is the space in memory used to “pile up” method calls, local variables,
parameters in subroutines, and stacked records. It is expressed in bytes; you will usually
pass at least 32K (around 32000 bytes), but you can pass more if the process can perform
large chain calls (subroutines calling subroutines in cascade). For example, you can pass
200K (around 200000 bytes), if necesary.

Note: The stack is NOT the total memory for the process. Processes share memory for
records, interprocess variables, and so on. A process also uses extra memory for storing its
process variables. The stack only holds local variables, method calls, parameters in
subroutines and stacked records.

4th Dimension Language Reference 845

Process Name: You pass the name of the new process in name. This name will appear in
the Process List window of the Design environment, and will be returned by the
command PROCESS PROPERTIES when applied to this new process. A process name can be
up to 31 characters long. You can omit this parameter; if you do so, the name of the
process will be the empty string. You can make a process local in scope by prefixing its
name with the dollar sign ($).

Important: Remember that local processes should not access data in Client/Server.

Parameter to Process Method: Starting with version 6, you can pass parameters to the
process method. You can pass parameters in the same way as you would pass them to a
subroutine. However, there is a restriction—you cannot pass pointer expressions. Also,
remember that arrays cannot be passed as parameters to a method. Upon starting
execution in the context of the new process, the process method receives the parameters
values in $1, $2, etc.

Note: If you pass parameters to the process method, you must pass the name parameter; it
cannot be omitted in this case.

The optional * parameter: Specifying this last parameter tells 4D to first check whether or
not a process with the name you passed in name is already running. If it is, 4D does not
start a new process and returns the process number of the process with that name.

Example
Given the following project method:

` ADD CUSTOMERS
MENU BAR (1)
Repeat

ADD RECORD([Customers];*)
Until (OK=0)

If you attach this project method to a custom menu item in the Design environment
Menu Bar Editor window whose Start a New Process property is set, 4D will automatically
start a new process running that method. The call MENU BAR(1) adds a menu bar to the
new process. In the absence of any window (that you could open with Open window), the
call to ADD RECORD will automatically open one.

To be able to start this Add Customers process when you click on a button in a custom
control panel, you can write:

` bAddCustomers button object method
Þ $vlProcessID:=New process("Add Customers";32*1024;"Adding Customers")

The button does the same thing as the custom menu item.

846 4th Dimension Language Reference

While choosing the menu item or clicking the button, if you want to start the process (if
it does not exist) or bring it to the front (if it is already running), you can create the
method START ADD CUSTOMERS:

` START ADD CUSTOMERS
Þ $vlProcessID:=New process("Add Customers";32*1024;"Adding Customers";*)

If ($vlProcessID#0)
BRING TO FRONT ($vlProcessID)

End if

The object method of the bAddCustomers becomes:

` bAddCustomers button object method
START ADD CUSTOMERS

In the Menu Bar editor, you replace the method ADD CUSTOMERS with the method
START ADD CUSTOMERS, and you deselect the Start a New Process property for the menu
item.

See Also
Execute on server, Methods, Processes, Project Methods, Variables.

4th Dimension Language Reference 847

Execute on server Processes

version 6.0
__

Execute on server (procedure; stack{; name{; param{; param2; ...; paramN}{; *}}}) ® Number

Parameter Type Description
procedure String ® Procedure to be executed within the process
stack Number ® Stack size in bytes
name String ® Name of the process created
param Expression ® Parameter(s) to the procedure
* ® Unique process

Function result Number ¬ Process number for newly created process
or already executing process

Description
The command Execute on server starts a new process on the Server machine (if it is called
in Client/Server) or on the same machine (if it is called in single-user) and returns the
process number for that process.

You use Execute on server to start a stored procedure. For more information about stored
procedures, see the section Stored Procedures in the 4D Server Reference manual.

If you call Execute on server on a Client machine, the command returns a negative
process number. If you call Execute on server on the Server machine, Execute on server
returns a positive process number. Note that calling New process on the Server machine
does the same thing as calling Execute on server.

If the process could not be created (for example, if there is not enough memory), Execute
on server returns zero (0) and an error is generated. You can catch this error using an
error-handling method installed using ON ERR CALL.

Process Method: In method, you pass the name of the process method for the new
process. After 4D has set up the context for the new process, it starts executing this
method, which therefore becomes the process method.

Process Stack: In stack, you pass the amount of memory allocated for the stack of the
process. It is the space in memory used to “pile up” method calls, local variables,
parameters in subroutines, and stacked records. It is expressed in bytes; you will usually
pass at least 32K (around 32000 bytes), but you can pass more if the process can perform
large chain calls (subroutines calling subroutines in cascade). For example, you can pass
200K (around 200000 bytes), if necesary.

848 4th Dimension Language Reference

Note: The stack is NOT the total memory for the process. Processes share memory for
records, interprocess variables, and so on. A process also uses extra memory for storing its
process variables. The stack only holds local variables, method calls, parameters in
subroutines and stacked records.

Process Name: You pass the name of the new process in name. In single-user, this name
will appear in the Process List window of the Design environment, and will be returned
by the command PROCESS PROPERTIES when applied to this new process. In
Client/Server, this name will appear in blue in the Stored Procedure list of the 4D Server
main window.

A process name can be up to 31 characters long. You can omit this parameter; if you do
so, the name of the process will be the empty string.

Warning: Contrary to New Process, do not attempt to make a process local in scope by
prefixing its name with the dollar sign ($) while using Execute on server. This will work in
single-user, because Execute on server acts as New Process in this environment. On the
other hand, in Client/Server, this will generate an error.

Parameter to Process Method: Starting with version 6, you can pass parameters to the
process method. You can pass parameters in the same way as you would pass them to a
subroutine. However, there is a restriction—you cannot pass pointer expressions. Also,
remember that arrays cannot be passed as parameters to a method. Upon starting
execution in the context of the new process, the process method receives the parameters
values in $1, $2, etc.

Note: If you pass parameters to the process method, you must pass the name parameter; it
cannot be omitted in this case.

The optional * parameter: Specifying this last parameter tells 4D to first check whether or
not a process with the name you passed in name is already running. If it is, 4D does not
start a new process and returns the process number of the process with that name.

Example
(1) The following example shows how importing data can be dramatically accelerated in
Client/Server. The Regular Import method listed below allows you to test how long it takes
to import records using the IMPORT TEXT command on the Client side:

` Regular Import Project Method
$vhDocRef:=Open document("")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
INPUT FORM([Table1];"Import")
$vhStartTime:=Current time
IMPORT TEXT([Table1];Document)
$vhEndTime:=Current time
ALERT("It took "+String(0+($vhEndTime-$vhStartTime))+" seconds.")

End if

4th Dimension Language Reference 849

With the regular import data, 4D Client performs the parsing of the text file, then, for
each record, create a new record, fills out the fields with the imported data and sends the
record to the Server machine so it can be added to the database. There are consequently
many requests going over the network. A way to optimize the operation is to use a stored
procedure to do the job locally on the Server machine. The Client machine loads the
document into a BLOB, start a stored procedure passing the BLOB as parameter. The stored
procedure stores the BLOB into a document on the server machine disk, then imports the
document locally. The import data is therefore performed locally at a single-user version-
like speed because most the network requests are eliminated. Here is the CLIENT IMPORT
project method. Executed on the Client machine, it starts the SERVER IMPORT stored
procedure listed just below:

` CLIENT IMPORT Project Method
` CLIENT IMPORT (Pointer ; String)
` CLIENT IMPORT (-> [Table] ; Input form)

C_POINTER($1)
C_STRING(31;$2)
C_TIME($vhDocRef)
C_BLOB($vxData)
C_LONGINT(spErrCode)

` Select the document do be imported
$vhDocRef:=Open document("")
If (OK=1)

` If a document was selected, do not keep it open
CLOSE DOCUMENT($vhDocRef)
$vhStartTime:=Current time

` Try to load it in memory
DOCUMENT TO BLOB(Document;$vxData)
If (OK=1)

` If the document could be loaded in the BLOB,
` Start the stored procedure that will import the data on the server machine

$spProcessID:=Execute on server("SERVER IMPORT";32*1024;
"Server Import Services";Table($1);$2;$vxData)

` At this point, we no longer need the BLOB in this process
CLEAR VARIABLE($vxData)

` Wait for the completion of the operation performed by the stored procedure
Repeat

DELAY PROCESS(Current process;300)
GET PROCESS VARIABLE($spProcessID;spErrCode;spErrCode)
If (Undefined(spErrCode))

` Note: if the stored procedure has not initialized its own instance
` of the variable spErrCode, we may be returned an undefined variable

spErrCode:=1
End if

Until (spErrCode<=0)

850 4th Dimension Language Reference

` Tell the stored procedure that we acknowledge
spErrCode:=1
SET PROCESS VARIABLE($spProcessID;spErrCode;spErrCode)
$vhEndTime:=Current time
ALERT("It took "+String(0+($vhEndTime-$vhStartTime))+" seconds.")

Else
ALERT("There is not enough memory to load the document.")

End if
End if

Here is the SERVER IMPORT project method executed as a stored procedure:

` SERVER IMPORT Project Method
` SERVER IMPORT (Long ; String ; BLOB)
` SERVER IMPORT (Table Number ; Input form ; Import Data)

C_LONGINT($1)
C_STRING(31;$2)
C_BLOB($3)
C_LONGINT(spErrCode)

` Operation is not finished yet, set spErrCode to 1
spErrCode:=1
$vpTable:=Table($1)
INPUT FORM($vpTable->;$2)
$vsDocName:="Import File "+String(1+Random)
DELETE DOCUMENT($vsDocName)
BLOB TO DOCUMENT($vsDocName;$3)
IMPORT TEXT($vpTable->;$vsDocName)
DELETE DOCUMENT($vsDocName)

` Operation is finished, set spErrCode to 0
spErrCode:=0

` Wait until the requester Client got the result back
Repeat

DELAY PROCESS(Current process;1)
Until (spErrCode>0)

Once these two project methods have been implemented in a database, you can perform a
“Stored Procedure-based” import data by, for instance, writing:

CLIENT IMPORT (->[Table1];"Import")

With some benchmarks you will discover that using this method you can import records
up to 60 times faster than the regular import.

See Also
New process, Stored Procedures.

4th Dimension Language Reference 851

DELAY PROCESS Processes

version 3
__

DELAY PROCESS (process; duration)

Parameter Type Description
process Number ® Process number
duration Number ® Duration expressed in ticks

Description
DELAY PROCESS delays the execution of a process for a number of ticks (1 tick = 1/60th of
a second). During this period, process does not take any processing time. Even though
the execution of a process may be delayed, it is still in memory.

If the process is already delayed, this command delays it again. The parameter duration is
not added to the time remaining, but replaces it. Therefore pass zero (0) for duration if
you no longer want to delay a process.

If the process does not exist, the command does nothing.

Warning: DELAY PROCESS has no effect on the Kernel processes (all environments),
including the User/Custom Menus process.

Tip: To “delay” the User/Custom Menus process, write a small “waiting” subroutine that
loops measuring the elasped time using Current time, or Tickcount or Milliseconds). For
example, if you want to display, for a given time period, a message in a window that you
open and close for this purpose.

Tip: On the one machine, when a process is waiting for another process that executes
code rather than waiting for a user action, calling DELAY PROCESS repeatedly (with
duration equal to 1) from within the “waiting” process provides the best result in terms of
execution speed. The reason for this is that the scheduler “gives” most of the time to the
executing process, not to the “waiting” process. (See the second example for Semaphore.)

Examples
1. See example for the command Semaphore.
2. See example in Record Locking.
3. See example for the command Process number.

See Also
HIDE PROCESS, PAUSE PROCESS.

852 4th Dimension Language Reference

PAUSE PROCESS Processes

version 3
__

PAUSE PROCESS (process)

Parameter Type Description
process Number ® Process number

Description
PAUSE PROCESS suspends the execution of process until it is reactivated by the RESUME
PROCESS command. During this period, process does not take any time on your machine.
Even though a process may be paused, the process is still in memory.

If process is already paused, PAUSE PROCESS does nothing. If the process has been delayed
using the DELAY PROCESS command, the process is paused. RESUME PROCESS resumes the
process immediately.

While process execution is suspended, the windows belonging to this process are not
enterable. In this case, to avoid confusing the user, consider hiding the process. If process
does not exist, the command does nothing.

Warning: Use PAUSE PROCESS only in processes that you have started. PAUSE PROCESS will
not affect the original User/Custom Menus process.

See Also
DELAY PROCESS, HIDE PROCESS, RESUME PROCESS.

4th Dimension Language Reference 853

RESUME PROCESS Processes

version 3
__

RESUME PROCESS (process)

Parameter Type Description
process Number ® Process number

Description
RESUME PROCESS resumes a process whose execution has been paused or delayed. If
process is not paused or delayed, RESUME PROCESS does nothing.

If process has been delayed before, see the PAUSE PROCESS or DELAY PROCESS commands.
If process does not exist, the command does nothing.

See Also
DELAY PROCESS, PAUSE PROCESS.

854 4th Dimension Language Reference

Current process Processes

version 3
__

Current process ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Process number

Description
Current process returns the process reference number of the process within which this
command is called.

Example
See the examples for DELAY PROCESS and PROCESS ATTRIBUTES.

See Also
Process number, PROCESS PROPERTIES, Process state.

4th Dimension Language Reference 855

Process state Processes

version 3
__

Process state (process) ® Number

Parameter Type Description
process Number ® Process number

Function result Number ¬ State of the process

Description
The command Process state returns the state of the process whose number you pass in
process.

The function result can be one of the values provided by the following predefined
constants:

Constant Type Value
Aborted Long Integer -1
Delayed Long Integer 1
Does not exist Long Integer -100
Executing Long Integer 0
Hidden modal dialog Long Integer 6
Paused Long Integer 5
Waiting for input output Long Integer 3
Waiting for internal flag Long Integer 4
Waiting for user event Long Integer 2

If the process does not exist (which means you did not pass a number in the range 1 to
Count tasks), Process state returns Does not exist (-100).

Example
The following example puts the name and process reference number for each process into
the asProcName and aiProcNum arrays. The method checks to see if the process has been
aborted. In this case, the process name and number are not added to the arrays:

856 4th Dimension Language Reference

$vlNbTasks:=Count tasks
ARRAY STRING(31;arProcName; $vlNbTasks)
ARRAY INTEGER(aiProcNum; $vlNbTasks)
$vlActualCount:=0
For ($vlProcess;1; $vlNbTasks)

If (Process state($vlProcess)>=Executing)
$vlActualCount:=$vlActualCount+1
PROCESS PROPERTIES($vlProcess; asProcName{$vlActualCount};

$vlState;$vlTime)
aiProcNum{$vlActualCount}:=$vlProcess

End if
End for

` Eliminate unused extra elements
ARRAY STRING(31;asProcName;$vlActualCount)
ARRAY INTEGER(aiProcNum;$vlActualCount)

See Also
Count tasks, PROCESS PROPERTIES.

4th Dimension Language Reference 857

PROCESS PROPERTIES Processes

version 6.0 (Modified)
__

PROCESS PROPERTIES (process; procName; procState; procTime{; procVisible})

Parameter Type Description
process Number ® Process number
procName String ¬ Process name
procState Number ¬ Process state
procTime Number ¬ Cumulative time taken by process in ticks
procVisible Boolean ¬ Visible (TRUE) or Hidden (FALSE)

Description
The command PROCESS PROPERTIES returns information about the process whose process
number you pass in process.

After the call:
• procName returns the name of the process. Some things to note about the process
name:
- If the process was started from the User environment Execute Method dialog box (with
the New Process option selected), its name is “P_” followed by a number.
- If the process was started from a Custom menu item whose Start a New Process
property is checked, the name of the process is “M_” or “ML_” followed by a number.
- If the process has been aborted (and its “slot” not reused yet), the name of the process is
still returned. To detect if a process is aborted, test procState=-1 (see below).

• procState returns the state of the process at the moment of the call. This parameter can
return one of the values provided by the following predefined constants:

Constant Type Value
Aborted Long Integer -1
Delayed Long Integer 1
Does not exist Long Integer -100
Executing Long Integer 0
Hidden modal dialog Long Integer 6
Paused Long Integer 5
Waiting for input output Long Integer 3
Waiting for internal flag Long Integer 4
Waiting for user event Long Integer 2

• procTime returns the cumulative time that the process has used since it started, in ticks
(1/60th of a second) .

• procVisible, if specified, returns TRUE if the process is visible, FALSE if hidden.

858 4th Dimension Language Reference

If the process does not exist, which means you did not pass a number in the range 1 to
Count tasks, PROCESS PROPERTIES leaves the variable parameters unchanged.

Examples
1. The following example returns the name, state, and time taken in the variables vName,
vState, and vTimeSpent for the current process:

C_STRING(80; vName) ` Initialize the variables
C_INTEGER(vState)
C_INTEGER(vTime)
PROCESS PROPERTIES (Current process; vName; vState; vTimeSpent)

2. See example for On Exit Database Method.

See Also
Count tasks, Process state.

4th Dimension Language Reference 859

Process number Processes

version 6.0
__

Process number (name{; *}) ® Number

Parameter Type Description
name String ® Name of process for which to retrieve

the process number
* ® Return the process number

Function result Number ¬ Process number

Description
Process number returns the number of the process whose name you pass in name. If no
process is found, Process number returns 0.

The optional parameter * allows you to retrieve, from 4D Client, the process ID of a
process that is executed on the server (a stored procedure). In this case, the returned
value is negative. This option is especially useful when using the PROCESS VARIABLE and
SET PROCESS VARIABLE commands. Please refer to the descriptions of these commands for
details.

If the command is executed with the * parameter from a process on the server machine,
the returned value is positive.

Example
You create a custom floating window, run in a separate process, in which you implement
your own tools to interact with the Design environment. For example, when selecting an
item in a hierarchical list of keywords, you want to paste some text into the frontmost
window of the Design environment. To do so, you can use the clipboard, but the pasting
event must occur within the Design process. The following small function returns the
process number of the Design process (if running):

` Design process number Project Method
` Design process number -> LongInt
` Design process number -> Design process number

Þ $0:=Process number(Get indexed string(170;3))
` The name of the Design process is stored in the 'STR#" resource ID=170,
` string #3 within 4D
` Note: This can break in the future if the resource changes

860 4th Dimension Language Reference

Using this function, the following project method pastes the text received as parameter to
the frontmost window of the Design environment (if applicable):

` PASTE TEXT TO DESIGN Project Method
` PASTE TEXT TO DESIGN (Text)
` PASTE TEXT TO DESIGN (Text to Paste in frontmost Design window)

C_TEXT($1)
C_LONGINT($vlDesignPID;$vlCount)

$vlDesignPID:=Design process number
If ($vlDesignPID # 0)

` Put the text into the clipboard
SET TEXT TO CLIPBOARD($1)

` Post a Ctrl-V / Command-V event
POST KEY(Ascii("v");Command key mask;$vlDesignPID)

` Call repeatedly DELAY PROCESS so the scheduler gets a chance
` to pass over the event to the Design process

For ($vlCount;1;5)
DELAY PROCESS(Current process;1)

End for
End if

See Also
GET PROCESS VARIABLE, PROCESS PROPERTIES, Process state, SET PROCESS VARIABLE.

4th Dimension Language Reference 861

Count users Processes

version 3
__

Count users ® Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ¬ Number of users connected to the server

Description
The Count users function returns the number of users connected to the database.

In the single-user version of 4th Dimension, Count users returns 1.

See Also
Count tasks, Count user processes.

862 4th Dimension Language Reference

Count tasks Processes

version 3
__

Count tasks ® Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ¬ Number of open processes
(including kernel processes)

Description
Count tasks returns the number of processes open on a workstation or in single-user
4th Dimension.

This number takes into account all processes, even those that are automatically managed
by 4th Dimension. These include the User/Custom Menus process, Design process, Cache
Manager process, Indexing process, and Web Server process.

The number returned by Count tasks also takes into account processes that have been
aborted.

Example
See the example for Process state and On Exit Database Method.

See Also
Count user processes, Count users, PROCESS PROPERTIES, Process state.

4th Dimension Language Reference 863

Count user processes Processes

version 3
__

Count user processes ® Integer

Parameter Type Description
This command does not require any parameters

Function result Integer ¬ Number of open processes
(excluding kernel processes)

Description
The Count user processes function returns the number of open processes, except those
processes that are managed automatically by 4th Dimension.

The User/Custom Menus process is considered to be a user process. Therefore, this process
will be counted when determining the number of user processes.

See Also
Count tasks, Count users.

864 4th Dimension Language Reference

36 Queries

4th Dimension Language Reference 865

866 4th Dimension Language Reference

QUERY BY EXAMPLE Queries

version 3
__

QUERY BY EXAMPLE ({table}{; }{*})

Parameter Type Description
table Table ® Table for which to return a selection

of records, or
Default table, if omitted

* ® If passed, the scrolling bar will not be displayed

Description
QUERY BY EXAMPLE performs the same action as the Query by Example menu command
in the User environment. It displays the current input form as a query window.

QUERY BY EXAMPLE queries table for the data that the user enters into the query window.
The form must contain the fields that you want the user to be able to query. The query is
optimized; indexed fields are automatically used to optimize the query.

See the 4th Dimension User Reference for information about using the Query by Example
menu command in the User environment.

Example
The method in this example displays the MyQuery form to the user. If the user accepts
the form and performs the query (that is, if the OK system variable is set to 1), the
records that meet the query criteria are displayed:

INPUT FORM ([People]; "MyQuery") ` Switch to query form
Þ QUERY BY EXAMPLE ([People]) ` Display form and perform query

If (OK=1) ` If the user performed the query
DISPLAY SELECTION ([People]) ` Display the records

End if

See Also
ORDER BY, QUERY.

System Variables or Sets
If the user clicks the Accept button or presses the Enter key, the OK system variable is set
to 1 and the query is performed. If the user clicks the Cancel button or presses the
“cancel” key combination, the OK system variable is set to 0 and the query is canceled.

4th Dimension Language Reference 867

QUERY Queries

version 3
__

QUERY ({table}{; queryArgument}{; *})

Parameter Type Description
table Table ® Table for which to return

a selection of records, or
Default table, if omitted

queryArgument ® Query argument
* ® Continue query flag

Description
QUERY looks for records matching the criteria specified in queryArgument and returns a
selection of records for table. QUERY changes the current selection of table for the current
process and makes the first record of the new selection the current record.

If the table parameter is omitted, the command applies to the default table. If no default
table has been set, an error occurs.

If you do not specify queryArgument or the * parameters, QUERY displays the Query editor
for table. The User environment Query editor is shown here:

For more information about using the Query Editor, refer to the 4th Dimension User
Reference manual.

868 4th Dimension Language Reference

The user builds the query, then clicks the Query button or chooses Query in selection to
perform the query. If the query is performed without interruption, the OK variable is set
to 1. If the user clicks Cancel, the QUERY terminates with no query actually performed,
and sets the OK variable to 0 (zero).

Examples
1. The following line displays the Query editor for the [Products] table:

Þ QUERY([Products])

2. The following line displays the Query editor for the default table (if it has been set)

Þ QUERY

If you specify the queryArgument parameter, the standard Query editor is not presented
and the query is defined programmatically. For simple queries (search on only one field)
you call QUERY once with queryArgument. For multiple queries (search on multiple fields
or with multiple conditions), you call QUERY as many times as necessary with
queryArgument, and you specify the optional * parameter, except for the last QUERY call,
which starts the actual query operation. The queryArgument parameter is described further
in this section.

Examples
3. The following line looks for the [People] whose name starts with an “a”:

Þ QUERY([People];[People]Last name="a@")

4. The following line looks for the [People] whose name starts with “a” or “b”:

Þ QUERY([People];[People]Name="a@";*) ` * indicates that there are further search criteria
Þ QUERY([People]; | ;[People]Name="b@") ` No * ends the query definition and starts the
actual query operation

Specifying the Query Argument

• The queryArgument parameter uses the following syntax:
 { conjunction ; } field comparator value

• The conjunction is used to join QUERY calls when defining multiple queries. The
conjunctions available are the same as those in the User environment Query editor:

Conjunction Symbol to use with QUERY
AND &
OR |
Except #

4th Dimension Language Reference 869

The conjunction is optional and not used for the first QUERY call of a multiple query, or if
the query is a simple query.

• The field is the field to query. The field may belong to another table if it belongs to a One
table related to table with an automatic relation. The table on which QUERY is applied to
must be the Many table.

• The comparator is the comparison that is made between field and value. The comparator
is one of the symbols shown here:

Comparison Symbol to use with QUERY
Equal to =
Not equal to #
Less than <
Greater than >
Less than or equal to <=
Greater than or equal to >=

• The value is the data against which field will be compared. The value can be any
expression that evaluates to the same data type as field. The value is evaluated once, at the
beginning of the query. The value is not evaluated for each record. To query for a string
contained in a string (a “contains” query), use the wildcard symbol (@) in value.

Here are the rules for building multiple queries:
• The first query argument must not contain a conjunction.
• Each successive query argument must begin with a conjunction.
• The first query and every other query, except the last, must use the * parameter.
• To perform the query, do not specify the * parameter in the last QUERY command.
Alternatively, you may execute the QUERY command without any parameters other than
the table (the Query editor is not presented; instead, the multiple query you just defined is
performed).

Note: Each table maintains its own current built query. This means that you can create
multiple built queries simultaneously, one for each table. You must use the table
parameter or set the default table to specify which table to use.

No matter the way a query has been defined:

• If the actual query operation is going to take some time to be performed,
4th Dimension automatically displays a message containing a progress thermometer.
These messages can be turned on and off by using the commands MESSAGES ON and
MESSAGES OFF. If the progress thermometer is displayed, the user can click on the Stop
button to interrupt the query. If the query is completed, OK is set to 1. Otherwise, if the
query is interrupted, OK is set to 0 (zero).

• If any indexed fields are specified, the query is optimized every time that it is possible
(indexed fields are searched first) resulting in a query that takes the least amount of time
possible.

870 4th Dimension Language Reference

Examples
5. The following command finds the records for all the people named Smith:

Þ QUERY([People];[People]Last Name="Smith")

Note: If the Last Name field were indexed, the QUERY command would automatically use
the index for a fast query.

Reminder: This query will find records like “Smith”, “smith”,“SMITH”, etc. To distinguish
lowercase from uppercase, perform additional queries using the ASCII codes.

6. The following example finds the records for all people named John Smith. The Last
Name field is indexed. The First Name field is not indexed.

Þ QUERY ([People]; [People]Last Name = "smith"; *) ` Find every person named Smith
Þ QUERY ([People]; &; [People]First Name = "john") ` with John as first name

When the query is performed, it quickly does an indexed search on Last Name and
reduces the selection of records to those of people named Smith. The query then
sequentially searches on First Name in this selection of records.

7. The following example finds the records of people named Smith or Jones. The Last
Name field is indexed.

Þ QUERY ([People]; [People]Last Name="smith"; *) ` Find every person named Smith…
Þ QUERY ([People]; | ; [People]Last Name="jones") ` ...or Jones

The QUERY command uses the Last Name index for both queries. The two queries are
performed, and their results put into internal sets that are eventually combined using a
union.

8. The following example finds the records for people who do not have a company name.
It does this by finding entries with empty fields (the empty string).

Þ QUERY ([People]; [People]Company="") ` Find every person with no company

9. The following example finds the record for every person whose last name is Smith and
who works for a company based in New York. The second query uses a field from another
table. This query can be done because the [People] table is related to the [Company] table
with a many to one relation:

` Find every person named Smith…
Þ QUERY ([People]; [People]Last Name = "smith"; *)

` ... and who works for a company based in NY
Þ QUERY ([People]; & ; [Company]State = "NY")

4th Dimension Language Reference 871

10. The following example finds the record for every person whose name falls between A
(included) and M (included):

Þ QUERY ([People]; [People]Name < "n") ` Find every person from A to M

11. The following example finds the records for all the people living in the San Francisco
or Los Angeles areas (ZIP codes beginning with 94 or 90):

Þ QUERY ([People]; [People]ZIP Code = "94@"; *) ` Find every person in the SF…
Þ QUERY ([People]; | ; [People]ZIP Code = "90@") ` ...or Los Angeles areas

12. The following example queries an indexed subfield. The query returns a selection of
parent records (records for the [People] table). It does not return a selection of subrecords.
The result of the query would be the selection of records for all the people who have a
child named Sabra:

Þ QUERY ([People]; [People]Children'Name = "Sabra") ` Find people with child named
Sabra

13. The following example finds the record that matches the invoice number entered in
the request dialog box:

vFind:=Request("Find invoice number:") ` Get an invoice number from the user
If (OK = 1) ` If the user pressed OK

` Find the invoice number that matches vFind
Þ QUERY ([Invoice]; [Invoice]Number = vFind)

End if

14. The following example finds the records for the invoices entered in 1996. It does this
by finding all records entered after 12/31/95 and before 1/1/97:

Þ QUERY ([Invoice]; [Invoice]In Date > !12/31/95!; *) ` Find invoices after 12/31/95…
Þ QUERY ([Invoice]; &; [Invoice]In Date < !1/1/97!) ` and before 1/1/97

15. The following example finds the record for each employee whose salary is between
$10,000 and $50,000. The query includes the employees who make $10,000, but excludes
those who make $50,000:

` Find employees who make between…
Þ QUERY ([Employee]; [Employee]Salary >= 10000; *)
Þ QUERY ([Employee]; & ; [Employee]Salary < 50000) ` ...$10,000 and $50,000

872 4th Dimension Language Reference

16. The following example finds the records for the employees in the marketing
department who have salaries over $20,000. The Salary field is queried first because it is
indexed. Notice that the second query uses a field from another table. It can do this
because the [Dept] table is related to the [Employee] table with an automatic many to one
relation. Although the [Dept]Name field is indexed, this is not an indexed query because
the relation must be activated sequentially for each record in the [Employee] table:

` Find employees with salaries over $20,000 and...
Þ QUERY ([Employee]; [Employee]Salary > 20000; *)

 ` ...who are in the marketing ` department
Þ QUERY ([Employee]; & [Dept]Name = "marketing")

17. The following example queries for information that was entered into the variable
myVar.

Þ QUERY ([Laws]; [Laws]Text = myVar) ` Find all laws that match myVar

The query could have many different results, depending on the value of myVar. The query
will also be performed differently. For example:
• If myVar equals "Copyright@", the selection contains all laws with texts beginning with
Copyright.
• If myVar equals "@Copyright@", the selection contains all laws with texts containing at
least one occurrence of Copyright.

See Also
QUERY SELECTION.

4th Dimension Language Reference 873

QUERY SELECTION Queries

version 3
__

QUERY SELECTION ({table}{; queryArgument}{; *})

Parameter Type Description
table Table ® Table for which to return

a selection of records, or
Default table, if omitted

queryArgument ® Query argument
* ® Continue query flag

Description
QUERY SELECTION looks for records in table. QUERY SELECTION command changes the
current selection of table for the current process and makes the first record of the new
selection the current record.

QUERY SELECTION works and performs the same actions as QUERY. The difference
between the two commands is the scope of the query:
• QUERY looks for records among all the records in the table.
• QUERY SELECTION looks for records among the records currently selected in the table.

For more information, see the description of the command QUERY.

Example
This example illustrates the difference between QUERY and QUERY SELECTION. Here are
two queries:

` Find ALL companies located in New York City
QUERY ([Company]; [Company]City="New York City")

` Find ALL companies doing Stock Exchange business
` (no matter where they are located)

QUERY ([Company]; [Company]Type Business="Stock Exchange")

Note that the second QUERY simply “ignores” the result of the first one. Compare this
with:

` Find ALL companies located in New York City
QUERY ([Company]; [Company]City="New York City")

` Find companies doing Stock Exchange business
` and that are located in New York City

QUERY SELECTION ([Company]; [Company]Type Business="Stock Exchange")

QUERY SELECTION looks only among the selected records, therefore, in this example,
among the companies located in New York City.

874 4th Dimension Language Reference

QUERY BY FORMULA Queries

version 3
__

QUERY BY FORMULA ({table}{; }{queryFormula})

Parameter Type Description
table Table ® Table for which to return

a selection of records, or
Default table, if omitted

queryFormula Boolean ® Query formula

Description
QUERY BY FORMULA looks for records in table. QUERY BY FORMULA changes the current
selection of table for the current process and makes the first record of the new selection
the current record.

QUERY BY FORMULA and QUERY SELECTION BY FORMULA work exactly the same way,
except that QUERY BY FORMULA queries every record in the entire table and QUERY
SELECTION BY FORMULA queries only the records in the current selection.

Both commands apply queryFormula to each record in the table or selection. The
queryFormula is a Boolean expression that must evaluate to either TRUE or FALSE. If
queryFormula evaluates as TRUE, the record is included in the new selection.

The queryFormula may be simple, perhaps comparing a field to a value; or it may be
complex, perhaps performing a calculation or even evaluating information in a related
table. The queryFormula can be a 4th Dimension function (command), or a function
(method) or expression you have created. You can use wildcards in queryFormula when
working with Alpha or text fields.

When the query is complete, the first record of the new selection is loaded from disk and
made the current record.

These commands always perform a sequential search, not an indexed search. QUERY BY
FORMULA and QUERY SELECTION BY FORMULA are slower than QUERY when used on
indexed fields. The query time is proportional to the number of records in the table or
selection.

4D Server: The server does not execute the query formula. Each record is sent to the local
workstation and the query formula is evaluated on the workstation. This makes the
command less efficient with 4D Server than the QUERY command.

4th Dimension Language Reference 875

Examples
1. The following example finds the records for all invoices that were entered in December
of any year. It does this by applying the Month of function to each record. This query
could not be performed any other way without creating a separate field for the month:

 ` Find the invoices entered in December
Þ QUERY BY FORMULA ([Invoice]; Month of ([Invoice]Entered) = 12)

2. The following example finds records for all the people who have names with more
than ten characters:

` Find names longer than ten characters
Þ QUERY BY FORMULA ([People]; Length ([People]Name)>10)

See Also
QUERY, QUERY SELECTION, QUERY SELECTION BY FORMULA.

876 4th Dimension Language Reference

QUERY SELECTION BY FORMULA Queries

version 3
__

QUERY SELECTION BY FORMULA ({table}{; }{queryFormula})

Parameter Type Description
table Table ® Table for which to return

a selection of records, or
Default table, if omitted

queryFormula Boolean ® Query formula

Description
QUERY SELECTION BY FORMULA looks for records in table. QUERY SELECTION BY FORMULA
changes the current selection of table for the current process and makes the first record of
the new selection the current record.

QUERY SELECTION BY FORMULA performs the same actions as QUERY BY FORMULA. The
difference between the two commands is the scope of the query:
• QUERY BY FORMULA looks for records among all the records in the table.
• QUERY SELECTION BY FORMULA looks for records among the records currently selected
in the table.

For more information, see the description of the command QUERY BY FORMULA.

See Also
QUERY, QUERY BY FORMULA, QUERY SELECTION.

4th Dimension Language Reference 877

SET QUERY DESTINATION Queries

version 6.0
__

SET QUERY DESTINATION (destinationType{; destinationObject})

Parameter Type Description
destinationType Number ® 0 current selection

1 set
2 named selection
3 variable

destinationObject String | Variable ® Name of the set, or
Name of the named selection, or
Variable

Description
SET QUERY DESTINATION enables you to tell 4th Dimension where to put the result of any
subsequent query for the current process.

You specify the type of the destination in the parameter destinationType.4th Dimension
provides the following predefined constants:

Constant Type Value
Into current selection Long Integer 0
Into set Long Integer 1
Into named selection Long Integer 2
Into variable Long Integer 3

You specify the destination of the query itself in the optional destinationObject parameter
according to the following table:

destinationType destinationObject
parameter parameter

0 (current selection) You omit the parameter.
1 (set) You pass the name of a set (existing or to be created)
2 (named selection) You pass the named of a named selection

(existing or to be created)
3 (variable) You pass a numeric variable (existing or to be created)

878 4th Dimension Language Reference

With:
SET QUERY DESTINATION(Into current selection)

The records found by any subsequent query will end up in a new current selection for the
table involved by the query.

With:
SET QUERY DESTINATION(Into set;"mySet")

The records found by any subsequent query will end up in the set "mySet". The current
selection and the current record for the table involved by the query are left unchanged.

With:
SET QUERY DESTINATION(Into named selection;"myNamedSel")

The records found by any subsequent query will end up in the named selection
"myNamedSel".The current selection and the current record for the table involved by the
query are left unchanged.

With:
SET QUERY DESTINATION(Into variable;$vlResult)

The number of records found by any subsequent query will end up in the variable
$vlResult.The current selection and the current record for the table involved by the query
are left unchanged.

Warning: SET QUERY DESTINATION affects all subsequent queries made within the current
process. REMEMBER to always counterbalance a call to SET QUERY DESTINATION (where
destinationType#0) with a call to SET QUERY DESTINATION(0) in order to restore normal
query mode.

SET QUERY DESTINATION changes the behavior of the query commands only:
• QUERY
• QUERY SELECTION
• QUERY BY EXAMPLE
• QUERY BY FORMULA
• QUERY SELECTION BY FORMULA

On the other hand, SET QUERY DESTINATION does not affect other commands that may
change the current selection of a table such as ALL RECORDS, RELATE MANY and so on.

4th Dimension Language Reference 879

Examples
1. You create a form that will display the records from a [Phone Book] table. You create a
Tab Control named asRolodex (with the 26 letters of the alphabet) and a subform
displaying the [Phone Book] records. Choosing one Tab from the Tab Control displays the
records whose names start with the corresponding letter.

In your application, the [Phone Book] table contains a set of quite static data, so you do
not want to (or need to) perform a query each time you select a Tab. In this way, you can
save precious database engine time.

To do so, you can redirect your queries into named selections that you reuse as needed.
You write the object method of the Tab Control asRolodex as follows:

` asRolodex object method
Case of

: (Form event=On Load)
` Before the form appears on the screen,
` initialize the rolodex and a array of booleans that
` will tell us if a query for the corresponding letter
` has been performed or not

ARRAY STRING(1;asRolodex;26)
ARRAY BOOLEAN(abQueryDone;26)
For ($vlElem;1;26)

asRolodex{$vlElem}:=Char(64+$vlElem)
abQueryDone{$vlElem}:=False

End for

: (Form event=On Clicked)
` When a click on the Tab control occurs,
` check whether the corresponding query
` has been performed or not

If (Not(abQueryDone{asRolodex}))
` If not, redirect the next query(ies) toward a named selection

Þ SET QUERY DESTINATION(Into named selection;
"Rolodex"+asRolodex{asRolodex})

` Perform the query
QUERY([Phone Book];[Phone Book]Last name=asRolodex{asRolodex}+"@")

` Restore normal query mode
Þ SET QUERY DESTINATION(Into current selection)

` Next time we choose that letter, we won't perform the query again
abQueryDone{asRolodex}:=True

End if
` Use the named selection for displaying the records
` corresponding to the choosen letter

USE NAMED SELECTION("Rolodex"+asRolodex{asRolodex})

880 4th Dimension Language Reference

: (Form event=On Unload)
` After the form disappeared from the screen
` Clear the named selections we created

 For ($vlElem;1;26)
If(abQueryDone{$vlElem})

CLEAR NAMED SELECTION("Rolodex"+asRolodex{$vlElem})
End if

End for
` Clear the two arrays we no longer need

CLEAR VARIABLE(asRolodex)
CLEAR VARIABLE(abQueryDone)

End case

2. The Unique values project method in this example allows you to verify the uniqueness
of the values for any number of fields in a table. The current record can be an existing or
a newly created record.

` Unique values project method
` Unique values (Pointer ; Pointer { ; Pointer... }) -> Boolean
` Unique values (->Table ; ->Field { ; ->Field2... }) -> Yes or No

C_BOOLEAN($0;$2)
C_POINTER(${1})
C_LONGINT($vlField;$vlNbFields;$vlFound;$vlCurrentRecord)
$vlNbFields:=Count parameters-1
$vlCurrentRecord:=Record number($1->)
If ($vlNbFields>0)

If ($vlCurrentRecord#-1)
If ($vlCurrentRecord<0)

` The current record is an unsaved new record (record number is -3)
` therefore we can stop the query as soon as at least one record is found

SET QUERY LIMIT(1)
Else

` The current record is an existing record,
` therefore we can stop the query as soon as at least two records are found

SET QUERY LIMIT(2)
End if

` The query will return its result in $vlFound
` without changing the current record nor the current selection

Þ SET QUERY DESTINATION(Into variable;$vlFound)

4th Dimension Language Reference 881

` Make the query according to the number of fields that are specified
Case of

: ($vlNbFields=1)
QUERY($1->;$2->=$2->)

: ($vlNbFields=2)
QUERY($1->;$2->=$2->;*)
QUERY($1->; & ;$3->=$3->)

Else
QUERY($1->;$2->=$2->;*)
For ($vlField;2;$vlNbFields-1)

QUERY($1->; & ;${1+$vlField}->=${1+$vlField}->;*)
End for
QUERY($1->; & ;${1+$vlNbFields}->=${1+$vlNbFields}->)

End case
Þ SET QUERY DESTINATION(Into current selection) ` Restore normal query mode

SET QUERY LIMIT(0) ` No longer limit queries
` Process query result

Case of
: ($vlFound=0)

$0:=True ` No duplicated values
: ($vlFound=1)

If ($vlCurrentRecord<0)
` Found an existing record with the same values
` as the unsaved new record

$0:=False
Else

$0:=True ` No duplicated values, just found the very same record
End if

: ($vlFound=2)
$0:=False ` Whatever the case is, the values are duplicated

End case
Else

If (<>DebugOn) ` Does not make sense, signal it if development version
TRACE ` WARNING! Unique values is called with NO current record

End if
$0:=False ` Can't guaranty the result

End if
Else

If (<>DebugOn) ` Does not make sense, signal it if development version
TRACE ` WARNING! Unique values is called with NO query condition

End if
$0:=False ` Can't guaranty the result

End if

882 4th Dimension Language Reference

After this project method is implemented in your application, you can write:
` ...

If (Unique values (->[Contacts];->[Contacts]Company);->[Contacts]Last name
;->[Contacts]First name)

` Do appropriate actions for that record which has unique values
Else

ALERT("There is already a Contact with this name for this Company.")
End if

` ...

See Also
QUERY, QUERY BY EXAMPLE, QUERY BY FORMULA, QUERY SELECTION, QUERY SELECTION
BY FORMULA, SET QUERY LIMIT.

4th Dimension Language Reference 883

SET QUERY LIMIT Queries

version 6.0
__

SET QUERY LIMIT (limit)

Parameter Type Description
limit Number ® Number of records, or

0 for no limit

Description
SET QUERY LIMIT allows you to tell 4th Dimension to stop any subsequent query for the
current process as soon as at least the number of records you pass in limit has been found.

For example, if you pass limit equal to 1, any subsequent query will stop browsing an index
or the data file as soon as one record that matches the query conditions has been found.

To restore queries with no limit, call SET QUERY LIMIT again with limit equal to 0.

Warning: SET QUERY LIMIT affects all the subsequent queries made within the current
process. REMEMBER to always counterbalance a call to SET QUERY LIMIT(limit) (where
limit>0) with a call to SET QUERY LIMIT(0) in order to restore queries with no limit.

SET QUERY LIMIT changes the behavior of the query commands:
• QUERY
• QUERY SELECTION
• QUERY BY EXAMPLE
• QUERY BY FORMULA
• QUERY SELECTION BY FORMULA

On the other hand, SET QUERY LIMIT does not affect the other commands that may
change the current selection of a table, such as ALL RECORDS, RELATE MANY, and so on.

Examples
1. To perform a query corresponding to the request “...give me any ten customers whose
gross sales are greater than $1 M...”, you would write:

Þ SET QUERY LIMIT(10)
QUERY([Customers];[Customers]Gross sales>1000000)

Þ SET QUERY LIMIT(0)

2. See the second example for the command SET QUERY DESTINATION.

884 4th Dimension Language Reference

ORDER BY Queries

version 3
__

ORDER BY ({table}{; field}{; > or <}{; field2; > or <2; ...; fieldN; > or <N})

Parameter Type Description
table Table ® Table for which to order selected records, or

Default table, if omitted
field Field ® Field on which to set the order for each level
> or < ® Ordering direction for each level:

> to order in ascending order, or
< to order in descending order

Description
ORDER BY sorts (reorders) the records of the current selection of table for the current
process. After the sort has been completed, the new first record of the selection becomes
the current record.

If you omit the table parameter, the command applies to the default table. If no default
table has been set, an error occurs.

If you do not specify the field or the > or < parameters, ORDER BY displays the Order By
editor for table. The User environment's Order By editor is shown here:

For more information about using the Order By editor, refer to the 4th Dimension User
Reference manual.

4th Dimension Language Reference 885

The user builds the sort, then clicks the Sort button to perform the sort. If the sort is
performed without interruption, the OK variable is set to 1. If the user clicks Cancel, the
ORDER BY terminates with no sort actually performed, and sets the OK variable to 0
(zero).

Examples
1. The following line displays the Order By editor for the [Products] table:

Þ ORDER BY([Products])

2. The following line displays the Order By editor for the default table (if it has been set)

Þ ORDER BY

If you specify the field and > or < parameters, the standard Order By editor is not
presented and the sort is defined programmatically. You can sort the selection on one
level or on several levels. For each sort level, you specify a field in field and the sorting
order in > or <. If you pass the “greater than” symbol (>), the order is ascending. If you
pass the “less than” symbol (<), the order is descending.

Examples
3. The following line orders the selection of [Products] by name in ascending order:

Þ ORDER BY([Products];[Products]Name;>)

4. The following line orders the selection of [Products] by name in descending order:

Þ ORDER BY([Products];[Products]Name;<)

5. The following line orders the selection of [Products] by type and price in ascending
order for both levels:

Þ ORDER BY([Products];[Products]Type;>;[Products]Price;>)

6. The following line orders the selection of [Products] by type and price in descending
order for both levels:

Þ ORDER BY([Products];[Products]Type;<;[Products]Price;<)

7. The following line orders the selection of [Products] by type in ascending order and by
price in descending order:

Þ ORDER BY([Products];[Products]Type;>;[Products]Price;<)

886 4th Dimension Language Reference

8. The following line orders the selection of [Products] by type in descending order and by
price in ascending order:

Þ ORDER BY([Products];[Products]Type;<;[Products]Price;>)

If you omit the sorting order parameter > or <, ascending order is the default.

Example
9. The following line orders the selection of [Products] by name in ascending order:

Þ ORDER BY([Products];[Products]Name)

If only one field is specified (one level sort) and it is indexed, the index is used for the
order. If the field is not indexed or if there is more than one field, the order is performed
sequentially. The field may belong to the (selection’s) table being reordered or to a One
table related to table with an automatic relation. (Remember, the table to which ORDER
BY is applied must be the Many table.) In this case, the sort is always sequential.

Examples
10. The following line performs an indexed sort if [Products]Name is indexed:

Þ ORDER BY([Products];[Products]Name;>)

11. The following line performs a sequential sort, whether or not the fields are indexed:

Þ ORDER BY([Products];[Products]Type;>;[Products]Price;>)

12. The following line performs a sequential sort using a related field:

Þ ORDER BY([Invoices];[Companies]Name;>) ` Invoices are sorted alphabetically on the
Company name field

No matter what way a sort has been defined, if the actual sort operation is going to take
some time to be performed, 4th Dimension automatically displays a message containing a
progress thermometer. These messages can be turned on and off by using the commands
MESSAGES ON and MESSAGES OFF. If the progress thermometer is displayed, the user can
click the Stop button to interrupt the sort. If the sort is completed, OK is set to 1.
Otherwise, if the sort is interrupted, OK is set to 0 (zero).

See Also
ORDER BY FORMULA.

4th Dimension Language Reference 887

ORDER BY FORMULA Queries

version 3
__

ORDER BY FORMULA (table{; expression}{; > or <}{; expression2; > or <2; ...; expressionN;
> or <N})

Parameter Type Description
table Table ® Table for which to order selected records
expression ® Expression on which to set the order for each
level

(can be of type Alphanumeric, Real, Integer,
Long Integer, Date, Time or Boolean)

> or < ® Ordering direction for each level:
> to order in ascending order, or
< to order in descending order

Description
ORDER BY FORMULA sorts (reorders) the records of the current selection of table for the
current process. After the sort has been completed, the new first record of the selection
becomes the current record.

Note that you must specify table. You cannot use a default table.

You can sort the selection on one level or on several levels. For each sort level, you specify
a expression in expression and the sorting order in > or <. If you pass the “greater than”
symbol (>), the order is ascending. If you pass the “less than” symbol (<), the order is
descending. If you do not specify the sorting order, ascending order is the default.

The parameter expression can be of type Alphanumeric, Real, Integer, Long Integer, Date,
Time or Boolean.

No matter what way a sort has been defined, if the actual sort operation is going to take
some time to be performed, 4th Dimension automatically displays a message containing a
progress thermometer. These messages can be turned on and off by using the commands
MESSAGES ON and MESSAGES OFF. If the progress thermometer is displayed, the user can
click the Stop button to interrupt the sort. If the sort is completed, OK is set to 1.
Otherwise, if the sort is interrupted, OK is set to 0 (zero).

4D Server: Since expression cannot be interpreted by 4D Server, each record is sent to the
local workstation; the order formula is evaluated on the workstation. This will make the
order inefficient. Use the ORDER BY command whenever possible.

Unlike ORDER BY, ORDER BY FORMULA always performs a sequential sort.

888 4th Dimension Language Reference

Example
This example orders the records of the [People] table in descending order, based on the
length of each person’s last name. The record for the person with the longest last name
will be first in the current selection:

Þ ORDER BY FORMULA ([People]; Length([People]Last Name);<)

See Also
ORDER BY.

4th Dimension Language Reference 889

890 4th Dimension Language Reference

37 Record Locking

4th Dimension Language Reference 891

892 4th Dimension Language Reference

Record Locking Record Locking

version 3
__

4th Dimension and 4D Server/4D Client automatically manage databases by preventing
multi-user or multi-process conflicts. Two users or two processes cannot modify the same
record or object at the same time. However, the second user or process can have read-only
access to the record or object at the same time.

There are several reasons for using the multi-user commands:
• Modifying records by using the language.
• Using a custom user interface for multi-user operations.
• Saving related modifications inside a transaction.

There are three important concepts to be aware of when using commands in a multi-
processing database:
• Each table is in either a read-only or a read/write state.
• Records become locked when they are loaded and unlocked when they are unloaded.
• A locked record cannot be modified.

As a convention in the following sections, the person performing an operation on the
multi-user database is referred to as the local user. Other people using the database are
referred to as the other users. The discussion is from the perspective of the local user. Also,
from a multi-process perspective, the process executing an operation on the database is
the current process. Any other executing process is referred to as other processes. The
discussion is from the point of view of the current process.

Locked Records
__

A locked record cannot be modified by the local user or the current process. A locked
record can be loaded, but cannot be modified. A record is locked when one of the other
users or processes has successfully loaded the record for modification. Only the user who is
modifying the record sees that record as unlocked. All other users and processes see the
record as locked, and therefore unavailable for modification. A table must be in a
read/write state for a record to be loaded unlocked.

4th Dimension Language Reference 893

Read-Only and Read/Write States
__

Each table in a database is in either a read/write or a read-only state for each user and
process of the database. Read-only means that records for the table can be loaded but not
modified. Read/write means that records for the table can be loaded and modified if no
other user has locked the record first.

Note that if you change the status of a table, the change takes effect for the next record
loaded. If there is a record currently loaded when you change the table’s status, that
record is not affected by the status change.

Read-Only State
When a table is read-only and a record is loaded, the record is always locked. In other
words, the record can be displayed, printed, and otherwise used, but it cannot be
modified.

Note that read-only status applies only to editing existing records. Read-only status does
not affect the creation of new records. You can add records to a read-only table using
CREATE RECORD and ADD RECORD or the New Record menu command from the User
environment’s Enter menu.

4th Dimension automatically sets a table to read-only for commands that do not require
write access to records. These commands are:
• DISPLAY SELECTION
• DISTINCT VALUES
• EXPORT DIF
• EXPORT SYLK
• EXPORT TEXT
• GRAPH TABLE
• PRINT SELECTION
• PRINT LABELS
• REPORT
• SELECTION TO ARRAY
• SELECTION RANGE TO ARRAY

894 4th Dimension Language Reference

Before executing any of these commands, 4th Dimension saves the current state of the
table (read-only or read/write) for the current process. After the command has executed,
the state is restored.

Read/Write State
When a table is read/write and a record is loaded, the record will become unlocked if no
other user has locked the record first. If the record is locked by another user, the record is
loaded as a locked record that cannot be modified by the local user.

A table must be set to read/write and the record loaded for it to become unlocked and
thus modifiable.

If a user loads a record from a table in read/write mode, no other users can load that
record for modification. However, other users can add records to the table, either through
the CREATE RECORD or ADD RECORD commands or manually in the User environment.

Read/write is the default state for all tables when a database is opened and a new process is
started.

Changing the Status of a Table
You can use the READ ONLY and READ WRITE commands to change the state of a table. If
you want to change the state of a table in order to make a record read-only or read/write,
you must execute the command before the record is loaded. Any record that is already
loaded is not affected by the
READ ONLY and READ WRITE commands.

Each process has its own state (read-only or read/write) for each table in the database.

Loading, Modifying and Unloading Records
__

Before the local user can modify a record, the table must be in the read/write state and the
record must be loaded and unlocked.

Any of the commands that loads a current record (if there is one) — such as NEXT
RECORD, QUERY, ORDER BY, RELATE ONE, etc. — sets the record as locked or unlocked.

4th Dimension Language Reference 895

The record is loaded according to the current state of its table (read-only or read/write)
and its availability. A record may also be loaded for a related table by any of the
commands that cause an automatic relation to be established.

If a table is in the read-only state, then a record loaded from that table is locked. A locked
record cannot be saved or deleted. Read-only is the preferred state, because it allows other
users to load, modify, and then save the record.

If a table is in the read/write state, then a record that is loaded from that table is unlocked
only if no other users have locked the record first. An unlocked record can be modified
and saved. A table should be put into the read/write state before a record needs to be
loaded, modified, and then saved.

If the record is to be modified, you use the Locked function to test whether or not a
record is locked by another user. If a record is locked (Locked returns True), load the
record with the LOAD RECORD command and again test whether or not the record is
locked. This sequence must be continued until the record becomes unlocked (Locked
returns False).

When modifications to be made to a record are finished, the record must be released (and
therefore unlocked for the other users) with UNLOAD RECORD. If a record is not
unloaded, it will remain locked for all other users until a different current record is
selected. Changing the current record of a table automatically unlocks the previous
current record. You need to explicitly call UNLOAD RECORD if you do not change the
current record. This discussion applies to existing records. When a new record is created, it
can be saved regardless of the state of the table to which it belongs. Use the LOCKED
ATTRIBUTES command to see which user and/or process have locked a record.

896 4th Dimension Language Reference

Loops to Load Unlocked Records
__

The following example shows the simplest loop with which to load an unlocked record:

READ WRITE ([Customers]) ` Set the table’s state to read/write
Repeat ` Loop until the record is unlocked

LOAD RECORD ([Customers]) ` Load record and set locked status
Until (Not (Locked([Customers])))

` Do something to the record here
READ ONLY ([Customers]) ` Set the table’s state to read-only

The loop continues until the record is unlocked.

A loop like this is used only if the record is unlikely to be locked by anyone else, since the
user would have to wait for the loop to terminate. Thus, it is unlikely that the loop would
be used as is unless the record could only be modified by means of a method.

The following example uses the previous loop to load an unlocked record and modify the
record:

READ WRITE([Inventory])
Repeat ` Loop until the record is unlocked

LOAD RECORD([Inventory]) ` Load record and set it to locked
Until (Not (Locked([Inventory])))
[Inventory]Part Qty := [Inventory]Part Qty – 1 ` Modify the record
SAVE RECORD ([Inventory]) ` Save the record
UNLOAD RECORD ([Inventory]) ` Let other users modfiy it
READ ONLY([Inventory])

The MODIFY RECORD command automatically notifies the user if a record is locked, and
prevents the record from being modified. The following example avoids this automatic
notification by first testing the record with the Locked function. If the record is locked,
the user can cancel.

4th Dimension Language Reference 897

This example efficiently checks to see if the current record is locked for the table
[Commands]. If it is locked, the process is delayed by the procedure for one second. This
technique can be used both in a multi-user or multi-process situation:

Repeat
READ ONLY([Commands]) ` You do not need read/write right now
QUERY([Commands])

` If the search was completed and some records were returned
If ((OK=1) & (Records in selection([Commands])>0))

READ WRITE([Commands]) ` Set the table to read/write state
LOAD RECORD([Commands])
While (Locked([Commands]) & (OK=1)) `If the record is locked,

` loop until the record is unlocked
` Who is the record locked by?

LOCKED ATTRIBUTES([Commands];$Process;$User;$Machine;$Name)
If ($Process=-1) ` Has the record been deleted?

ALERT("The record has been deleted in the meantime.")
OK:=0

Else
If ($User="") ` Are you in single-user mode

$User:="you"
End if
CONFIRM("The record is already used by "+$User+" in the "+$Name+"

Process.")
If (OK=1) ` If you want to wait for a few seconds

DELAY PROCESS(Current process;120) ` Wait for a few seconds
LOAD RECORD([Commands])` Try to load the record

End if
End if

End while
If (OK=1) ` The record is unlocked

MODIFY RECORD([Commands]) ` You can modify the record
UNLOAD RECORD([Commands])

End if
READ ONLY([Commands]) ` Switch back to read-only
OK:=1

End if
Until (OK=0)

898 4th Dimension Language Reference

Using Commands in Multi-user or Multi-process Environment
__

A number of commands in the language perform specific actions when they encounter a
locked record. They behave normally if they do not encounter a locked record.

Here is a list of these commands and their actions when a locked record is encountered.

• MODIFY RECORD: Displays a dialog box stating that the record is in use. The record is
not displayed, therefore the user cannot modify the record. In the User environment, the
record is shown in read-only state.
• MODIFY SELECTION: Behaves normally except when the user double-clicks a record to
modify it. MODIFY SELECTION displays dialog box stating that the record is in use and
then allows read-only access to the record.
• APPLY TO SELECTION: Loads a locked record, but does not modify it. APPLY TO
SELECTION can be used to read information from the table without special care. If the
command encounters a locked record, the record is put into the LockedSet system set.
• DELETE SELECTION: Does not delete any locked records; it skips them. If the command
encounters a locked record, the record is put into the LockedSet system set.
• DELETE RECORD: This command is ignored if the record is locked. No error is returned.
You must test that the record is unlocked before executing this command.
• SAVE RECORD: This command is ignored if the record is locked. No error is returned. You
must test that the record is unlocked before executing this command.
• ARRAY TO SELECTION: Does not save any locked records. If the command encounters a
locked record, the record is put into the LockedSet system set.
• GOTO RECORD: Records in a multi-user/multi-process database may be deleted and
added by other users, therefore the record numbers may change. Use caution when
directly referencing a record by number in a multi-user database.
• Sets: Take special care with sets, as the information that the set was based on may be
changed by another user or process.

See Also
LOAD RECORD, Locked, LOCKED ATTRIBUTES, Methods, READ ONLY, Read only state, READ
WRITE, UNLOAD RECORD, Variables.

4th Dimension Language Reference 899

READ WRITE Record Locking

version 3
__

READ WRITE {(table | *)}

Parameter Type Description
table | * Table ® Table for which to set read-write state, or

* for all the tables, or
Default table, if omitted

Description
READ WRITE changes the state of table to read/write for the process in which it is called. If
the optional * parameter is specified, all tables are changed to read/write state.

After a call to READ WRITE, when a record is loaded, the record is unlocked if no other user
has locked the record. This command does not change the status of the currently loaded
record, only that of subsequently loaded records.

The default state for all tables is read/write.

Use READ WRITE when you must modify a record and save the changes. Also use READ
WRITE when you must lock a record for other users, even if you are not making any
changes. Setting a table to read/write mode prevents other users from editing that table.
However, other users can create new records.

Note: This command is not retroactive. A record is loaded according to the table’s
read/write status at the time of loading. To load a record from a read-only table in
read/write mode, you must first change the table state to read/write.

See Also
READ ONLY, Read only state, Record Locking.

900 4th Dimension Language Reference

READ ONLY Record Locking

version 3
__

READ ONLY {(table | *)}

Parameter Type Description
table | * Table ® Table for which to set read-only state, or

* for all the tables, or
Default table, if omitted

Description
READ ONLY changes the state of tTable to read-only for the process in which it is called.
All subsequent records that are loaded are locked, and you cannot make any changes
made to them. If the optional * parameter is specified, all tables are changed to read-only
state.

Use READ ONLY when you do not need to modify the record or records.

Note: This command is not retroactive. A record is loaded according to the table’s
read/write status at the time of loading. To load a record from a read/write table in read-
only mode, you must first change the table state to read-only.

See Also
Read only state, READ WRITE, Record Locking.

4th Dimension Language Reference 901

Read only state Record Locking

version 3
__

Read only state {(table)} ® Boolean

Parameter Type Description
table Table ® Table for which to test read-only state, or

Default table, if omitted

Function result Boolean ¬ Access to table is read-only (TRUE), or
Access to table is read-write (FALSE)

Description
This function is used to test whether or not the state of table is read-only for the process
in which it is called. Read only state returns TRUE if the state of table is read-only. Read
only state returns FASLE if the state of table is read/ write.

Example
The following example tests the state of an [Invoice] table. If the state of the [Invoice]
table is read-only, it is set to read/write, and then the current record is reloaded.

Þ If (Read only state([Invoices]))
READ WRITE([Invoices])
LOAD RECORD([Invoices])

End if

Note: The invoice record is reloaded to allow the user to modify it. A record that was
previously loaded in a read-only state will remain locked until it is reloaded in a read/write
state.

See Also
READ ONLY, READ WRITE, Record Locking.

902 4th Dimension Language Reference

LOAD RECORD Record Locking

version 3
__

LOAD RECORD {(table)}

Parameter Type Description
table Table ® Table for which to load record, or

Default table, if omitted

Description
LOAD RECORD loads the current record of table. If there is no current record,
LOAD RECORD has no effect.

You can then use the Locked function to determine whether you can modify the record:
• If the table is in read-only state, the Locked function returns TRUE, and you cannot
modify the record.
• If the table is in read/write state but the record was already locked, the record will be
read-only, and you cannot modify the record.
• If the table is in read/write state and the record is not locked, you can modify the record
in the current process. The Locked function returns TRUE for all other users and processes.

Note: If the LOAD RECORD command is executed after a READ ONLY, the record is
automatically unloaded and loaded without having to use the UNLOAD RECORD
command.

Usually, you do not need to use the LOAD RECORD command, because commands like
QUERY, NEXT RECORD, PREVIOUS RECORD, etc., automatically load the current record.

In multi-user and multi-process environments, when you need to modify an existing
record, you must access the table (to which the record belongs) in read/write mode. If a
record is locked and not loaded, LOAD RECORD allows you to attempt to load the record
again at a later time. By using LOAD RECORD in a loop, you can wait until the record
becomes available in read/write mode.

See Also
Locked, Record Locking, UNLOAD RECORD.

4th Dimension Language Reference 903

UNLOAD RECORD Record Locking

version 3
__

UNLOAD RECORD {(table)}

Parameter Type Description
table Table ® Table for which to unload record, or

Default table, if omitted

Description
UNLOAD RECORD unloads the current record of table.

If the record is unlocked for the local user (locked for the other users), UNLOAD RECORD
unlocks the record for the other users.

Although UNLOAD RECORD unloads it from memory, the record remains the current
record. When another record is made the current record, the previous current record is
automatically unloaded and therefore unlocked for other users. Always execute this
command when you have finished modifying a record and want to make it available to
other users, while retaining the record as your current record.

If a record has a large amount of data, picture fields, or external documents (such as 4D
Write or 4D Draw documents), you may not want to keep the current record in memory
unless you need to modify it. In this case, use the UNLOAD RECORD command to keep
the current record without having it in memory. You free the memory occupied by the
record, but you do not have access to its field values. If you later need access to the values
of the record, use the LOAD RECORD command.

See Also
LOAD RECORD, Record Locking.

904 4th Dimension Language Reference

Locked Record Locking

version 3
__

Locked {(table)} ® Boolean

Parameter Type Description
table Table ® Table to check for locked current record, or

Default table, if omitted

Function result Boolean ¬ Record is locked (TRUE), or
Record is unlocked (FALSE)

Description
Locked tests whether or not the current record of table is locked. Use this function to find
out whether or not the record is locked; then take appropriate action, such as giving the
user the choice of waiting for the record to be free or skipping the operation.

If Locked returns TRUE, then the record is locked by another user or process and cannot
be saved. In this case, use LOAD RECORD to reload the record until Locked returns FALSE.

If Locked returns FALSE, then the record is unlocked, meaning that the record is locked
for all other users. Only the local user or current process can modify and save the record.
A table must be in read/write state in order for you to modify the record.

If you try to load a record that has been deleted, Locked continues to return TRUE. To
avoid waiting for a record that does not exist anymore, use the LOCKED ATTRIBUTES
command. If the record has been deleted, the LOCKED ATTRIBUTES command returns -1
in the process parameter.

During transaction processing, LOAD RECORD and Locked are often used to test record
availability. If a record is locked, it is common to cancel the transaction.

See Also
LOAD RECORD, LOCKED ATTRIBUTES, Record Locking.

4th Dimension Language Reference 905

LOCKED ATTRIBUTES Record Locking

version 3
__

LOCKED ATTRIBUTES ({table; }process; user; machine; processName)

Parameter Type Description
table Table ® Table to check for record locked, or

Default table, if omitted
process Number ¬ Process reference number
user String ¬ User name if multi-user
machine String ¬ Machine name if multi-user
processName String ¬ Process name

Description
LOCKED ATTRIBUTES returns information about the user and process that have locked a
record. The process number, user name, machine name, and process name are returned in
the process, user, machine, and processName variables. You can use this information in a
custom dialog box to warn the user when a record is locked.

If the record is not locked, process returns 0 and user, machine, and processName return
empty strings. If the record you try to load in read/write has been deleted, process returns
-1 and user, machine, and processName return empty strings.

In single-user mode, this command returns values in process and processName only if a
record is locked. The values returned in user and machine are empty strings.

The User parameter returned is the user name from the 4th Dimension password system,
even if user name is blank. If there is no password system, “Manager” is returned.

The machine parameter returned is the owner name from the operating system file
sharing setup. A name change does not take effect until you restart.

See Also
Locked, Record Locking.

906 4th Dimension Language Reference

38 Records

4th Dimension Language Reference 907

908 4th Dimension Language Reference

DISPLAY RECORD Records

version 3
__

DISPLAY RECORD {(table)}

Parameter Type Description
table Table ® Table from which to display the current record,

or Default table, if omitted

Description
The command DISPLAY RECORD displays the current record of table, using the current
input form. The record is displayed only until an event redraws the window. Such an
event might be the execution of an ADD RECORD command, returning to an input form,
or returning to the menu bar. DISPLAY RECORD does nothing if there is no current
record.

DISPLAY RECORD is often used to display custom progress messages. It can also be used to
generate a free-running slide show.

If a form method exists, an On Load event will be generated.

WARNING: Do not call DISPLAY RECORD from within a Web connection process, because
the command will be executed on the 4th Dimension Web server machine and not on
the Web browser client machine.

Example
The following example displays a series of records as a slide show:

ALL RECORDS([Demo]) ` Select all of the records
INPUT FORM ([Demo]; "Display") ` Set the form to use for display
For ($vlRecord;1;Records in selection([Demo])) ` Loop through all of the records

Þ DISPLAY RECORD([Demo]) ` Display a record
DELAY PROCESS (Current process; 180) ` Pause for 3 seconds
NEXT RECORD([Demo]) ` Move to the next record

End for

See Also
MESSAGE.

4th Dimension Language Reference 909

CREATE RECORD Records

version 3
__

CREATE RECORD {(table)}

Parameter Type Description
table Table ® Table for which to create a new record, or

Default table, if omitted

Description
CREATE RECORD creates a new empty record for table, but does not display the new
record. Use ADD RECORD to create a new record and display it for data entry.

CREATE RECORD is used instead of ADD RECORD when data for the record is assigned with
the language. The new record becomes the current record and the current selection (a
one-record current selection).

The record exists in memory only until a SAVE RECORD command is executed for the
table. If the current record is changed (for example, by a query) before the record is saved,
the new record is lost.

Example
The following example archives records that are over 30 days old. It does does this by
creating new records in an archival table. When the archiving is finished, the records that
were archived are deleted from the [Accounts] table:

` Find records more than 30 days old
QUERY ([Accounts]; [Accounts]Entered < (Current date – 30))
For ($vlRecord;1; Records in selection([Accounts])) ` Loop once for each record

Þ CREATE RECORD ([Archive]) ` Create a new archive record
[Archive]Number:=[Account]Number ` Copy fields to the archive record
[Archive]Entered:=[Account]Entered
[Archive]Amount:=[Account]Amount
SAVE RECORD([Archive]) ` Save the archive record
NEXT RECORD([Accounts]) ` Move to the next account record

End for
DELETE SELECTION([Accounts]) ` Delete the account records

See Also
SAVE RECORD.

910 4th Dimension Language Reference

DUPLICATE RECORD Records

version 3
__

DUPLICATE RECORD {(table)}

Parameter Type Description
table Table ® Table for which to duplicate

the current record,
or Default table, if omitted

Description
DUPLICATE RECORD creates a new record for table that is a duplicate of the current record.
The new record becomes the current record. If there is no current record, then DUPLICATE
RECORD does nothing. You must use SAVE RECORD to save the new record.

DUPLICATE RECORD can be executed during data entry. This allows you to create a clone
of the currently displayed record. Remember that you must first execute SAVE RECORD in
order to save any changes made to the original record.

See Also
SAVE RECORD.

4th Dimension Language Reference 911

Modified record Records

version 3
__

Modified record {(table)} ® Boolean

Parameter Type Description
table Table ® Table to test if current record

has been modified, or
Default table, if omitted

Function result Boolean ¬ Record has been modified (True), or
Record has not been modified (False)

Description
Modified record returns True if the current record of table has been modified but not
saved; otherwise it returns False. This function allows the designer to quickly test whether
or not the record needs to be saved. It is especially valuable in input forms to check
whether or not to save the current record before proceeding to the next one. This
function always returns TRUE for a new record.

Example
The following example shows a typical use for Modified record:

Þ If (Modified record ([Customers]))
SAVE RECORD ([Customers])

End if

See Also
Modified, Old, SAVE RECORD.

912 4th Dimension Language Reference

SAVE RECORD Records

version 3
__

SAVE RECORD {(table)}

Parameter Type Description
table Table ® Table for which to save the current record, or

Default table, if omitted

Description
SAVE RECORD saves the current record of table in the current process. If there is no
current record, then SAVE RECORD is ignored.

You use SAVE RECORD to save a record that you created or modified with code. A record
that has been modified and validated by the user in a form does not need to be saved
with SAVE RECORD. A record that has been modified by the user in a form, but has been
canceled, can still be saved with SAVE RECORD.

Here are some cases where SAVE RECORD is required:
• To save a new record created with CREATE RECORD or DUPLICATE RECORD
• To save data from RECEIVE RECORD
• To save a record modified by a method
• To save a record that contains new or modified subrecord data following an ADD
SUBRECORD CREATE SUBRECORD, or MODIFY SUBRECORD command
• During data entry to save the displayed record before using a command that changes
the current record
• During data entry to save the current record

You should not execute a SAVE RECORD during the On Validate event for a form that has
been accepted. If you do, the record will be saved twice.

Examples
The following example is part of a method that reads records from a document. The code
segment receives a record, and then, if it is received properly, saves it:

RECEIVE RECORD ([Customers]) ` Receive record from disk
If (OK= 1) ` If the record is received properly…

SAVE RECORD ([Customers]) ` save it
End if

See Also
CREATE RECORD, Locked, Triggers.

4th Dimension Language Reference 913

DELETE RECORD Records

version 3
__

DELETE RECORD {(table)}

Parameter Type Description
table Table ® Table for which to delete the current record,

or Default table, if omitted

Description
DELETE RECORD deletes the current record of table in the process. If there is no current
record for table in the process, DELETE RECORD has no effect. In a form, you can create a
Delete Record button instead of using this command. After the record is deleted, the
current selection for table is empty.

Deleting records is a permanent operation and cannot be undone.

If a record is deleted, the record number will be reused when new records are created. Do
not use the record number as the record identifier if you will ever delete records from the
database.

Example
The following example deletes an employee record. The code asks the user what employee
to delete, searches for the employee’s record, and then deletes it:

vFind := Request ("Employee ID to delete:") ` Get an employee ID
If (OK = 1)

QUERY ([Employee]; [Employee]ID = vFind) ` Find the employee
DELETE RECORD ([Employee]) ` Delete the employee

End if

See Also
Locked, Triggers.

914 4th Dimension Language Reference

Records in table Records

version 3
__

Records in table {(table)} ® Number

Parameter Type Description
table Table ® Table for which to return the number

of records, or Default table, if omitted

Function result Number ¬ Total number of records in the table

Description
Records in table returns the total number of records in table. Records in selection returns
the number of records in the current selection only. If Records in table is used within a
transaction, records created during the transaction will be taken into account.

Example
The following example displays an alert that shows the number of records in a table:

Þ ALERT ("There are "+String(Records in table([People]))+" records in the table.")

See Also
Records in selection.

4th Dimension Language Reference 915

Record number Records

version 3
__

Record number {(table)} ® Number

Parameter Type Description
table Table ® Table for which to return the

number of the current record, or
Default table, if omitted

Function result Number ¬ Current record number

Description
Record number returns the physical record number for the current record of table. If there
is no current record, such as when the record pointer is before or after the current
selection, Record number returns –1. If the record is a new record that has not been saved,
Record number returns –3.

Record numbers can change. The record numbers of deleted records are reused. Record
numbers will also change if you compact the database or perform a recover by tags
operation on the database using 4D Tools. During a transaction, a newly created record
has a temporary record number. After the transaction has been accepted, the record is
assigned a regular record number.

Example
The following example saves the current record number and then searches for any other
records that have the same data:

Þ $RecNum:=Record number([People]) ` Get the record number
QUERY ([People]; [People]Last = [People]Last) ` Anyone else with the last name?

` Display an alert with the number of people with the same last name
ALERT ("There are "+String (Records in selection([People])+" with that name.")
GOTO RECORD ([People]; $RecNum) ` Go back to the same record

See Also
About Record Numbers, GOTO RECORD, Selected record number, Sequence number.

916 4th Dimension Language Reference

GOTO RECORD Records

version 3
__

GOTO RECORD ({table; }record)

Parameter Type Description
table Table ® Table in which to go to the record, or

Default table, if omitted
record Number ® Number returned by Record number

Description
GOTO RECORD selects the specified record of table as the current record. The record
parameter is the number returned by the Record number function. After executing this
command, the record is the only record in the selection.

If record is less than the smallest record number in the database or greater than the
greatest record number in the database, 4th Dimension generates an error message stating
that the record number is out of range. If record is equal to the record number of a
deleted record, the selection becomes empty.

Note: With this command, you should not use temporary record numbers issued during
transactions.

Example
See the example for Record number.

See Also
About Record Numbers, Record number.

4th Dimension Language Reference 917

Sequence number Records

version 3
__

Sequence number {(table)} ® Number

Parameter Type Description
table Table ® Table for which to return

the sequence number, or
Default table, if omitted

Function result Number ¬ Sequence number

Description
Sequence number returns the next sequence number for table. The sequence number is
unique for each table. It is a nonrepeating number that is incremented for each new
record created for the table. The numbering starts at 1.

You should use the Sequence number function instead of the #N symbol if:
• You are creating records procedurally
• The sequence number needs to start at a number other than 1
• The sequence number needs an increment greater than 1
• The sequence number is part of a code, for example a part number code

To store the sequence number by means of a method, create a long integer field in the
table and assign the sequence number to the field.

The sequence number is the same number assigned by using the #N symbol as the default
value for a field in a form. For information on assigning default values, see the
4th Dimension Design Reference .

If the sequence number needs to start at a number other than 1, just add the difference to
Sequence number. For example, if the sequence number must start at 1000, you would use
the following statement to assign the number:

Þ [Table1]Seq Field := Sequence number ([Table1]) + 999

918 4th Dimension Language Reference

Example
The following example is part of a form method. It tests to see if this is a new record; i.e.,
if the invoice number is an empty string. If it is a new record, the method assigns an
invoice number. The invoice number is formed from two pieces of information: the
sequence number, and the operator’s ID, which was entered when the database was
opened. The sequence number is formatted as a 5-character string:

` If this is a new part number, create a new invoice number
If ([Invoices]Invoice No = "")

` The invoice number is a string that ends with the operator’s ID.
[Invoices]Invoice No:=String(Sequence number;"00000")+[Invoices]OpID

End if

See Also
About Record Numbers, Record number, Selected record number.

4th Dimension Language Reference 919

About Record Numbers Records

version 3
__

There are three numbers associated with a record:
• Record number
• Selected record number
• Sequence number

Record Number
The record number is the absolute/physical record number for a record. The record
number is automatically assigned to each new record and remains constant for the record
until the record is deleted or the file is permanently reordered using 4D Tools. Record
numbers start at zero. Record numbers are not unique because record numbers of deleted
records are reused for new records. Record numbers also change when the file is
permanently reordered using 4D Tools or when the database is compacted or repaired.
New records added in transaction are assigned temporary record numbers. They are
assigned final record numbers when the transaction is validated.

Selected Record Number
The selected record number is the position of the record in the current selection, and so
depends on the current selection. If the selection is changed or sorted, the selected record
number will probably change. Numbering for the selected record number starts at one
(1).

Sequence Number
The sequence number is a unique nonrepeating number that may be assigned to a field of
a record. It is not automatically stored with each record. It starts at 1 and is incremented
for each new record that is created. Unlike record numbers, a sequence number is not
reused when a record is deleted or when a table is compacted, repaired, or permanently
reordered using 4D Tools. Sequence numbers provide a way to have unique ID numbers
for records. If a sequence number is incremented during a transaction, the number is not
decremented if the transaction is canceled.

Record Number Examples
__

The following tables illustrate the numbers that are associated with records. Each line in
the table represents information about a record. The order of the lines is the order in
which records would be displayed in an output form.

920 4th Dimension Language Reference

• Data column: The data from a field in each record. For our example, it contains a
person’s name.
• Record Number column: The record’s absolute record number. This is the number
returned by the Record number function.
• Selected Record Number column: The record’s position in the current selection. This is
the number returned by the Selected record number function.
• Sequence Number column: The record’s unique sequence number. This is the number
returned by the Sequence number function when the record was created. This number is
stored in a field.

After the Records Are Entered
The first table shows the records after they are entered.
• The default order for the records is by record number.
• The record number starts at 0.
• The selected record number and the sequence number start at 1.

Data Record Number Selected Record Number Sequence Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Sam 3 4 4
Lisa 4 5 5

Note: The records remain in the default order after a command changes the current
selection without reordering it; for example, after the Show All menu command is chosen
in the User environment, or after the ALL RECORDS command is executed.

After the Records Are Sorted
The next table shows the same records sorted by name.
• The same record number remains associated with each record.
• The selected record numbers reflect the new position of the records in the sorted
selection.
• The sequence numbers never change, since they were assigned when each record was
created and are stored in the record.

Data Record Number Selected Record Number Sequence Number
Lisa 4 1 5
Sabra 2 2 3
Sam 3 3 4
Terri 1 4 2
Tess 0 5 1

4th Dimension Language Reference 921

After a Record Is Deleted
The following table shows the records after Sam is deleted.
• Only the selected record numbers have changed. Selected record numbers reflect the
order in which the records are displayed.

Data Record Number Selected Record Number Sequence Number
Lisa 4 1 5
Sabra 2 2 3
Terri 1 3 2
Tess 0 4 1

After a Record Is Added
The next table shows the records after a new record has been added for Liz.
• A new record is added to the end of the current selection.
• Sam’s record number is reused for the new record.
• The sequence number continues to increment.

Data Record Number Selected Record Number Sequence Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Lisa 4 4 5
Liz 3 5 6

After the Selection is Changed and Sorted
The following table shows the records after the selection was reduced to three records and
then sorted.
• Only the selected record number associated with each record changes.

Data Record Number Selected Record Number Sequence Number
Sabra 2 1 3
Liz 3 2 6
Terri 1 3 2

See Also
Record number, Selected record number, Sequence number.

922 4th Dimension Language Reference

PUSH RECORD Records

version 3
__

PUSH RECORD {(table)}

Parameter Type Description
table Table ® Table for which to push record, or

Default table, if omitted

Description
PUSH RECORD pushes the current record of table (and its subrecords, if any) onto the
table’s record stack. PUSH RECORD may be executed before a record is saved.

If you push a record that was unlocked, this record stays locked for all the other processes
and users until you pop and unload it.

Example
The following example pushes the record for the customer onto the record stack:

Þ PUSH RECORD ([Customer]) ` Push customer’s record onto stack

See Also
POP RECORD, Using the Record Stack.

4th Dimension Language Reference 923

POP RECORD Records

version 3
__

POP RECORD {(table)}

Parameter Type Description
table Table ® Table for which to pop record, or

Default table, if omitted

Description
POP RECORD pops a record belonging to table from the table’s record stack, and makes
the record the current record.

If you push a record, change the selection to not include the pushed record, and then pop
the record, the current record is not in the current selection. To designate the popped
record as the current selection, use ONE RECORD SELECT. If you use any commands that
move the record pointer before saving the record, you will lose the copy in memory.

Example
The following example pops the record for the customer off the record stack:

Þ POP RECORD ([Customers]) ` Pop customer’s record onto stack

See Also
PUSH RECORD, Using the Record Stack.

924 4th Dimension Language Reference

Using the Record Stack Records

version 3
__

The commands PUSH RECORD and POP RECORD allow you to put (“push”) records onto
the record stack, and to remove (“pop”) them from the stack.

Each process has its own record stack for each table. 4th Dimension maintains the record
stacks for you. Each record stack is a last-in-first-out (LIFO) stack. Stack capacity is limited
by memory.

PUSH RECORD and POP RECORD should be used with discretion. Each record that is
pushed uses part of free memory. Pushing too many records can cause an out-of-memory
or stack full condition.

4th Dimension clears the stack of any unpopped records when you return to the menu at
the end of execution of your method.

PUSH RECORD and POP RECORD are useful when you want to examine records in the
same file during data entry. To do this, you push the record, search and examine records
in the file (copy fields into variables, for example), and finally pop the record to restore
the record.

Note to version 3 users: While entering a record, if you have to check a multiple field
unique value, use the new SET QUERY DESTINATION command. This will save you the calls
to PUSH RECORD and POP RECORD that you were making before and after the call to
QUERY in order to preserve the data entered in the current record. SET QUERY
DESTINATION allows you to make a query that does not change the selection nor the
current record.

See Also
POP RECORD, PUSH RECORD, SET QUERY DESTINATION.

4th Dimension Language Reference 925

926 4th Dimension Language Reference

39 Relations

4th Dimension Language Reference 927

928 4th Dimension Language Reference

Relations Relations

version 6.0
__

The commands in this theme, in particular RELATE ONE and RELATE MANY, establish and
manage the automatic and non-automatic relations between tables. Before using any of
the commands in this theme, refer to the 4th Dimension Design Reference manual for
information about creating relations between tables.

Using Automatic Table Relations with Commands
__

Two tables can be related with automatic table relations. In general, when an automatic
table relation is established, it loads or selects the related records in a related table. Many
operations cause the relation to be established.

These operations include:
• Data entry
• Listing records on the screen in output forms
• Reporting
• Operations on a selection of records, such as queries, sorts, and applying a formula

To optimize performance, when 4th Dimension establishes automatic relations, only one
record becomes the current record for a table. For each of the operations listed above, the
related record is loaded according to the following principles:
• If a relation selects only one record of a related table, that record is loaded from disk.
• If a relation selects more than one record of a related table, a new selection of records is
created for that table, and the first record in that selection is loaded from disk.

For example, using the database structure displayed here, if a record for the [People] table
is loaded and displayed for data entry, the related record from the [Companies] table is
selected and is loaded. Similarly, if a record for the [Companies] table is loaded and
displayed for data entry, the related records from the [People] table are selected.

4th Dimension Language Reference 929

In this database structure, the [People] table is referred to as the Many table, and the
[Companies] table is referred to as the One table. To remember this concept, think of
“there are many people related to one company” and “each company has many people.”

Similarly, the Company field in the [People] table is referred to as the Many field, and the
Name field in the [Companies] table is referred to as the One field.

It is not always possible to have the related field be unique. For example, the
[Companies]Name field may have several company records containing the same value.
This non-unique situation can be easily handled by creating a relation, which will always
be unique, on another field in the related table. This field could be a company ID field.

The following table lists commands that use automatic relations to load related records
during operation of the command. All of the commands will establish a Many-to-One
relation automatically. Only those commands with Yes in the Many Established column
will create a One-to-Many relation automatically.

Command One-to-Many established
ADD RECORD Yes
ADD SUBRECORD No
APPLY TO SELECTION No
DISPLAY SELECTION No
EXPORT DIF No
EXPORT SYLK No
EXPORT TEXT No
MODIFY RECORD Yes
MODIFY SUBRECORD No

930 4th Dimension Language Reference

MODIFY SELECTION Yes (in data entry)
ORDER BY No
ORDER BY FORMULA No
QUERY BY FORMULA Yes
QUERY SELECTION Yes
QUERY Yes
PRINT LABEL No
PRINT SELECTION Yes
REPORT No
SELECTION TO ARRAY No
SELECTION RANGE TO ARRAY No

Using Commands to Establish Table Relations
__

Automatic relations do not mean that the related record or records for a table will be
selected simply because a command loads a record. In some cases, after using a command
that loads a record, you must explicitly select the related records by using RELATE ONE or
RELATE MANY if you need to access the related data.

Some of the commands listed in the previous table (such as the query commands) load a
current record after the task is completed. In this case, the record that is loaded does not
automatically select the records related to it. Again, if you need to access the related data,
you must explicitly select the related records by using RELATE ONE or RELATE MANY.

See Also
AUTOMATIC RELATIONS, CREATE RELATED ONE, OLD RELATED MANY, OLD RELATED ONE,
RELATE MANY, RELATE MANY SELECTION, RELATE ONE, RELATE ONE SELECTION, SAVE OLD
RELATED ONE, SAVE RELATED ONE.

4th Dimension Language Reference 931

AUTOMATIC RELATIONS Relations

version 3
__

AUTOMATIC RELATIONS (one{; many})

Parameter Type Description
one Boolean ® Many-to-one relations
many Boolean ® One-to-many relations

Description
AUTOMATIC RELATIONS temporarily changes all manual relations into automatic relations
for the entire database. The relations stay automatic unless a subsequent call to
AUTOMATIC RELATIONS is made.

If one is true, then all manual Many-to-One relations will become automatic. If one is
false, all previously changed Many-to-One relations will revert to manual relations.

The same is true for the many parameter, except that manual One-to-Many relations are
affected.

Relations that are set as automatic in the Design environment are not affected by this
command.
If all relations have been set as manual in the Design environment, this command makes
it possible to change them to be automatic, just before executing operations that need the
relation to be automatic (such as relational searches and sorts). After the operation is
finished, the relation can be changed back to manual.

Example
The following example makes all manual Many-to-One relations automatic and reverts
any previously changed One-to-Many relations:

Þ AUTOMATIC RELATIONS (True; False)

See Also
Relations, SELECTION TO ARRAY, SUBSELECTION TO ARRAY.

932 4th Dimension Language Reference

RELATE ONE Relations

version 3
__

RELATE ONE (manyTable | Field{; choiceField})

Parameter Type Description
manyTable | Field Table | Field ® Table for which to establish

all automatic relations,
or Field with manual relation to one table

choiceField Field ® Choice field from the one table

Description
RELATE ONE has two forms.

The first form, RELATE ONE(manyTable), establishes all automatic Many-to-One relations
for manyTable in the current process. This means that for each field in manyTable that has
an automatic Many-to-One relation, the command will select the related record in each
related table. This changes the current record in the related tables for the process.

The second form, RELATE ONE(manyField{;choiceField), looks for the record related to
manyField. The relation does not need to be automatic. If it exists, RELATE ONE loads the
related record into memory, making it the current record and current selection for its
table.

The optional choiceField can be specified only if manyField is an Alpha field. The choiceField
must be a field in the related table. The choiceField must be an Alpha, Numeric, Date,
Time, or Boolean field; it cannot be a text, picture, BLOB, or subtable field.

If choiceField is specified and more than one record is found in the related table, RELATE
ONE displays a selection list of records that match the value in manyField. In the list, the
left column displays related field values, and the right column displays choiceField values.

More than one record may be found if manyField ends with the wildcard character (@). If
there is only one match, the list does not appear. Specifying choiceField is the same as
specifying a wildcard choice when establishing the table relation. For information about
specifying a wildcard choice, refer to the 4th Dimension Design Reference.

RELATE ONE works with relations to subtables, but you must have a relation to the parent
table and to the subtable’s related field in order for the relation to be properly established.
When using a relation to a subrecord, you must first use RELATE ONE to load the related
record into memory, then use a second RELATE ONE command for the subtable.

4th Dimension Language Reference 933

Example
Let’s say you have an [Invoice] table related to a [Customers] table with two non-automatic
relations. One relation is from [Invoice]Bill to to [Customers]ID, and the other relation is
from [Invoice]Ship to to [Customers]ID.

Since both relations are to the same table, [Customers], you cannot obtain the billing and
shipment information at the same time. Therefore, displaying both addresses in a form
should be performed using variables and calls to RELATE ONE. If the [Customers] fields
were displayed instead, data from only one of the relations would be displayed.

The following two methods are the object methods for the [Invoice]Bill to and [Invoice]Ship
to fields. They are executed when the fields are entered.

Here is the object method for the [Invoice]Bill to field:

Þ RELATE ONE ([Invoice]Bill to)
vAddress1 := [Customers]Address
vCity1 := [Customers]City
vState1 := [Customers]State
vZIP1 := [Customers]ZIP

Here is the object method for the [Invoice]Ship to field:

Þ RELATE ONE ([Invoice]Ship to)
vAddress2 := [Customers]Address
vCity2 := [Customers]City
vState2 := [Customers]State
vZIP2 := [Customers]ZIP

See Also
OLD RELATED ONE, RELATE MANY.

934 4th Dimension Language Reference

RELATE MANY Relations

version 3
__

RELATE MANY (oneTable | Field)

Parameter Type Description
oneTable | Field Table | Field ® Table to establish all one-to-many relations, or

One Field

Description
RELATE MANY has two forms.

The first form, RELATE MANY(oneTable), establishes all One-to-Many relations for
oneTable. It changes the current selection for each table that has a One-to-Many relation
to oneTable. The current selections in the Many tables depend on the current value of
each related field in the One table. Each time this command is executed, the current
selections of the Many tables will be regenerated.

The second form, RELATE MANY(oneField), establishes the One-to-Many relation for
oneField. It changes the current selection for only those tables that have relations with
oneField. This means that the related records become the current selection for the Many
table.

Example
In the following example, three tables are related with automatic relations. Both the
[People] table and the [Parts] table have a Many-to-One relation to the [Companies] table.

4th Dimension Language Reference 935

This form for the [Companies] table will display related records from both the [People]
and [Parts] tables.

When the People and Parts forms are displayed, the related records for both the [People]
table and the [Parts] table are loaded and become the current selections in those tables.

On the other hand, the related records are not loaded if a record for the [Companies] table
is selected programmatically. In this case, you must use the RELATE MANY command.

For example, the following method moves through each record of the [Companies] table.
An alert box is displayed for each company. The alert box shows the number of people in
the company (the number of related [People] records), and the number of parts they
supply (the number of related [Parts] records). In the example, the argument to the
ALERTcommand is printed on multiple lines for clarity.

Note that the RELATE MANY command is needed, even though the relations are
automatic.

ALL RECORDS ([Companies]) ` Select all records in the table
ORDER BY ([Companies]; [Companies]Name) ` Order records in alphabetical order
For ($i; 1; Records in table ([Companies])) ` Loop once for each record

Þ RELATE MANY ([Companies]Name) ` Select the related records
ALERT ("Company: "+[Companies]Name+Char (13)+"People in company: "

+String (Records in selection ([People]))+Char(13)+
 "Number of parts they supply: "+ String (Records in selection ([Parts])))

NEXT RECORD ([Companies]) ` Move to the next record
End for

See Also
OLD RELATED MANY, RELATE ONE.

936 4th Dimension Language Reference

CREATE RELATED ONE Relations

version 3
__

CREATE RELATED ONE (field)

Parameter Type Description
field Field ® Many field

Description
CREATE RELATED ONE performs two actions. If a related record does not exist for field (that
is, if a match is not found for the current value of field), CREATE RELATED ONE creates a
new related record.

To save a value in the appropriate field, assign values to the One field from the Many
field. Call SAVE RELATED ONE to save the new record.

If a related record exists, CREATE RELATED ONE acts just like RELATE ONE and loads the
related record into memory.

See Also
SAVE RELATED ONE.

4th Dimension Language Reference 937

SAVE RELATED ONE Relations

version 3
__

SAVE RELATED ONE (field)

Parameter Type Description
field Field ® Many field

Description
SAVE RELATED ONE saves the record related to field. Execute a SAVE RELATED ONE
command to update a record created with CREATE RELATED ONE, or to save modifications
to a record loaded with RELATE ONE.

SAVE RELATED ONE does not apply to subtables, because saving the parent record
automatically saves the subrecords.

SAVE RELATED ONE will not save a locked record. When using this command, you must
first be sure that the record is unlocked. If the record is locked, the command is ignored,
the record is not saved, and no error is returned.

See Also
CREATE RELATED ONE, Locked, RELATE ONE, Triggers.

938 4th Dimension Language Reference

OLD RELATED ONE Relations

version 3
__

OLD RELATED ONE (field)

Parameter Type Description
field Field ® Many field

Description
OLD RELATED ONE operates the same way as RELATE ONE does, except that OLD RELATED
ONE uses the old value of field to establish the relation.

Note: OLD RELATED ONE uses the old value of the Many field as returned by the Old
function. For more information, see the description of the Old command.

OLD RELATED ONE loads the record previously related to the current record. The fields in
that record can then be accessed. If you want to modify this old related record and save it,
you must call SAVE OLD RELATED ONE. Note that there is no old related record for a newly
created record.

See Also
Old, OLD RELATED MANY, RELATE ONE, SAVE OLD RELATED ONE.

4th Dimension Language Reference 939

SAVE OLD RELATED ONE Relations

version 3
__

SAVE OLD RELATED ONE (field)

Parameter Type Description
field Field ® Many field

Description
SAVE OLD RELATED ONE operates the same way as SAVE RELATED ONE does, but uses the
old relation to the field to save the old related record. Before you use SAVE OLD RELATED
ONE, you must load the record with OLD RELATED ONE. Use SAVE OLD RELATED ONE
when you want to save modifications to a record loaded with OLD RELATED ONE.

SAVE OLD RELATED ONE will not save a locked record. When using this command, you
must first be sure that the record is unlocked. If the record is locked, the command is
ignored, the record is not saved, and no error is returned.

See Also
Locked, OLD RELATED ONE, Triggers.

940 4th Dimension Language Reference

OLD RELATED MANY Relations

version 3
__

OLD RELATED MANY (field)

Parameter Type Description
field Field ® One field

Description
OLD RELATED MANY operates the same way RELATE MANY does, except that OLD RELATED
MANY uses the old value in the one field to establish the relation.

Note: OLD RELATED MANY uses the old value of the many field as returned by the Old
function. For more information, see the description of the Old command.

OLD RELATED MANY changes the selection of the related table, and selects the first record
of the selection as the current record.

See Also
OLD RELATED ONE, RELATE MANY.

4th Dimension Language Reference 941

RELATE ONE SELECTION Relations

version 6.0 (Modified)
__

RELATE ONE SELECTION (manyTable; oneTable)

Parameter Type Description
manyTable Table ® Many table name

(from which the relation starts)
oneTable Table ® One table name

(to which the relation refers)

Description
The command RELATE ONE SELECTION creates a new selection of records for the table
oneTable, based on the selection of records in the table manyTable.

This command can only be used if there is a relation from manyTable to oneTable. RELATE
ONE SELECTION can work across several levels of relations. There can be several related
tables between manyTable and oneTable. The relations can be manual or automatic.

Warning: Do not use this command inside a transaction.

Example
The following example finds all the clients whose invoices are due today.

Here is one way of creating a selection in the [Customers] table, given a selection of
records in the [Invoices] table:

CREATE EMPTY SET([Customers];"Payment Due")
QUERY([Invoices];[Invoices]DueDate = Current date)
While(Not(End selection([Invoices])))

RELATE ONE ([Invoices]CustID)
ADD TO SET([Customers];"Payment Due")
NEXT RECORD([Invoices])

End while

The following technique uses RELATE ONE SELECTION to accomplish the same result:

QUERY([Invoices];[Invoices]DueDate = Current date)
Þ RELATE ONE SELECTION([Invoices];[Customers])

See Also
QUERY, RELATE MANY SELECTION, RELATE ONE, Sets.

942 4th Dimension Language Reference

RELATE MANY SELECTION Relations

version 6.0 (Modified)
__

RELATE MANY SELECTION (field)

Parameter Type Description
field Field ® Many table field

(from which the relation starts)

Description
The command RELATE MANY SELECTION generates a selection of records in the Many
table, based on a selection of records in the One table.

Note: RELATE MANY SELECTION changes the current record for the One table.

Warning: Do not use this command inside a transaction.

Example
This example selects all invoices made to the customers whose credit is greater than or
equal to $1,000. The [Invoices] table field [Invoices]Customer ID relates to the [Customer]
table field [Customers]ID Number.

` Select the Customers
QUERY ([Customers];[Customers]Credit>=1000)

` Find all invoices related to any of these customers
RELATE MANY SELECTION ([Invoices]Customer ID)

See Also
QUERY, RELATE ONE, RELATE ONE SELECTION.

4th Dimension Language Reference 943

944 4th Dimension Language Reference

40 Resources

4th Dimension Language Reference 945

946 4th Dimension Language Reference

Resources Resources

version 6.0
__

A resource is data of any kind stored in a defined format in a .RSR Windows file or in the
resource fork of a Macintosh file. Resources typically include data such as strings, pictures,
icons and so on. As a matter of fact, you can create and use your own kinds of resources
and store whatever data you want into them.

Data Fork and Resource Fork
__

On Macintosh, each file can have a data fork and a resource fork. The data fork of a
Macintosh file is the equivalent of a file on Windows and UNIX. The resource fork of a
Macintosh file contains the Macintosh-based resources of the file and has no direct
equivalent on Windows or UNIX.

Windows-based resources are stored and mixed with the other data of the file. For
example, in a Windows application, a .EXE file can contain both resource data and code.
In order to maintain the platform independence of your 4D applications, 4th Dimension
works with Macintosh-based resources on both the Macintosh and Windows platforms.

4D Transporter
__

Since resource forks do not exist on Windows, the 4D Transporter utility program
(delivered with the Macintosh version of 4th Dimension) enables you to transport a 4D
database from Windows to Macintosh and vice-versa.

When you transport a 4D database from Windows to Macintosh, the .4DB and .RSR files
of the database structure file are merged into one Macintosh file. The .4DB file becomes
the data fork of the Macintosh structure file, and the .RSR file becomes the resource fork
the Macintosh structure file. Conversly, when you transport a 4D database from
Macintosh to Windows, the Macintosh structure file is split into two files. Its data fork
becomes the .4DB file and the resource fork becomes the .RSR file.

In fact, this is the sole purpose of the 4D Transporter utility—splitting or merging data
and resource forks of files. It does not translate or modify the actual data stored in the
forks and files. For more information about transporting 4D databases between platforms,
refer to the 4D Transporter Reference manual.

4th Dimension Language Reference 947

Resource Files
__

No matter what platform you are using, a 4D database structure file is not the only type
of file with resources. The 4D application itself contains resources. On Macintosh, the 4D
resources are stored in the resource fork of the application. On Windows, they are stored
in the 4D.RSR file, the resource part of the 4D application whose executable code is stored
in the 4D.EXE file.

4D Plug-ins can also contain resources. For example, the 4D Write ACI plug-in contains
resources. On Macintosh, these are stored in the resource fork of 4D Write 6.0. On
Windows, they are stored in the 4DWRITE.RSR file.
The data file of a 4D database can also contains resources. For example, if you lock a data
file for exclusive use with a particular structure file (using the Customizer Plus utility), this
operation adds the same WEDD (“WEDD” for “wedding”) resource into the structure and
data files. On Macintosh, the resource is added to the resource fork of the data file. On
Windows, the resource is stored in the .4DR file, the resource file for the data file.

Note: Customizer Plus is delivered with the Windows and Macintosh versions of 4th
Dimension)

On Windows, with the exception of the data file’s .4DR file, you usually detect standard
4D files containing Macintosh-based resources as files with the file extension .RSR. Note
that the command Create resource files uses .RES as default file extension.

Creating Your Own Resource Files
In addition to the resource files provided by 4D, you can create and use your own resource
files using the 4D commands Create resource file and Open resource file. These two
commands return a resource file reference number that uniquely identifies the open
resource file. The resource file reference number is the equivalent of the document
reference number for regular files returned by System documents commands such as
Open document. All the 4D Resources commands optionally expect a resource file
reference number. After you have finished with a resource file, remember to close it using
the command CLOSE RESOURCE FILE.

948 4th Dimension Language Reference

The Resource Files Chain
__

When you work with a 4D database, you can either work with all the currently open
resource files or with a specific resource file.

Multiple resource files can be open at the same time. This is always the case from within a
4D database. The following files are open:
• On Macintosh, the System resource file.
• On Windows, the ASIPORT.RSR file (it contains part of the Macintosh system resources).
• The 4D application resource file.
• The database structure resource file.
• The database data file resource file may be optionally open.
• Finally, you can open your own resource file using the command Open resource file.

This list of open resource files is called the resource files chain. You can search for a given
resource in two ways:
• If you pass a resource file reference number to a resource 4D command, the resource is
searched for in that resource file only.
• If you do not pass a resource file reference number to a 4D Resource command, the
resource is searched for in all currently open resource files, starting with the most recently
opened file and ending with the first opened file. The resource files chain is thus browsed
in the reverse order of opening—the last opened resource file is examined first.

Here is an example:

$vhResFile:=Create resource file("Just_a_file")
If (OK=1)

ARRAY STRING(63;asSomeStrings;0)
STRING LIST TO ARRAY(8;asSomeStrings;$vhResFile)
ALERT("The size of the array is "+String(Size of array(asSomeStrings))+" element(s).")
STRING LIST TO ARRAY(8;asSomeStrings)
ALERT("The size of the array is "+String(Size of array(asSomeStrings))+" element(s).")
CLOSE RESOURCE FILE($vhResFile)

End if

At execution of this method, the first alert will display “The size of the array is 0
element(s)” and the second alert will display “The size of the array is 634 element(s)”.

The first call:

STRING LIST TO ARRAY(8;asSomeStrings;$vhResFile)

looks for the resource "STR#" ID=8 only in the resource file just created and open by the
call to Create resource file. Because the file is new and therefore empty, the resource is not
found.

4th Dimension Language Reference 949

The second call:

STRING LIST TO ARRAY(8;asSomeStrings)

looks for the resource "STR#" ID=8 in all the currently open resource files. Since the file
just created and opened (by the call to Create resource file) does not contain that resource,
STRING LIST TO ARRAY then looks for the resource in the database structure resource file.
This resource file does not contain that resource either, so STRING LIST TO ARRAY then
examines the 4D resource file, locates the resource in this file, and populates the array
with it.

Conclusion: When working with resource files, if you want to access a specific file, make
sure to pass the resource file reference number to a 4D Resources command. Otherwise,
the command assumes that you do not care which file is the source of the resources.

Resource Type
__

A resource file is highly structured. In addition to the data of each resource, it contains a
header and a map that fully describe its contents.

Resources are classified by types. A resource type is always denoted by a 4-character string.
A resource type is both case sensitive and diacritical sensitive. For example, the resource
types “Hi_!”, “hi_!” and “HI_!” are all different.

Important: Resource types with lowercase characters are reserved for use by the Operating
System. Avoid designating your own resource types with lowercase characters.

The following is a list of some commonly-used resource types:
• A resource of type “STR#” is a resource containing a list of Pascal strings. This resource is
called a string list resource.
• A resource of type “STR ” (note the space as fourth character) is a resource containing an
individual Pascal string. This resource is called a string resource.
• A resource of type “TEXT” is a resource containing a text string without length. This
resource is called a text resource.
• A resource of type “PICT” is a resource containing a Macintosh-based QuickDraw picture
that you can use and display on both Macintosh and Windows with 4D. This resource is
called a picture resource.

• A resource of type “cicn” is a resource containing a Macintosh-based color icon that you
can use and display with 4D on both Macintosh and Windows. This resource is called a
color icon resource. For example, a “cicn” resource can be associated with an item of a
hierarchical list, using the command SET LIST ITEM PROPERTIES.

950 4th Dimension Language Reference

In addition to the standard resource types, you can create you own types. For example,
you can decide to work with resources of type “MTYP” (for “My Type”).

To obtain the list of resource types currently present in all open resource files or in a
particular resource file, use the command RESOURCE TYPE LIST. Then, to obtain the list of
a specified type of resource present in all open resource files or in a particular resource file,
use the command RESOURCE LIST. This command returns the IDs and Names (see next
section) of all resources of a given type.

WARNING: Many applications rely on the resource type for working with its contents. For
example, while accessing a “STR#” resource, applications expect to find a string list in the
resource. Do NOT store inconsistent data in resources of standard types; this may lead to
system errors in your 4D application or in other applications.

WARNING: A resource is a highly structured file—do NOT access the file with commands
other than Resources commands. Note that nothing prevents you from passing a resource
file reference number (formally a 4D time expression like the document reference
number) to a command such as SEND PACKET. However, if you do so, you will probably
damage the resource file.

WARNING: A resource file can contain about up to 2,700 individual resources. Do NOT
attempt to exceed this limit. Note that nothing prevents you from doing so; however,
this will damage the resource file and make it unusable.

Resource Name and Resource ID
__

A resource has a resource name. A resource name can be up to 255 characters, and is
diacritical sensitive but not case sensitive. Resource names are useful for describing a
resource, but you access a resource using its type and ID number. Resource names are not
unique; several resources can have the same name.

A resource has a resource ID number (for short, resource ID or ID). This ID is unique
within a resource type and a resource file. For example:
• One resource file can contain a resource “ABCD” ID=1 and a resource “EFGH” ID=1.
• Two resource files can contain a resource with the same type and ID.

When you access a resource using a 4D command, you indicate its type and ID. If you do
not specify the resource file in which you are looking for this resource, the command
returns the occurrence of the resource found in the first examined resource file.
Remember that resource files are examined in the reverse order in which they have been
opened.

The range of a resource ID is -32,768..32,767.

4th Dimension Language Reference 951

Important: Use the range 15,000..32,767 for your own resources. Do NOT use negative
resource IDs; these are reserved for use by the Operating System. Do NOT use resource IDs
in the range 0..14,999; this range is reserved for use by 4th Dimension.

To obtain the IDs and names of a given resource type, use the command RESOURCE LIST.

To obtain the name of an individual resource, use the command Get resource name.

To change the name of and individual resource, use the command SET RESOURCE NAME.

As each 4D command optionally accepts a resource file reference number, you can easily
deal with resources having the same type and ID in two different resource files. The
following example copies all the “PICT” resources from one resource file to another:

` Open an existing resource file
$vhResFileA:=Open resource file("")
If (OK=1)

` Create a new resource file
$vhResFileB:=Create resource file("")
If (OK=1)

` Get the ID and Name lists of all the resources of type "PICT"
` located in the resource file A

RESOURCE LIST("PICT";$aiResID;$asResName;$vhResFileA)
` For each resource:

For($vlElem;1;Size of array($aiResID))
$viResID:=$aiResID{$vlElem}

` Load the resource from file A
GET RESOURCE ("PICT";$viResID;vxResData;$vhResFileA)

` If the resource could be loaded
If (OK=1)

` Add and write the resource into file B
SET RESOURCE ("PICT";$viResID;vxResData;$vhResFileB)

` If the resource could be added and written
If (OK=1)

` Copy also the name of the resource
SET RESOURCE NAME("PICT;$viResID;$asResName{$vlElem}

;$vhResFileB)
` As well as its properties
` (see Resource Properties discussion further below)

$vlResAttr:=Get resource properties("PICT";$viResID;$vhResFileA)
SET RESOURCE PROPERTIES("PICT";$viResID;$vlResAttr;$vhResFileB)

Else
ALERT("The resource PICT ID="+String($viResID)+

" could not be added.")
End if

952 4th Dimension Language Reference

Else
ALERT("The resource PICT ID="+String($viResID)+" could not be loaded.")

End if
End for
CLOSE RESOURCE FILE($vhResFileB)

End if
CLOSE RESOURCE FILE($vhResFileA)

End if

Resource Properties
__

Besides its type, name and ID, a resource has additional properties (also called attributes).
For example, a resource may or may not be purged. This attribute tells the Operating
System whether or not a loaded resource can be purged from memory when free memory
is required for allocating another object. As shown in the previous example, when
creating or copying a resource, it can be important to not only copy the resource, but also
its name and properties. For a complete explanation of resource properties, see the
description of the commands Get resource properties and SET RESOURCE PROPERTIES.

Handling Resource Contents
__

To load a resource of any type into memory, call GET RESOURCE, which returns the
contents of the resource in a BLOB.

To add or rewrite a resource on disk, call SET RESOURCE, which sets the contents of the
resource to the contents of the BLOB you pass.

To delete an existing resource, use the command DELETE RESOURCE.

To simplify handling of standard resource types, 4D provides additional built-in
commands that save you from having to parse a BLOB in order to extract the resource
data:
• STRING LIST TO ARRAY populates a String or Text array with the strings contained in a
string list resource.
• ARRAY TO STRING LIST creates or rewrites a string list resource with the elements of a
String or Text array.
• Get indexed string returns a particular string from a string list resource.
• Get string resource returns the string from a string resource.
• SET STRING RESOURCE creates or rewrites a string resource.
• Get text resource returns the text of a text resource.
• SET TEXT RESOURCE creates or rewrites a text resource.
• GET PICTURE RESOURCE returns the picture of a picture resource.
• SET PICTURE RESOURCE creates or rewrites a picture resource.
• GET ICON RESOURCE returns a color icon resource as a picture.

4th Dimension Language Reference 953

Note that these commands are provided to simplify manipulation of standard resource
types; however, they do not prevent you from using GET RESOURCE and SET RESOURCE
using BLOBs. For example, this line of code:

ALERT(Get text resource(20000))

is the shorter equivalent of:

GET RESOURCE("TEXT";20000;vxData)
If (OK=1)

$vlOffset:=0
ALERT(BLOB to text(vxData;Text without length;$vlOffset;BLOB Size(vxData)))

End if

4D Commands and Resources
__

In addition to the Resources commands described in this chapter, there are other 4D
commands that work with resources and resource files:
• On Macintosh, DOCUMENT TO BLOB and BLOB TO DOCUMENT can load and write the
whole resource fork of a Macintosh file.
• Using the commands SET LIST ITEM PROPERTIES and SET LIST PROPERTIES, you can
associate picture or color icon resources to the items of a list or use color icon resources as
nodes of a list.
• The PLAY command plays “snd ” resources on both Macintosh and Windows.
• The SET CURSOR command changes the appearance of the mouse using “CURS”
resources.

See Also
BLOB Commands, OS Resource Manager Errors, Resources and 4D Insider: an example.

954 4th Dimension Language Reference

Resources and 4D Insider: an Example Resources

version 6.0
__

Resources are very convenient way to deal with localization issues when developing and
maintaining a 4D database in different languages for the international market.

Let’s look at an example. The following figure shows the menu bar of a database in
English:

The title of the File menu already refers to a resource, while its menu item Quit does not.
The Examples menu is composed of the menu items Hierarchical Lists and Picture
Menus. This menu and its items do not refer to resources.

Using 4D Insider, it is possible to transform the literals of the menu bar into references to
strings stored in STR# resources. Let’s see how to perform this operation.

Note: 4D Insider is the 4D cross-reference and library management tool delivered with
4D Desktop.

4th Dimension Language Reference 955

1. Open the database using 4D Insider. The following figure shows the menu bar in the
4D Insider browser window:

2. At this point, the menu bar can be transformed to refer to a STR# resource. To do so,
select Text to STR# from the 4D Insider Tools Menu:

956 4th Dimension Language Reference

The TEXT to STR# resource dialog box appears:

3. Enter the resource name and ID, then click New. For example, Examples Menu is the
resource name and 20000 is the resource ID. The resource is created.

4. Select STR# in the popup menu of the browser window's main list:

4th Dimension Language Reference 957

5. Double-click the STR# 20000 list item to display its contents:

Now that these strings are stored in a resource, it is possible to change their values
without tampering with the logic of your database development.

6. To change the values, select Edit STR# from the 4D Insider Tools menu while the
Examples Menu resource is selected in the main list of the browser window:

958 4th Dimension Language Reference

The STR# resource editing window appears:

7. Translate the strings to another language. In the following figure, the strings have
been translated to French:

8. Once you have performed the translation, close the window. Click Yes in the confirm
dialog box:

4th Dimension Language Reference 959

9. At this point, quit 4D Insider and reopen the database with 4th Dimension. The 4D
Design environment Menu Bar Editor now shows the menu bar with the references to the
resources in French:

If you own the 4D desktop package, refer to the 4D Insider Reference manual for more
information about this process. In addition, for more information about using references
to resources in menus bars as well as objects in your database forms, refer to the
4th Dimension Design Reference manual.

The 4D Resources commands enable you to use the resources created by 4D Insider. The
following method uses the STRING LIST TO ARRAY command to load the STR# resource
(created using 4D Insider) into an array:

960 4th Dimension Language Reference

In the Debugger window, you can see that the array is populated with the strings
translated in 4D Insider:

See Also
Resources.

4th Dimension Language Reference 961

Open resource file Resources

version 6.0
__

Open resource file (resFilename{; fileType}) ® DocRef

Parameter Type Description
resFilename String ® Short or long name of resource file, or

Empty string for standard Open File dialog box
fileType String ® Mac OS file type (4-character string), or

Windows file ext. (1- to 3-character string), or
All files, if omitted

Function result DocRef ¬ Resource file reference number

Description
The command Open resource file opens the resource file whose name or pathname you
pass in resFileName.

If you pass a filename, the file should be located in the same folder as the structure file of
the database. Pass a pathname to open a resource file located in another folder.

If you pass an empty string in resFileName, the Open File dialog box is presented. You can
then select the resource file to open. If you cancel the dialog, no resource file is open;
Open resource file returns a null DocRef and sets the OK variable to 0.

If the resource file is opened correctly, Open resource file returns its resource file reference
number and sets the OK variable to 1. If the resource file does not exist, or if the file you
try to open is not a resource file, an error is generated.

On Macintosh, if you use the Open File dialog box, all files are presented by default. To
show a particular type of file, specify the file type in the optional fileType parameter.

On Windows, if you use the Open File dialog box, all files are presented by default. To
show a particular type of file, in fileType, pass a 1- to 3-character Windows file extension or
a Macintosh file type mapped using the command MAP FILE TYPES.

Remember to call CLOSE RESOURCE FILE for the resource file. Note, however, that when
you quit the application (or open another database), 4D automatically closes all the
resource files you opened using Open resource file or Create resource file .

962 4th Dimension Language Reference

Unlike the Open document command, which opens a document (data fork on Macintosh)
with exclusive read-write access, Open resource file does not prevent you from opening a
resource file already open from within the 4D session. For example, if you try to open the
same document twice using Open document, an I/O error will be returned at second
attempt. On the other hand, if you try to open a resource file already open from within
the 4D session, Open resource file will return the resource file reference number to the file
already open. Even if you open a resource file several times, you need to call CLOSE
RESOURCE FILE once in order to close that file. Note that this is permitted if the resource
file is open from within the 4D session; if you try open a resource file already opened by
another application, you will get an I/O error.

This multiple-opening capability enables you to easily obtain the reference numbers of
the 4D application and database resource files without tampering with normal 4D
operations (see examples 5 and 6).

WARNING
• Use caution when accessing the 4D application resource file. Do NOT modify the
resources of the 4D application; you could inadvertently damage the program and
provoke system errors. Also, remember that your database can be used in various
environments (4D, Runtime, 4D Engine, 4D Server and 4D Client).
• If you access the database resource file and intend to programmatically add, delete or
modify its resources, be sure to test the environment in which you are running. With 4D
Server, this will probably lead to serious issues. For example, if you modify a resource on
the server machine (via a database method or a stored procedure), you will definitely
affect the built-in 4D Server administration service that distributes resources
(transparently) to the workstations. Note that with 4D Client, you do not have direct
access to the structure file; it is located on the server machine.
• For these reasons, if you use resources, store them in your own files.
• When working with your own resources, do NOT use negative resource IDs; they are
reserved for use by the Operating System. Do NOT use resource IDs in the range
0..14,999; this range is reserved for use by 4th Dimension. Use the range 15,000..32,767
for your own resources. Remember that once you have opened a resource file, it will be
the first file to be searched in the resource files chain. If you store a resource in that file
with an ID in the range of system or 4D resources, this resource will be found by
commands such as GET RESOURCE and also by internal routines of the 4D application.
This may be the result you want to achieve, but if you are not sure, do NOT use these
ranges, as they may lead to system errors.
• Resource files are highly structured files and cannot accept more than 2,700 resources
per file. If you work with files containing a large number of resources, it is a good idea to
test that number before adding new resources to a file. See the Count resources examples
listed for the command RESOURCE TYPE LIST.

After you have opened a resource file, you can analyze the contents of the file using the
commands RESOURCE TYPE LIST and RESOURCE LIST.

4th Dimension Language Reference 963

Examples
1. The following example tries to open, on Windows, the resource file “MyPrefs.res”
located in the database folder:

Þ $vhResFile:=Open resource file("MyPrefs";"res ")

On Macintosh, the example tries to open the file “MyPrefs”.

2. The following example tries to open, on Windows. the resource file “MyPrefs.rsr”
located in the database folder:

Þ $vhResFile:=Open resource file("MyPrefs";"rsr")

On Macintosh, the example tries to open the file “MyPrefs”.

3. The following example displays the Open file dialog box showing all types of files:

Þ $vhResFile:=Open resource file("")

4. The following example displays the Open file dialog box showing files created by the
Create resource file command, using the default file type:

Þ $vhResFile:=Open resource file("";"res ")
If (OK=1)

ALERT("You just opened “"+Document+"”.")
CLOSE RESOURCE FILE($vhResFile)

End if

5. The following example returns in $vhStructureResFile the reference number to the
database structure resource file:

If (On Windows)
Þ $vhStructureResFile:=Open resource file(Replace string(

Structure file;".4DB";".RSR"))
Else

Þ $vhStructureResFile:=Open resource file(Structure file)
End if

964 4th Dimension Language Reference

6. The following example returns in $vhApplResFile the reference number to the 4D
application resource file:

If (On Windows)
Þ $vhApplResFile:=Open resource file(Replace string(Application file;".EXE";".RSR"))

Else
Þ $vhApplResFile:=Open resource file(Application file)

End if

See Also
CLOSE RESOURCE FILE, Create resource file, Resources.

System Variables and Sets
If the resource file is successfully opened, the OK variable is set to 1. If the resource file
could not be opened or if the user clicked Cancel in the Open file dialog box, the OK
variable is set to 0 (zero).

If the resource file is successfully opened using the Open file dialog box, the Document
variable is set to the pathname of the file.

Error Handling
If the resource file could not be opened due to a resource or I/O problem, an error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

4th Dimension Language Reference 965

Create resource file Resources

version 6.0
__

Create resource file (resFilename{; fileType}) ® DocRef

Parameter Type Description
resFilename String ® Short or long name of resource file, or

empty string for standard Save File dialog box
fileType String ® Mac OS file type (4-character string), or

Windows file ext. (1- to 3-character string), or
Resource ("res " / .RES) document, if omitted

Function result DocRef ¬ Resource file reference number

Description
The command Create resource file creates and opens a new resource file whose name or
pathname is passed in resFileName.

If you pass a filename, the file will be located in the same folder as the structure file of the
database. Pass a pathname to create a resource file located in another folder.

If the file already exists and is not currently open, Create resource file overrides it with a
new empty resource file. If the file is currently open, an I/O error is returned.

If you pass an empty string in resFileName, the Save File dialog box is presented. You can
then choose the location and the name of the resource file to be created. If you cancel
the dialog, no resource file is created; Create resource file returns a null DocRef and sets the
OK variable to 0.

If the resource file is correctly created and opened, Create resource file returns its resource
file reference number and sets the OK variable to 1. If the resource file cannot be created,
an error is generated.

On Macintosh, the default file type for a file created with Create resource file is “res ”.
On Windows, the default file extension is “.res”.

To create a file of another type:
• On Macintosh, pass the file type in the optional parameter fileType.
• On Windows, in fileType, pass a 1- to 3-character Windows file extension or a Macintosh
file type mapped using the command MAP FILE TYPES.

966 4th Dimension Language Reference

Remember to call CLOSE RESOURCE FILE for the resource file. Note, however, when you
quit the application (or open another database), 4D automatically closes all the resource
files you opened using Create resource file or Create resource file.

Examples
1. The following example tries to create and ope, on Windows, the resource file
“MyPrefs.res” located in the database folder:

Þ $vhResFile:=Create resource file("MyPrefs")

On Macintosh, the example tries to create and open the file “MyPrefs”.

2. The following example tries to create and open, on Windows, the resource file
“MyPrefs.rsr” located in the database folder:

Þ $vhResFile:=Create resource file("MyPrefs";"rsr")

On Macintosh, the example tries to create and open the file “MyPrefs”.

3. The following example displays the Save File dialog box:

Þ $vhResFile:=Create resource file("")
If (OK=1)

ALERT("You just created “"+Document+"”.")
CLOSE RESOURCE FILE($vhResFile)

End if

See Also
CLOSE RESOURCE FILE, ON ERR CALL, Open resource file, Resources.

System Variables and Sets
If the resource file is successfully created and opened, the OK variable is set to 1. If the
resource file could not be created or if the user clicked Cancel in the Save File dialog box,
the OK variable is set to 0 (zero).

If the resource file is successfully created and opened through the Save File dialog box, the
Document variable is set to the pathname of the file.

Error Handling
If the resource file could not be created or opened due to a resource or I/O problem, an
error is generated. You can catch this error with an error-handling method installed using
ON ERR CALL.

4th Dimension Language Reference 967

CLOSE RESOURCE FILE Resources

version 6.0
__

CLOSE RESOURCE FILE (resFile)

Parameter Type Description
resFile DocRef ® Resource file reference number

Description
The command CLOSE RESOURCE FILE closes the resource file whose reference number is
passed in resFile.

Even if you have opened the same resource file several times, you need to call CLOSE
RESOURCE FILE only once in order to close that file.

If you apply CLOSE RESOURCE FILE to the 4D application or database resource files, the
command detects it and does nothing.

If you pass an invalid resource file reference number, the command does nothing.

Remember to eventually call CLOSE RESOURCE FILE for a resource file that you have
opened using Open Resource file or Create resource file. Note that when you quit the
application (or open another database), 4D automatically closes all the resource files you
opened.

Example
The following example creates a resource file, adds a string resource and closes the file:

$vhDocRef:=Create resource file("Just a file")
If (OK=1)

SET STRING RESOURCE(20000;"Just a string";$vhDocRef)
Þ CLOSE RESOURCE FILE($vhDocRef)

End if

See Also
Create resource file, Open resource file.

System Variables and Sets
None is affected.

968 4th Dimension Language Reference

RESOURCE TYPE LIST Resources

version 6.0
__

RESOURCE TYPE LIST (resTypes{; resFile})

Parameter Type Description
resTypes String Array ¬ List of available resource types
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Description
The command RESOURCE TYPE LIST populates the array resTypes with the resource types
of the resources present in the resource files currently open.

If you pass a valid resource file reference number in the optional parameter resFile, only
the resources from that file are listed. If you do not pass the parameter resFile, all the
resources from the current open resource files are listed.

You can predeclare the array resTypes as a String or Text array before calling RESOURCE
TYPE LIST. If you do not predeclare the array, the command creates resTypes as a Text
array.

After the call, you can test the number of resource types found by applying the command
Size of array to the array resTypes.

Examples
1. The following example populates the array atResType with the resource types of the
resources present in all the resource files currently open:

Þ RESOURCE TYPE LIST(atResType)

2. The following example tells you if the Macintosh 4D structure file you are using
contains old 4D plug-ins that will need to be updated in order to use the database on
Windows:

$vhResFile:=Open resource file(Structure file)
Þ RESOURCE TYPE LIST(atResType;$vhResFile)

If (Find in array(atResType;"4DEX")>0)
 ALERT("This database contains old model Mac OS 4D plug-ins."+(Char(13)*2)+

"You will have to update them for using this database on Windows.")
End if

Note: The structure file is not the only file where old version plug-ins can be stored. The
database can also include a Proc.Ext file.

4th Dimension Language Reference 969

3. The following project method returns the number of resources present in a resource
file:

` Count resources project method
` Count resources (Time) -> Long
` Count resources (DocRef) -> Number of resources

C_LONGINT($0)
C_TIME($1)

$0:=0
Þ RESOURCE TYPE LIST($atResType;$1)

For ($vlElem;1;Size of array($atResType))
RESOURCE LIST($atResType{$vlElem};$alResID;$atResName;$1)
$0:=$0+Size of array($alResID)

End for

Once this project method is implemented in a database, you can write:

$vhResFile:=Open resource file("")
If (OK=1)

ALERT("The file “"+Document+"” contains "+String(Count resources ($vhResFile))
+" resource(s).")

CLOSE RESOURCE FILE($vhResFile)
End if

See Also
RESOURCE TYPE LIST.

System Variables and Sets
None is affected.

970 4th Dimension Language Reference

RESOURCE LIST Resources

version 6.0
__

RESOURCE LIST (resType; resIDs; resNames{; resFile})

Parameter Type Description
resType String ® 4-character resource type
resIDs LongInt Array ¬ Resource ID numbers for resources of this type
resNames String Array ¬ Resource names for resources of this type
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Description
The command RESOURCE LIST populates the arrays resIDs and resNames with the resource
IDs and names of the resources whose type is passed in resType.

Important: You must pass a 4-character string in resType.

If you pass a valid resource file reference number in the optional parameter resFile, only
the resources from that file are listed. If you do not pass the parameter resFile, all resources
from the current open resource files are listed.

If you predeclare the arrays before calling RESOURCE LIST, you must predeclare resIDs as a
Longint array and resNames as a String or Text array. If you do not predeclare the arrays,
the command creates resIDs as a Longint array and resNames as a Text array.

After the call, you can test the number of resources found by applying the command Size
of array to the array resIDs or resNames.

Examples
1. The following example populates the arrays $alResID and $atResName with the IDs and
names of the string list resources present in the structure file of the database:

If (On Windows)
$vhStructureResFile:=Open resource file(Replace string(Structure

file;".4DB";".RSR"))
Else

$vhStructureResFile:=Open resource file(Structure file)
End if
If (OK=1)

Þ RESOURCE LIST("STR#";$alResID;$atResName;$vhStructureResFile)
End if

4th Dimension Language Reference 971

2. The following example copies the picture resources present in all currently open
resource files into the Picture Library of the database:

Þ RESOURCE LIST("PICT";$alResID;$atResName)
Open window(50;50;550;120;5;"Copying PICT resources...")
For ($vlElem;1;Size of array($alResID))

GET PICTURE RESOURCE($alResID{$vlElem};$vgPicture)
If (OK=1)

$vsName:=$atResName{$vlElem}
If ($vsName="")

$vsName:="PICT resID="+String($alResID{$vlElem})
End if
ERASE WINDOW
GOTO XY(2;1)
MESSAGE("Adding picture “"+$vsName+"” to the DB Picture library.")
SET PICTURE TO LIBRARY($vgPicture;$alResID{$vlElem};$vsName)

End if
End for
CLOSE WINDOW

See Also
RESOURCE TYPE LIST.

System Variables and Sets
None is affected.

972 4th Dimension Language Reference

STRING LIST TO ARRAY Resources

version 6.0
__

STRING LIST TO ARRAY (resID; strings{; resFile})

Parameter Type Description
resID Number ® Resource ID number
strings String array ® String or Text array to receive the strings

¬ Strings from the STR# resource
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Description
The command STRING LIST TO ARRAY populates the array strings with the strings stored in
the string list ("STR#") resource whose ID is passed in resID.

If the resource is not found, the array strings is left unchanged and the OK variable is set
to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Before calling STRING LIST TO ARRAY, you can predeclare the array strings as a String or
Text array. If you do not predeclare the array, the command creates strings as a Text array.

Note: Each string of a string list resource can contain up to 255 characters.

Tip: Limit your use of string list resources to those up to 32K in total size, and a maximum
of a few hundred strings per resource.

Example
See example for the command ARRAY TO STRING LIST.

See Also
ARRAY TO STRING LIST, Get indexed string, Get string resource, Get text resource.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 973

ARRAY TO STRING LIST Resources

version 6.0
__

ARRAY TO STRING LIST (strings; resID{; resFile})

Parameter Type Description
strings String array ® String or Text array

(new contents for the STR# resource)
resID Number ® Resource ID number
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command ARRAY TO STRING LIST creates or rewrites the string list (“STR#”) resource
whose ID is passed in resID. The contents of the resource are created from the strings
passed in the array strings. The array can be a String or Text array.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top the resource files
chain (the last resource file opened).

Note: Each string of a string list resource can contain up to 255 characters.

Tip: Limit your use of string list resources to resources no more than 32K in total size, and
a maximum of a few hundred strings maximum per resource.

Example
Your database relies on a given set of fonts.

In the On Exit Database Method, you write:

` On Exit Database Method
If (àvbFontsAreOK)

FONT LIST($atFont)
$vhResFile:=Open resource file("FontSet")
If (OK=1)

Þ ARRAY TO STRING LIST($atFont;15000;$vhResFile)
CLOSE RESOURCE FILE($vhResFile)

End if
End if

974 4th Dimension Language Reference

In the On Startup Database Method, you write:

` On Startup Database Method
àvbFontsAreOK:=False
FONT LIST($atNewFont)
If (Test path name("FontSet")#Is a document)

$vhResFile:=Create resource file("FontSet")
Else

$vhResFile:=Open resource file("FontSet")
End if
If (OK=1)

STRING LIST TO ARRAY(15000;$atOldFont;$vhResFile)
If (OK=1)

àvbFontsAreOK:=True
For($vlElem;1;Size of array($atNewFont))

If ($atNewFont{$vlElem}#$atOldFont{$vlElem}))
$vlElem:=MAXLONG
àvbFontsAreOK:=False

End if
End for

Else
àvbFontsAreOK:=True

End if
CLOSE RESOURCE FILE($vhResFile)

End if
If(Not(àvbFontsAreOK))

CONFIRM("You are not using the same font set, OK?")
If(OK=1)

àvbFontsAreOK:=True
Else

QUIT 4D
End if

End if

See Also
SET STRING RESOURCE, SET TEXT RESOURCE, STRING LIST TO ARRAY.

System Variables and Sets
If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 975

Get indexed string Resources

version 6.0
__

Get indexed string (resID; strID{; resFile}) ® String

Parameter Type Description
resID Number ® Resource ID number
strID Number ® String number
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Function result String ¬ Value of the indexed string

Description
The command Get indexed string returns one of the strings stored in the string list
(“STR#”) resource whose ID is passed in resID.

You pass the number of the string in strID. The strings of a string list resource are
numbered from 1 to N. To get all the strings (and their numbers) of a string list resource,
use the command STRING LIST TO ARRAY.

If the resource or the string within the resource is not found, an empty string is returned
and the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A string of a string list resource can contain up to 255 characters.

Example
See example for the command Month of.

See Also
Get string resource, Get text resource, STRING LIST TO ARRAY.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

976 4th Dimension Language Reference

Get string resource Resources

version 6.0
__

Get string resource (resID{; resFile}) ® String

Parameter Type Description
resID Number ® Resource ID number
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Function result String ¬ Contents of the STR resource

Description
The command Get string resource returns the string stored in the string (“STR ”) resource
whose ID is passed in resID.

If the resource is not found, an empty string is returned and the OK variable is set to 0
(zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A string resource can contain up to 255 characters.

Example
The following example displays the contents of the string resource ID=20911, which
must be located in at least one of the currently open resource files:

Þ ALERT (Get string resource(20911))

See Also
Get indexed string, Get text resource, SET STRING RESOURCE, STRING LIST TO ARRAY.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 977

SET STRING RESOURCE Resources

version 6.0
__

SET STRING RESOURCE (resID; resData{; resFile})

Parameter Type Description
resID Number ® Resource ID number
resData String ® New contents for the STR resource
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command SET STRING RESOURCE creates or rewrites the string (“STR ”) resource
whose ID is passed in resID with the string passed in resData.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top the resource files
chain (the last resource file opened).

Note: A string resource can contain up to 255 characters.

See Also
Get string resource, SET TEXT RESOURCE.

System Variables and Sets
If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

978 4th Dimension Language Reference

Get text resource Resources

version 6.0
__

Get text resource (resID{; resFile}) ® Text

Parameter Type Description
resID Number ® Resource ID number
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Function result Text ¬ Contents of the TEXT resource

Description
The command Get text resource returns the text stored in the text (“TEXT”) resource
whose ID is passed in resID.

If the resource is not found, empty text is returned, and the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A text resource can contain up to 32,000 characters.

Example
The following example displays the contents of the text resource ID=20800, which must
be located in at least one of the currently open resource files:

Þ ALERT (Get text resource(20800))

See Also
Get indexed string, Get string resource, SET TEXT RESOURCE, STRING LIST TO ARRAY.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

4th Dimension Language Reference 979

SET TEXT RESOURCE Resources

version 6.0
__

SET TEXT RESOURCE (resID; resData{; resFile})

Parameter Type Description
resID Number ® Resource ID number
resData String ® New contents for the TEXT resource
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command SET TEXT RESOURCE creates or rewrites the text (“TEXT”) resource whose
ID is passed in resID with the text or string passed in resData.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top the resource files
chain (the last resource file opened).

Note: A text resource can contain up to 32,000 characters.

See Also
Get text resource, SET STRING RESOURCE.

System Variables and Sets
If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

980 4th Dimension Language Reference

GET PICTURE RESOURCE Resources

version 6.0
__

GET PICTURE RESOURCE (resID; resData{; resFile})

Parameter Type Description
resID Number ® Resource ID number
resData Field or Var. ® Picture field or variable to receive the picture

¬ Contents of the PICT resource
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Description
The command GET PICTURE RESOURCE returns in the picture field or variable resData the
picture stored in the picture (“PICT”) resource whose ID is passed in resID.

If the resource is not found, the resData parameter is left unchanged, and the OK variable
is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A picture resource can be at least several megabytes in size.

Example
See example for the command RESOURCE LIST.

See Also
GET ICON RESOURCE, ON ERR CALL, SET PICTURE RESOURCE.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

Error Handling
If there is not enough memory to load the picture, an error is generated. You can catch
this error with an error-handling method installed using ON ERR CALL.

4th Dimension Language Reference 981

SET PICTURE RESOURCE Resources

version 6.0
__

SET PICTURE RESOURCE (resID; resData{; resFile})

Parameter Type Description

resID Number ® Resource ID number
resData Picture ® New contents for the PICT resource
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description

The command SET PICTURE RESOURCE creates or rewrites the picture (“PICT”) resource
whose ID is passed in resID with the picture passed in resData.

If the resource cannot be added, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top of the resource
files chain (the last resource file opened).

If you pass in resData an empty picture field or variable, the command has no effect and
the OK variable is set to 0.

Note: A picture resource can be several megabytes in size and even more.

See Also

GET PICTURE RESOURCE.

System Variables and Sets

If the resource has been written, OK is set to 1. Otherwise, it is set to 0 (zero).

982 4th Dimension Language Reference

GET ICON RESOURCE Resources

version 6.0
__

GET ICON RESOURCE (resID; resData{; fileRef})

Parameter Type Description
resID Number ® Icon resource ID number
resData Picture ® Picture field or variable to receive the picture

¬ Contents of the cicn resource
fileRef Number ® Resource file reference number, or

all open resource files, if omitted

Description
The command GET ICON RESOURCE returns, in the picture field or variable resData, the
icon stored in the color icon (“cicn”) resource whose ID is passed in resID.

If the resource is not found, the resData parameter is left unchanged and the OK variable
is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Example
The following example loads, in a Picture array, the color icons located in the active 4D
application:

If (On Windows)
$vh4DResFile:=Open resource file(Replace string(Application file;".EXE";".RSR"))

Else
$vh4DResFile:=Open resource file(Application file)

End if
RESOURCE LIST("cicn";$alResID;$asResName;$vh4DResFile)
$vlNbIcons:=Size of array($alResID)
ARRAY PICTURE(ag4DIcon;$vlNbIcons)
For ($vlElem;1;$vlNbIcons)

Þ GET ICON RESOURCE($alResID{$vlElem};ag4DIcon{$vlElem};$vh4DResFile)
End for

4th Dimension Language Reference 983

After this code has been executed, the array looks like this when displayed in a form:

See Also
GET PICTURE RESOURCE.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

984 4th Dimension Language Reference

GET RESOURCE Resources

version 6.0
__

GET RESOURCE (resType; resID; resData{; resFile})

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resData BLOB ® BLOB field or variable to receive the data

¬ Contents of the resource
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Description
The command GET RESOURCE returns in the BLOB field or variable resData the contents
of the resource whose type and ID is passed in resType and resID.

Important: You must pass a 4-character string in resType.

If the resource is not found, the resData parameter is left unchanged and the OK variable
is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is searched for in
that file only. If you do not pass resFile, the first occurrence of the resource found in the
resource files chain is returned.

Note: A resource can be at least several megabytes in size.

Platform independence: Remember that you are working with MacOS-based resources. No
matter what the platform, internal resource data such as Long Integer is stored using
Macintosh byte ordering. On Windows, the data for standard resources (such as string list
and pictures resources) is automatically byte swapped when necessary. On the other hand,
if you create and use your own internal data structures, it is up to you to byte swap the
data you extract from the BLOB (i.e., passing Macintosh byte ordering to a command such
BLOB to longint).

Example
See the example for the command SET RESOURCE.

4th Dimension Language Reference 985

See Also
BLOB Commands, Resources, SET RESOURCE.

System Variables and Sets
If the resource is found, OK is set to 1. Otherwise, it is set to 0 (zero).

Error Handling
If there is not enough memory to load the resource, an error is generated. You can catch
this error with an error-handling method installed using ON ERR CALL.

986 4th Dimension Language Reference

SET RESOURCE Resources

version 6.0
__

SET RESOURCE (resType; resID; resData{; resFile})

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resData BLOB ® New contents for the resource
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command SET RESOURCE creates or rewrites the resource whose type and ID is passed
in resType and resID with the data passed in the BLOB resData.

Important: You must pass a 4-character string in resType.

If the resource cannot be written, the OK variable is set to 0 (zero).

If you pass a valid resource file reference number in resFile, the resource is added to that
file. If you do not pass resFile, the resource is added to the file at the top of the resource
files chain (the last resource file opened).

Note: A resource can be at least several megabytes in size.

Platform independence: Remember that you are working with MacOS-based resources. No
matter what the platform, internal resource data such as Long Integer is stored using
Macintosh byte ordering. On Windows, the data for standard resources (such as string list
and pictures resources) is automatically byte swapped when necessary. On the other hand,
if you create and use your own internal data structures, it it up to you to byte swap the
data you write into the BLOB (i.e., passing Macintosh byte ordering to a command such
LONGINT TO BLOB).

Example
During a 4D session you maintain some user preferences in interprocess variables. To save
these preferences from session to session, you can:
1. Use the commands SAVE VARIABLES and LOAD VARIABLES to store and retrieve the
variables in variable documents on disk.
2. Use the commands VARIABLE TO BLOB, BLOB TO DOCUMENT, DOCUMENT TO BLOB
and BLOB TO VARIABLE to store and retrieve the variables in BLOB documents on disk.
3. Use the commands VARIABLE TO BLOB, SET RESOURCE, GET RESOURCE and BLOB TO
VARIABLE to to store and retrieve the variables in resource files on disk.

4th Dimension Language Reference 987

The following is an example of the third method. In the On Exit Database Method you
write:

` On Exit Database Method
If (Test path name("DB_Prefs")#Is a document)

$vhResFile:=Create resource file("DB_Prefs")
Else

$vhResFile:=Open resource file("DB_Prefs")
End if
If (OK=1)

VARIABLE TO BLOB(àvbAutoRepeat;$vxPrefData)
VARIABLE TO BLOB(àvlCurTable;$vxPrefData;*)
VARIABLE TO BLOB(àasDfltOption;$vxPrefData;*)

` and so on...
Þ SET RESOURCE("PREF";26500;$vxPrefData;$vhResFile)

CLOSE RESOURCE FILE($vhResFile)
End if

In the On Startup Database Method you write:
` On Startup Database Method

C_BOOLEAN(àvbAutoRepeat)
C_LONGINT(àvlCurTable)
$vbDone:=False
$vhResFile:=Open resource file("DB_Prefs")
If (OK=1)

Þ GET RESOURCE("PREF";26500;$vxPrefData;$vhResFile)
If (OK=1)

$vlOffset:=0
BLOB TO VARIABLE($vxPrefData;àvbAutoRepeat;$vlOffset)
BLOB TO VARIABLE($vxPrefData;àvlCurTable;$vlOffset)
BLOB TO VARIABLE($vxPrefData;àasDfltOption;$vlOffset)

` and so on...
$vbDone:=False

End if
CLOSE RESOURCE FILE($vhResFile)

End if
If(Not($vbDone))

àvbAutoRepeat:=False
àvlCurTable:=0
ARRY STRING(127;àasDfltOption;0)

End if

See Also
BLOB Commands, GET RESOURCE.

System Variables and Sets
If the resource is written, OK is set to 1. Otherwise, it is set to 0 (zero).

988 4th Dimension Language Reference

Get resource name Resources

version 6.0
__

Get resource name (resType; resID{; resFile}) ® String

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Function result String ¬ Name of the resource

Description
The command Get resource name returns the name of the resource whose type is passed
in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, Get resource name returns an empty string and sets the OK
variable to 0 (zero).

Example
The following project method copies a resource, and its resource name and attributes,
from one resource file to another:

` COPY RESOURCE Project Method
` COPY RESOURCE (String ; Long ; Time ; Time)
` COPY RESOURCE (resType ; resID ; srcResFile ; dstResFile)

C_STRING (4;$1)
C_LONGINT ($2)
C_TIME ($3;$4)
C_BLOB ($vxResData)
GET RESOURCE ($1;$2;$vxData;$3)
If (OK=1)

SET RESOURCE ($1;$2;$vxData;$4)
If (OK=1)

Þ SET RESOURCE NAME ($1;$2; Get resource name ($1;$2;$3);$4)
SET RESOURCE PROPERTIES ($1;$2; Get resource properties ($1;$2;$3);$4)

End if
End if

4th Dimension Language Reference 989

Once this project method is present in your application, you can write:
` Copy the resource 'DATA' ID = 15000 from file A to file B

COPY RESOURCE ("DATA";15000;$vhResFileA;$vhResFileB)

See Also
SET RESOURCE PROPERTIES.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist; otherwise, it is set to 1.

990 4th Dimension Language Reference

SET RESOURCE NAME Resources

version 6.0
__

SET RESOURCE NAME (resType; resID; resName{; resFile})

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resName String ® New name for the resource
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command SET RESOURCE NAME changes the name of the resource whose type is
passed in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, SET RESOURCE NAME does nothing and sets the OK variable
to 0 (zero).

WARNING: DO NOT change the names of resources that belong to 4D or to any System
files. If you do so, you may provoke undesired system errors.

Note: Resource names can be up to 255 characters in length. They are not case sensitive,
but are diacritical sensitive.

Example
See example for the command Get resource name.

See Also
SET RESOURCE PROPERTIES.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist, otherwise it is set to 1.

4th Dimension Language Reference 991

Get resource properties Resources

version 6.0
__

Get resource properties (resType; resID{; resFile}) ® Number

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resFile DocRef ® Resource file reference number, or

all open resource files, if omitted

Function result Number ¬ Resource attributes

Description
The command Get resource properties returns the attributes of the resource whose type is
passed in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, Get resource properties returns 0 (zero) and sets the OK
variable to 0 (zero).

The numeric value returned by Get resource properties must be seen as a bit field value
whose bits have special meaning. For a description of the resource attributes and their
effects, please refer to the command SET RESOURCE PROPERTIES.

Example
See example for the command Get resource name.

See Also
SET RESOURCE NAME.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist; otherwise, it is set to 1.

992 4th Dimension Language Reference

SET RESOURCE PROPERTIES Resources

version 6.0
__

SET RESOURCE PROPERTIES (resType; resID; resAttr{; resFile})

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resAttr Number ® New attributes for the resource
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command SET RESOURCE PROPERTIES changes the attributes of the resource whose
type is passed in resType and whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass the parameter resFile, the resource is
searched for within the current open resource files.

If the resource does not exist, SET RESOURCE PROPERTIES does nothing and sets the OK
variable to 0 (zero).

The numeric value you pass in resAttr must be seen as a bit field value whose bits have
special meaning. The following predefined constants are provided by 4th Dimension:

Constant Type Value
System heap resource mask Long Integer 64
System heap resource bit Long Integer 6
Purgeable resource mask Long Integer 32
Purgeable resource bit Long Integer 5
Locked resource mask Long Integer 16
Locked resource bit Long Integer 4
Protected resource mask Long Integer 8
Protected resource bit Long Integer 3
Preloaded resource mask Long Integer 4
Preloaded resource bit Long Integer 2
Changed resource mask Long Integer 2
Changed resource bit Long Integer 1

Using these constants, you can build any resource attributes value. See examples below.

4th Dimension Language Reference 993

Resource Attributes and Their Effects

• System heap
If this attribute is set, the resource will be loaded into the system memory rather than
into 4D memory. You should not use this attribute, unless you really know what you are
doing.

• Purgeable
If this attribute is set, after the resource has been loaded, you can purge it from memory if
space is required for allocation of other data. Since you load resources into 4D BLOBs, it is
a good idea to have all your own resources purgeable in order to reduce memory usage.
However, if you frequently access this resource during a working session, you might want
to make it non-purgeable in order to reduce disk access due to frequent reloading of a
purged resource.

• Locked
If this attribute is set, you will not be able to relocate the resource (unmovable) after it is
loaded into memory. A locked resource cannot be purged even if it is purgeable. Locking a
resource has the undesirable effect of fragmenting the memory space. DO NOT use this
attribute, unless you really know what you are doing.

• Protected
If this attribute is set, you can no longer change the name, ID number or the contents of
a the resource. You can no longer delete this resource. However, you can call SET
RESOURCE PROPERTIES to clear this attribute; then you can again modify or delete the
resource. Most of the time, you will not use this attribute. Note: This attribute has no
effect on Windows.

• Preloaded
If this attribute is set, the resource is automatically loaded into memory if the resource file
where it is located is open. This attribute is useful for optimizing resource loading when a
resource file is opened. Most of the time, you will not use this attribute.

• Changed
If this attribute is set, the resource is marked as “must be saved on disk” when the
resource file where it is located is closed. Since the 4D command SET RESOURCE handles
the writing and rewriting of resources internally, you should not use this attribute, unless
you really know what you are doing.

You will usually use the attribute purgeable and, more rarely, Preloaded and Protected.

WARNING: DO NOTchange the attributes of resources that belong to 4D or to any System
files. If you do so, you may provoke undesired system errors.

994 4th Dimension Language Reference

Examples
1. See example for the command Get resource name.

2. The following example makes the resource 'STR#' ID=17000 purgeable, but leaves the
other attributes unchanged:

$vlResAttr:=Get resource properties ('STR#';17000;$vhResFile)
SET RESOURCE PROPERTIES('STR#';17000;

$vlResAttr ?+ Purgeable resource bit;$vhMyResFile)

3. The following example makes the resource 'STR#' ID=17000 preloaded and non
purgeable:

SET RESOURCE PROPERTIES('STR#';17000;Preloaded resource mask;$vhResFile)

4. The following example makes the resource 'STR#' ID=17000 preloaded but purgeable:

SET RESOURCE PROPERTIES('STR#';17000;
Preloaded resource mask+Purgeable resource mask;$vhResFile)

See Also
SET RESOURCE NAME.

System Variables or Sets
The OK variable is set to 0 if the resource does not exist; otherwise, it is set to 1.

4th Dimension Language Reference 995

DELETE RESOURCE Resources

version 6.0
__

DELETE RESOURCE (resType; resID{; resFile})

Parameter Type Description
resType String ® 4-character resource type
resID Number ® Resource ID number
resFile DocRef ® Resource file reference number, or

current resource file, if omitted

Description
The command DELETE RESOURCE deletes the resource whose type is passed in resType and
whose ID number is passed in resID.

If you pass a valid resource file reference number in the parameter resFile, the resource is
searched for within that file only. If you do not pass resFile, the resource is searched for
within the current open resource files.

If the resource does not exist, DELETE RESOURCE does nothing and sets the OK variable to
0 (zero). If the resource is found and deleted, the OK variable is set to 1.

WARNING: DO NOT delete resources that belong to 4D or to any System files. If you do
so, you may provoke undesired system errors.

Examples
1. The following example deletes the resource "STR#" ID=20000:

` Note that this example will delete the first "STR#" ID=20000 resource
` found in any resource file currently open:

Þ DELETE RESOURCE ("STR#";20000)

2. The following example deletes the resource "STR#" ID=20000 if it is found in a specified
resource file:

` Note that this example will delete the resource "STR#" ID=20000
` only if it is present in the resource file specified by $vhResFile:

Þ DELETE RESOURCE ("STR#";20000;$vhResFile)
` Note also that if there is such a resource in a currently open
` resource file other than that specified by $vhResFile, this resource
` is left untouched

996 4th Dimension Language Reference

3. The project method DELETE RESOURCES OF TYPE deletes all the resources of the type
specified (as the second parameter) from the resource file specified (as the first
parameter):

` DELETE RESOURCES OF TYPE Project Method
` DELETE RESOURCES OF TYPE (Time ; String)
` DELETE RESOURCES OF TYPE (resFile ; resType)

C_TIME($1)
C_STRING(4;$2)

RESOURCE LIST($2;$aiResID;$asResName;$1)
If(OK=1)

For($vlElem;1;Size of array($aiResID))
Þ DELETE RESOURCE($2;$aiResID{$vlElem};$1)

End for
End if

After this project method is present in a database, you can write:

` Delete all the resource of type "PREF" from the resource file $vhResFile
DELETE RESOURCES OF TYPE ($vhResFile;"PREF")

4. The project method DELETE RESOURCE BY NAME deletes a resource (of a specific type)
whose name is known:

` DELETE RESOURCE BY NAME Project Method
` DELETE RESOURCE BY NAME (Time ; String ; String)
` DELETE RESOURCE BY NAME (resFile ; resType ; resName)

C_TIME($1)
C_STRING(4;$2)
C_STRING(255;$3)

RESOURCE LIST($2;$aiResID;$asResName;$1)
If(OK=1)

$vlElem:=Find in array($asResName;$3)
If($vlElem>0)

Þ DELETE RESOURCE($2;$aiResID{$vlElem};$1)
End for

End if

4th Dimension Language Reference 997

After this project method is present in a database, you can write:

` Delete, from the resource file $vhResFile, the resource "PREF" whose name is
“Standard Settings”:

DELETE RESOURCE BY NAME ($vhResFile;"PREF";"Standard Settings")

See Also
RESOURCE LIST, SET RESOURCE PROPERTIES.

System Variables and Sets
The OK variable is set to 0 if the resource does not exist. If the resource has been deleted,
the OK variable is set to 1.

998 4th Dimension Language Reference

41 Selection

4th Dimension Language Reference 999

1000 4th Dimension Language Reference

ALL RECORDS Selection

version 3
__

ALL RECORDS {(table)}

Parameter Type Description
table Table ® Table for which to select all records, or

Default table, if omitted

Description
ALL RECORDS selects all the records of table for the current process. ALL RECORDS makes
the first record the current record and loads the record from disk. ALL RECORDS returns
the records to the default record order, which is the order in which the records are stored
on disk.

Example
The following example displays all the records from the [People] table:

Þ ALL RECORDS ([People]) ` Select all the records in the table
DISPLAY SELECTION ([People]) ` Display records in output form

See Also
DISPLAY SELECTION, MODIFY SELECTION, ORDER BY, QUERY, Records in selection, Records
in table.

4th Dimension Language Reference 1001

Records in selection Selection

version 3
__

Records in selection {(table)} ® Number

Parameter Type Description
table Table ® Table for which to return number of selected
records,

or Default table, if omitted

Function result Number ¬ Records in selection of table

Description
Records in selection returns the number of records in the current selection of table. In
contrast, Records in table returns the total number of records in the table.

Example
The following example shows a loop technique commonly used to move through all the
records in a selection. The same action can also be accomplished with the APPLY TO
SELECTION command:

FIRST RECORD ([People]) ` Start at first record in the selection
Þ For ($vlRecord; 1; Records in selection ([People])) ` Loop once for each record

Do Something ` Do something with the record
NEXT RECORD ([People]) ` Move to the next record

End for

See Also
Records in table.

1002 4th Dimension Language Reference

DELETE SELECTION Selection

version 3
__

DELETE SELECTION {(table)}

Parameter Type Description
table Table ® Table for which to delete the current selection,
or

Default table, if omitted

Description
DELETE SELECTION deletes the current selection of records from table. If the current
selection is empty, DELETE SELECTION has no effect. After the records are deleted, the
current selection is empty. Records that are deleted during a transaction are locked to
other users and other processes until the transaction is validated or canceled.

Warning: Deleting a selection of records is a permanent operation, and cannot be undone.

The Completely Delete option in the Table Properties dialog box allows you to increase
the speed of deletions when DELETE SELECTION is used.

Examples
1. The following example displays all the records from the [People] table and allows the
user to select which ones to delete. The example has two sections. The first is a method to
display the records. The second is an object method for a Delete button. Here is the first
method:

ALL RECORDS ([People]) ` Select all records
OUTPUT FORM ([People]; "Listing") ` Set the form to list the records
DISPLAY SELECTION ([People]) ` Display all records

The following is the object method for the Delete button, which appears in the Footer
area of the output form. The object method uses the records the user selected (the
UserSet) to delete the selection. Note that if the user did not select any records, DELETE
SELECTION has no effect.

` Confirm that the user really wants to delete the records
CONFIRM("You selected "+String(Records in set ("UserSet"))+" people to delete."

+Char(13)+"Click OK to Delete them.")
If (OK=1)

USE SET ("UserSet") ` Use the records chosen by the user
Þ DELETE SELECTION([People]) ` Delete the selection of records

End if
ALL RECORDS ([People]) ` Select all records

4th Dimension Language Reference 1003

2. If a locked record is encountered during the execution of DELETE SELECTION, that
record is not deleted. Any locked records are put into a set called LockedSet. After DELETE
SELECTION has executed, you can test the LockedSet to see if any records were locked. The
following loop will execute until all the records have been deleted:

Repeat ` Repeat for any locked records
Þ DELETE SELECTION([ThisTable])

USE SET ("LockedSet") ` Select only the locked records
Until (Records in set("LockedSet")=0) ` Until there are no more locked records

See Also
DISPLAY SELECTION, MODIFY SELECTION, Record Locking, Sets.

1004 4th Dimension Language Reference

Selected record number Selection

version 3
__

Selected record number {(table)} ® Number

Parameter Type Description
table Table ® Table for which to return the selected record
number

or Default table, if omitted

Function result Number ¬ Selected record number of current record

Description
Selected record number returns the position of the current record within the current
selection of table.

If the selection not is empty and if the current record is within the selection, Selected
record number returns a value between 1 and Records in selection. If the selection is empty,
of if there is no current record, it returns 0 (zero).

The selected record number is not the same as the number returned by Record number,
which returns the physical record number in the table. The selected record number
depends on the current selection and the current record.

Example
The following example saves the current selected record number in a variable:

Þ CurSelRecNum:=Selected record number([People]) ` Get the selected record number

See Also
About Record Numbers, GOTO SELECTED RECORD, Records in selection.

4th Dimension Language Reference 1005

GOTO SELECTED RECORD Selection

version 3
__

GOTO SELECTED RECORD ({table; }record)

Parameter Type Description
table Table ® Table in which to go to the selected record, or

Default table, if omitted
record Number ® Position of record in the selection

Description
GOTO SELECTED RECORD moves to the specified record in the current selection of table
and makes that record the current record. The current selection does not change. The
record parameter is not the same as the number returned by Record number; it represents
the record’s position in the current selection. The record’s position depends on how the
selection is made and whether or not the selection is sorted.

If there are no records in the current selection, or the number is not in the selection,
then GOTO SELECTED RECORD does nothing.

Example
The following example loads data from the field [People]Last Name into the atNames. An
array of long integers, called alRecNum, is filled with numbers that will represent the
selected record numbers. Both arrays are then sorted:

` Make any selection for the [People] table here
` ...
` Get the names

SELECTION TO ARRAY ([People]Last Name;atNames)
` Create an array for the selected record numbers

$vlNbRecords:=Size of array (atNames)
ARRAY LONGINT (alRecNum;$vlNbRecords)
For ($vlRecord; 1; $vlNbRecords)

alRecNum{$vlRecord}:=$vlRecord
End for

` Sort the arrays in alphabetical order
SORT ARRAY (atNames; alRecNum; >)

If the array atNames is displayed in a scrollable area, the user can click one of the items.
Since the sorting of the two arrays is synchronized, any element in alRecNum provides
the selected record number for the record whose name is stored in the corresponding
element in atNames.

1006 4th Dimension Language Reference

The following object method for atNames selects the correct record in the [People]
selection, according to the name chosen in the scrollable area:

Case of
: (Form event=On Clicked)

If (atNames#0)
Þ GOTO SELECTED RECORD (alRecNum{atNames})

End if
End case

See Also
Selected record number.

4th Dimension Language Reference 1007

FIRST RECORD Selection

version 3
__

FIRST RECORD {(table)}

Parameter Type Description
table Table ® Table for which to move to the first selected
record,

or Default table, if omitted

Description
FIRST RECORD makes the first record of the current selection of table the current record,
and loads the record from disk. All query, selection, and sorting commands also set the
current record to the first record. If the current selection is empty, FIRST RECORD has no
effect.

This command is most often used after the USE SET command to begin looping through a
selection of records from the first record. However, you can also call it from a subroutine
if you are not sure whether or not the current record is actually the first.

Example
The following example makes the first record of the [Customers] table the first record:

Þ FIRST RECORD ([Customers])

See Also
Before selection, End selection, LAST RECORD, NEXT RECORD, PREVIOUS RECORD.

1008 4th Dimension Language Reference

NEXT RECORD Selection

version 3
__

NEXT RECORD {(table)}

Parameter Type Description
table Table ® Table for which to move to the next selected
record,

or Default table, if omitted

Description
NEXT RECORD moves the current record pointer to the next record in the current
selection of table for the current process. If the current selection is empty, or if Before
selection or End selection is TRUE, NEXT RECORD has no effect.

If NEXT RECORD moves the current record pointer past the end of the current selection,
End selection returns TRUE, and there is no current record. If End selection returns TRUE,
use FIRST RECORD, LAST RECORD, or GOTO SELECTED RECORD to move the current record
pointer back into the current selection.

Example
See the example for DISPLAY RECORD.

See Also
Before selection, End selection, FIRST RECORD, LAST RECORD, PREVIOUS RECORD.

4th Dimension Language Reference 1009

LAST RECORD Selection

version 3
__

LAST RECORD {(table)}

Parameter Type Description
table Table ® Table for which to move to the last selected
record,

or Default table, if omitted

Description
LAST RECORD makes the last record of the current selection of table the current record
and loads the record from disk. If the current selection is empty, LAST RECORD has no
effect.

Example
The following example makes the last record of the [People] table the current record:

Þ LAST RECORD ([People])

See Also
Before selection, End selection, FIRST RECORD, NEXT RECORD, PREVIOUS RECORD.

1010 4th Dimension Language Reference

PREVIOUS RECORD Selection

version 3
__

PREVIOUS RECORD {(table)}

Parameter Type Description
table Table ® Table for which to move to the

previous selected record, or
Default table, if omitted

Description
PREVIOUS RECORD moves the current record pointer to the previous record in the current
selection of table for the current process. If the current selection is empty, or if Before
selection or End selection is TRUE, PREVIOUS RECORD has no effect.

If PREVIOUS RECORD moves the current record pointer before the current selection, Before
selection returns TRUE, and there is no current record. If Before selection returns TRUE, use
FIRST RECORD, LAST RECORD, or GOTO SELECTED RECORD to move the current record
pointer back into the current selection.

See Also
Before selection, End selection, FIRST RECORD, LAST RECORD, NEXT RECORD.

4th Dimension Language Reference 1011

Before selection Selection

version 3
__

Before selection {(table)} ® Boolean

Parameter Type Description
table Table ® Table for which to test if record pointer

is before the first selected record, or
Default table, if omitted

Function result Boolean ¬ Yes (TRUE) or No (FALSE)

Description
Before selection returns TRUE when the current record pointer is before the first record of
the current selection of table. Before selection is commonly used to check whether or not
PREVIOUS RECORD has moved the current record pointer before the first record. If the
current selection is empty, Before selection returns TRUE.

To move the current record pointer back into the selection, use LAST RECORD, FIRST
RECORD, or GOTO SELECTED RECORD. NEXT RECORD does not move the pointer back
into the selection.

Before selection also returns TRUE in the first header when a report is being printed with
PRINT SELECTION or from the Print menu. You can use the following code to test for the
first header and print a special header for the first page:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
: (Form event=On Header)

` A header area is about to be printed
Case of

Þ : (Before selection($vpFormTable->))
` Code for the first break header goes here

1012 4th Dimension Language Reference

` ...
End case

End case

Example
This form method is used during the printing of a report. It sets a variable, vTitle, to print
in the Header area on the first page:

` [Finances];"Summary" Form Method
Case of

` ...
: (Form event=On Header)

Case of
Þ : (Before selection([Finances))

vTitle := "Corporate Report 1997" ` Set the title for the first page
Else

vTitle := "" ` Clear the title for all other pages
End case

End case

See Also
End selection, FIRST RECORD, Form event, PREVIOUS RECORD, PRINT SELECTION.

4th Dimension Language Reference 1013

End selection Selection

version 3
__

End selection {(table)} ® Boolean

Parameter Type Description
table Table ® Table for which to test if record pointer

is beyond the last selected record, or
Default table, if omitted

Function result Boolean ¬ Yes (TRUE) or No (FALSE)

Description
End selection returns TRUE when the current record pointer is beyond the last record of
the current selection of table. End selection is commonly used to check whether or not
NEXT RECORD has moved the current record pointer past the last record. If the current
selection is empty, End selection returns TRUE.

To move the current record pointer back into the selection, use LAST RECORD, FIRST
RECORD, or GOTO SELECTED RECORD. PREVIOUS RECORD does not move the pointer back
into the selection.

End selection also returns TRUE in the last footer when a report is being printed with
PRINT SELECTION or from the Print menu. You can use the following code to test for the
last footer and print a special footer for the last page:

` Method of a form being used as output form for a summary report
$vpFormTable:=Current form table
Case of

` ...
Þ : (Form event=On Printing Footer)

` A footer is about to be printed
If(End selection($vpFormTable->))

` Code for the last footer goes here
Else

` Code for a footer goes here
End if

End case

1014 4th Dimension Language Reference

Example
This form method is used during the printing of a report. It sets the variable vFooter to
print in the Footer area on the last page:

` [Finances];"Summary" Form Method
Case of

` ...
Þ : (Form event=On Printing Footer)

If(End selection([Finances]))
vFooter := "©1997 Acme Corp." ` Set the footer for the last page

Else
vFooter := "" ` Clear the footer for all other pages

End if
End case

See Also
Before selection, Form event, LAST RECORD, NEXT RECORD, PRINT SELECTION.

4th Dimension Language Reference 1015

DISPLAY SELECTION Selection

version 3
__

DISPLAY SELECTION ({table}{; *}{; *})

Parameter Type Description
table Table ® Table to display, or

Default table, if omitted
* ® Use output form for one record selection

and hide scroll bars in the input form
* ® Show scroll bars in the input form

(overrides second option of first optional *)

Description
DISPLAY SELECTION displays the selection of table, using the output form. The records are
displayed in a scrollable list similar to the User environment’s list. If the user double-clicks
a record, the record is displayed in the input form. The list is displayed in the frontmost
window.

To display a selection and also modify a record after you have double-clicked on it (as you
do in the User environment window), use MODIFY SELECTION instead of DISPLAY
SELECTION.
All of the following information applies to both commands, except for the information
on modifying records.

The following figure shows an output form displayed by the DISPLAY SELECTION
command.

1016 4th Dimension Language Reference

After DISPLAY SELECTION is executed, there may not be a current record. Use a command
such as FIRST RECORD or LAST RECORD to select one.

DISPLAY SELECTION does not allow the user to modify a record when in the input form.
MODIFY SELECTION does.

Some rules regarding the optional * parameter:
- If the selection contains only one record and the first optional * is not used, the record
appears in the input form instead of the output form.
- If the first optional * is specified, a one-record selection is displayed, using the output
form.
- If the first optional * is specified and the user displays the record in the input form by
double-clicking on it, the scroll bars will be hidden in the input form. To reverse this
effect, pass the second optional *.

A button labeled Done is automatically included at the bottom of the list. Adding any
variable or active object on the form removes the Done button. Clicking this button exits
the command. Custom buttons may be used instead; you can put these buttons in the
Footer area of the output form. You can use automatic Accept or Cancel buttons to exit,
or use an object method that calls ACCEPT or CANCEL.

The user can scroll through the selection and click a record to select it. If the user clicks a
different record, the first record is deselected and the second record is selected. A user can
select a group of contiguous records by clicking the first record and Shift+clicking
(Windows or Macintosh) the last record. To select records that are not adjacent, the user
can Ctrl+click (Windows) or Command-click (Macintosh) each record.

During and after execution of DISPLAY SELECTION, the records that the user highlighted
(selected) are kept in a set named UserSet. The UserSet is available within the selection
display for object methods when a button is clicked or a menu item is chosen. It is also
available to the project method that called DISPLAY SELECTION after the command
completed.

Examples
1. The following example selects all the records in the [People] table. It then uses DISPLAY
SELECTION to display the records, and allows the user to select the records to print.
Finally, it selects the records with USE SET, and prints them with PRINT SELECTION:

ALL RECORDS([People]) ` Select all records
Þ DISPLAY SELECTION ([People]; *) ` Display the records

USE SET ("UserSet") ` Use only records picked by user
PRINT SELECTION ([People]) ` Print the records that the user picked

4th Dimension Language Reference 1017

2. See example #6 for the command Form event. This example shows all the tests you may
need to check in order to fully monitor the events that occur during a DISPLAY
SELECTION.

3. To reproduce the functionality provided by, for example, the Queries menu of the User
environment when you use DISPLAY SELECTION or MODIFY SELECTION in the Custom
Menus environment, proceed as follows:
a. In the Design environment, create a menu bar with the menu commands you want,
for example, Show All, Query and Order By.
b. Associate this menu bar (using a negative menu bar number) with the output form
used with DISPLAY SELECTION or MODIFY SELECTION.
c. Associate the following project methods to your menu commands:

` M_SHOW_ALL (attached to menu item Show All)
$vpCurTable:=Current form table
ALL RECORDS($vpCurTable->)

` M_QUERY (attached to menu item Query)
$vpCurTable:=Current form table
QUERY($vpCurTable->)

` M_ORDDER_BY (attached to menu item Order By)
$vpCurTable:=Current form table
ORDER BY($vpCurTable->)

You can also use other commands, such as PRINT SELECTION, REPORT, and so on, to
provide all the “standard” menu options you may want each time you display or modify
a selection in the Custom Menus environment. Thanks to the command Current form
table, these methods are generic, and the menu bar they support can be attached to any
output form of any table.

See Also
Form event, MODIFY SELECTION, Sets.

1018 4th Dimension Language Reference

MODIFY SELECTION Selection

version 3
__

MODIFY SELECTION ({table}{; *}{; *})

Parameter Type Description
table Table ® Table to display and modify, or

Default table, if omitted
* ® Use output form for one record selection

and hide scroll bars in the input form
* ® Show scroll bars in the input form

(overrides second option of first optional *)

Description
MODIFY SELECTION does almost the same thing as DISPLAY SELECTION. Refer to the
description of DISPLAY SELECTION for details. The differences between the two commands
are:

1. DISPLAY SELECTION enables you to display the current selected records in list mode, or
in the input form when you double-click on a record. Using MODIFY SELECTION, you can
modify a record when you double-click on it, if it is not already in use by another process
or user.

2. DISPLAY SELECTION automatically switches the table to read-only. MODIFY SELECTION
automatically switches the table to read-write. Both commands restore the table state after
they have completed execution.

See Also
DISPLAY SELECTION, Form event, Sets.

4th Dimension Language Reference 1019

APPLY TO SELECTION Selection

version 3
__

APPLY TO SELECTION ({table; }statement)

Parameter Type Description
table Table ® Table for which to apply statement, or

Default table, if omitted
statement Statement ® One line of code or a method

Description
APPLY TO SELECTION applies statement to each record in the current selection of table.
The statement can be a statement or a method. If statement modifies a record of table, the
modified record is saved. If statement does not modify a record, the record is not saved. If
the current selection is empty, APPLY TO SELECTION has no effect. If the relation is
automatic, the statement can contain a field from a related table.

APPLY TO SELECTION can be used to gather information from the selection of records (for
example, a total), or to modify a selection (for example, changing the first letter of a field
to uppercase). If this command is used within a transaction, all changes can be undone if
the transaction is canceled.

4D Server: The server does not execute any of the commands that may be passed in
statement. Every record in the selection will be sent back to the local workstation to be
modified.

The progress thermometer is displayed while APPLY TO SELECTION is executing. To hide it,
use MESSAGES OFF prior to the call to APPLY TO SELECTION. If the progress thermometer
is displayed, the user can cancel the operation.

Examples
1. The following example changes all the names in the table [Employees] to uppercase:

Þ APPLY TO SELECTION([Employees];
[Employees]Last Name:=Uppercase([Employees]Last Name))

1020 4th Dimension Language Reference

2. If a record is locked during execution of APPLY TO SELECTION and that record is
modified, the record will not be saved. Any locked records that are encountered are put in
a set called LockedSet. After APPLY TO SELECTION has executed, test LockedSet to see if any
records were locked. The following loop will execute until all records have been modified:

Repeat
Þ APPLY TO SELECTION([Employees];

[Employees]Last Name:=Uppercase([Employees]Last Name))
USE SET ("LockedSet") ` Select only locked records

Until (Records in set ("LockedSet") = 0) ` Done when there are no locked records

System Variables or Sets
If the user clicks the Stop button in the progress thermometer, the OK system variable is
set to 0. Otherwise, the OK system variable is set to 1.

See Also
Sets.

4th Dimension Language Reference 1021

REDUCE SELECTION Selection

version 3
__

REDUCE SELECTION ({table; }number)

Parameter Type Description
table Table ® Table for which to reduce the selection, or

Default table, if omitted
number Number ® Number of records to keep selected

Description
REDUCE SELECTION creates a new selection of records for table. The command returns the
first Number of records from the current selection table. REDUCE SELECTION is applied to
the current selection of table in the current process. It changes the current selection of
table for the current process; the first record of the new selection is the current record.

Example
The following example first finds the correct statistics for a worldwide contest among the
dealers in over 20 countries. For each country, the 3 best dealers who have sold product
worth more than $50,000 and who are among the 100 best dealers in the world are
awarded a prize. With a few lines of code, this complex request can be executed by using
indexed searches:

CREATE EMPTY SET([Dealers];"Winners") ` Create an empty set
SCAN INDEX([Dealers]Sales amount;100;<) ` Scan from the end of the index
CREATE SET([Dealers];"100 best Dealers") ` Put the selected records in a set
For ($Country;1;Records in table([Countries])) ` For each Country

` Search for the dealers in this country who sold for more than $50000
QUERY([Dealers];[Dealers]Country=[Countries]Name;*)
QUERY(&;[Dealers];[Dealers]Sales amount>=50000)
CREATE SET([Dealers];"WinnerDealers") ` Put them in a set

` They should be in the group of 100 best dealers
INTERSECTION("WinnerDealers";"100 best Dealers";"WinnerDealers")
USE SET("WinnerDealers") ` Potential winners for the country

` Sort them by the results in descending order
ORDER BY([Dealers];[Dealers]Sales amount;<)

Þ REDUCE SELECTION([Dealers];3) ` Take the 3 best Dealers
CREATE SET([Dealers];"WinnerDealers") ` The winners for the country
` Put them in the worldwide winners list
UNION("WinnerDealers";"TheWinners";"TheWinners")

End for

1022 4th Dimension Language Reference

CLEAR SET("100 best Dealers") ` Don't need this set anymore
CLEAR SET("WinnerDealers") ` Don't need this set anymore
USE SET("The Winners") ` Here you have the Winners
CLEAR SET("The Winners") ` Don't need this set anymore
OUTPUT FORM([Dealers];"Prize letter") ` Select the letter
PRINT SELECTION([Dealers]) ` Print the letters

See Also
ORDER BY, QUERY, SCAN INDEX, Sets.

4th Dimension Language Reference 1023

SCAN INDEX Selection

version 3
__

SCAN INDEX (field; number{; > or <})

Parameter Type Description
field Field ® Indexed field on which to scan index
number Number ® Number of records to return
> or < ® > from beginning of index

< from end of index

Description
SCAN INDEX returns a selection of number records for table. If you pass <, SCAN INDEX
returns the number of records from the end of the index (high values). If you pass >,
SCAN INDEX returns the number of records for table from the beginning of the index (low
values). This command is very efficient because it uses the index to perform the
operation.

SCAN INDEX works only on indexed fields. This command changes the current selection
of the table for the current process, but there is no current record.

If you specify more records than exist in the table, SCAN INDEX will return all records.

Example
The following example mails letters to 50 of the worst customers and then to 50 of the
best customers:

Þ SCAN INDEX([Customers]TotalDue;50;<) ` Get the 50 worst customers
ORDER BY([Customers]Zipcode;>) ` Sort by Zip codes
OUTPUT FORM([Customers];"ThreateningMail")
PRINT SELECTION([Customers]) ` Print the letters

Þ SCAN INDEX([Customers]TotalDue;50;>) ` Get the 50 best customers
ORDER BY([Customers]Zipcode;>) ` Sort by Zip codes
OUTPUT FORM([Customers];"Thanks Letter")
PRINT SELECTION([Customers]) ` Print the letters

See Also
ORDER BY, QUERY, REDUCE SELECTION.

1024 4th Dimension Language Reference

ONE RECORD SELECT Selection

version 3
__

ONE RECORD SELECT {(table)}

Parameter Type Description
table Table ® Table for which to reduce the

selection to the current record, or
Default table, if omitted

Description
ONE RECORD SELECT reduces the current selection of table to the current record. If no
current record exists, ONE RECORD SELECT has no effect.

Historical Note: This command was useful to “get back” into the selection a record that
had been pushed and popped from the record stack while the selection for the table was
changed. In version 6, SET QUERY DESTINATION allows you to make a query without
changing the selection or the current record of a table; therefore, you no longer need to
push and pop a current record in order to query its table. Consequently, ONE RECORD
SELECT is less useful, unless you actually want to reduce the selection of a table to the
current record.

4th Dimension Language Reference 1025

1026 4th Dimension Language Reference

42 Sets

4th Dimension Language Reference 1027

1028 4th Dimension Language Reference

Sets Sets

version 6.0 (Modified)
__

Sets offer you a powerful, swift means for manipulating record selections. Besides the
ability to create sets, relate them to the current selection, and store, load, and clear sets,
4th Dimension offers three standard set operations:
• Intersection
• Union
• Difference

Sets and the Current Selection
__

A set is a compact representation of a selection of records. The idea of sets is closely bound
to the idea of the current selection. Sets are generally used for the following purposes:
• To save and later restore a selection when the order does not matter
• To access the selection a user made on screen (the UserSet)
• To perform a logical operation between selections

The current selection is a list of references that points to each record that is currently
selected. The list exists in memory. Only currenly selected records are in the list. A
selection doesn’t actually contain the records, but only a list of references to the records.
Each reference to a record takes 4 bytes in memory. When you work on a table, you
always work with the records in the current selection. When a selection is sorted, only the
list of references is rearranged. There is only one current selection for each table inside a
process.

Like a current selection, a set represents a selection of records. A set does this by using a
very compact representation for each record. Each record is represented by one bit (one-
eighth of a byte). Operations using sets are very fast, because computers can perform
operations on bits very quickly. A set contains one bit for every record in the table,
whether the record is included in the set or not. In fact, each bit is equal to 1 or 0,
depending on whether the record is in the set or not.

Sets are very economical in terms of RAM space. The size of a set, in bytes, is always equal
to the total number of records in the table divided by 8. For example, if you create a set
for a table containing 10,000 records, the set takes up 1,250 bytes, which is about 1.2K in
RAM.

There can be many sets for each table. In fact, sets can be saved to disk separately from
the database. To change a record belonging to a set, first you must use the set as the
current selection, then modify the record or records. The name of an interprocess set
must be unique in the database.

4th Dimension Language Reference 1029

A set is never in a sorted order—the records are simply indicated as belonging to the set or
not. On the other hand, a named selection is in sorted order, but it requires more
memory in most cases. For more information about named selections, see the section
Named Selections.

A set “remembers” which record was the current record at the time the set was created.
The following table compares the concepts of the current selection and of sets:

Comparison Current Selection Sets
Number per table 1 0 to many
Sortable Yes No
Can be saved on disk No Yes
RAM per record(in bytes) Number of Total number of

selected records * 4 records/8
Combinable No Yes
Contains current record Yes Yes, as of the time the set

was created

When you create a set, it belongs to the table from which you created it. The set
operations can be performed only between sets belonging to the same table.

Sets are independent from the data. This means that after changes are made to a file, a set
may no longer be accurate. There are many operations that can cause a set to be
inaccurate. For example, if you create a set of all the people from New York City, and
then change the data in one of those records to “Boston” the set would not change,
because the set is just a representation of a selection of records. Deleting records and
replacing them with new ones also changes a set. Sets can be guaranteed to be accurate
only as long as the data in the original selection has not been changed.

Process and Interprocess Sets
__

You can have the following three types of sets:

• Process sets: A process set can only be accessed by the process in which it has been
created. UserSet and LockedSet are process sets. Process sets are cleared as soon as the
process method ends. Process sets do not need any special prefix in the name.
• Interprocess sets: A set is an interprocess set if the name of the set is preceded symbols
(<>) — a “less than” sign followed by a “greater than” sign. Note: This syntax can be used
on both Windows and Macintosh. Also, on Macintosh only, you can use the diamond
(Option-Shift-V on a US keyboard).
• Local Sets/Client Sets: Version 6 introduces local/client sets. The name of a local/client
set is preceded by the dollar sign ($).

1030 4th Dimension Language Reference

Sets and Transactions
__

A set can be created inside a transaction. It is possible to create a set of the records created
inside a transaction and a set of records created or modified outside of a transaction.
When the transaction ends, the set created during the transaction should be cleared,
because it may not be an accurate representation of the records, especially if the
transaction was canceled.

Set Example
__

The following example deletes duplicate records from a table which contains information
about people. A For...End for loop moves through all the records, comparing the current
record to the previous record. If the name, address, and zip code are the same, then the
record is added to a set. At the end of the loop, the set is made the current selection and
the (old) current selection is deleted:

CREATE EMPTY SET([People];"Duplicates")
` Create an empty set for duplicate records

ALL RECORDS([People])
` Select all records
` Sort the records by ZIP, address, and name so
` that the duplicates will be next to each other

ORDER BY ([People];[People]ZIP;>;[People]Address;>;[People]Name;>)
` Initialize variables that hold the fields from the previous record

$Name:=[People]Name
$Address:=[People]Address
$ZIP:=[People]ZIP

` Go to second record to compare to first
NEXT RECORD ([People])
For ($i; 2; Records in table ([People]))

` Loop through records starting at 2
` If the name, address, and ZIP are the same as the
` previous record then it is a duplicate record.

If (([People]Name=$Name) & ([People]Address=$Address) & ([People]ZIP=$ZIP))
` Add current record (the duplicate) to set

ADD TO SET ([People]; "Duplicates")
Else

` Save this record’s name, address, and ZIP
` for comparison with the next record

$Name:=[People]Name
$Address:=[People]Address
$ZIP:=[People]ZIP

End if
` Move to the next record

NEXT RECORD ([People])
End for

4th Dimension Language Reference 1031

` Use duplicate records that were found
USE SET ("Duplicates")

` Delete the duplicate records
DELETE SELECTION ([People])

` Remove the set from memory
CLEAR SET ("Duplicates")

As an alternative to immediately deleting records at the end of the method, you could
display them on screen or print them, so that a more detailed comparison can be made.

The UserSet System Set
__

4th Dimension maintains a system set named UserSet. UserSet automatically stores the
most recent selection of records highlighted on screen by the user. Thus, you can display
a group of records with MODIFY SELECTION or DISPLAY SELECTION, ask the user to select
from among them, and turn the results of that manual selection into a selection or into a
set that you name.

There is only one UserSet for a process. Each table does not have its own UserSet. UserSet
becomes “owned” by a table when a selection of records is displayed for the table.

The following method illustrates how you can display records, allow the user to select
some, and then use UserSet to display the selected records:

` Display all records and allow user to select any number of them.
` Then display this selection by using UserSet to change the current selection.

OUTPUT FORM ([People]; "Display") ` Set the output layout
ALL RECORDS ([People]) ` Select all people
ALERT ("Press Ctrl or Command and Click to select the people required.")
DISPLAY SELECTION ([People]) ` Display the people
USE SET ("UserSet") ` Use the people that were selected
ALERT ("You chose the following people.")
DISPLAY SELECTION ([People]) ` Display the selected people

Note: You must execute either MODIFY SELECTION or DISPLAY SELECTION to retrieve the
UserSet.

1032 4th Dimension Language Reference

The LockedSet System Set
__

The command APPLY TO SELECTION, ARRAY TO SELECTION and DELETE SELECTION create
a set named LockedSet when used in multi-processing environment. LockedSet indicates
which records were locked during the execution of the command.

See Also
ADD TO SET, CLEAR SET, COPY SET, CREATE EMPTY SET, CREATE SET, DIFFERENCE,
INTERSECTION, Is in set, LOAD SET, Records in set, REMOVE FROM SET, SAVE SET, UNION,
USE SET.

4th Dimension Language Reference 1033

CREATE EMPTY SET Sets

version 3
__

CREATE EMPTY SET ({table; }set)

Parameter Type Description
table Table ® Table for which to create an empty set, or

Default table, if omitted
set String ® Name of the new empty set

Description
CREATE EMPTY SET creates a new empty set, set, for table. You can add records to this set
with the ADD TO SET command. If a set with the same name already exists, the existing
set is cleared by the new set.

Note: You do not need to use CREATE EMPTY SET before using CREATE SET.

Example
This example creates a new set and then “merges” the UserSet with it (with the UNION
command), in order to save the UserSet:

` Create a new set
Þ CREATE EMPTY SET ([People]; "KeepUserSet") ` Merge the two sets together

UNION ("UserSet"; "KeepUserSet"; "KeepUserSet")

See Also
CLEAR SET, CREATE SET.

1034 4th Dimension Language Reference

CREATE SET Sets

version 3
__

CREATE SET ({table; }set)

Parameter Type Description
table Table ® Table for which to create a set from the
selection, or

Default table, if omitted
set String ® Name of the new set

Description
CREATE SET creates a new set, set, for table, and places the current selection in set. The
current record pointer for the table is saved with set. If set is used with USE SET, the
current selection and current record are restored. As with all sets, there is no sorted order;
when set is used, the default order is used. If a set with the same name already exists, the
existing set is cleared by the new set.

Example
The following example creates a set after doing a search, in order to save the set to disk:

QUERY ([People]) ` Let the user do a search
Þ CREATE SET ([People]; "SearchSet") ` Create a new set

SAVE SET ("SearchSet"; "MySearch") ` Save the set on disk

See Also
CLEAR SET, CREATE EMPTY SET.

4th Dimension Language Reference 1035

USE SET Sets

version 3
__

USE SET (set)

Parameter Type Description
set String ® Name of the set to use

Description
USE SET makes the records in set the current selection for the table to which the set
belongs.

When you create a set, the current record is “remembered” by the set. USE SET retrieves
the position of this record and makes the it the new current record. If you delete this
record before you execute USE SET, 4th Dimension selects the first record in the set as the
current record. The set commands INTERSECTION, UNION, DIFFERENCE, and ADD TO SET
reset the current record. Also, if you create a set that does not contain the position of the
current record, USE SET selects the first record in the set as the current record.

WARNING: Remember that a set is a representation of a selection of records at the
moment that the set is created. If the records represented by the set do change, the set
may no longer be accurate. Therefore, a set saved to disk should represent a group of
records that does not change frequently. A number of things can invalidate a set invalid:
modifying a record of the set, deleting a record of the set, or changing the criteria that
determined the set.

Example
The following example uses LOAD SET to load a set of the Acme locations in New York. It
then uses USE SET to make the loaded set the current selection:

LOAD SET ([Companies]; "NY Acme"; "NYAcmeSt") ` Load the set into memory
Þ USE SET ("NY Acme") ` Change current selection to NY Acme

CLEAR SET ("NY Acme") ` Clear the set from memory

See Also
CLEAR SET, LOAD SET.

1036 4th Dimension Language Reference

ADD TO SET Sets

version 3
__

ADD TO SET ({table; }set)

Parameter Type Description
table Table ® Current record's table, or

Default table, if omitted
set String ® Name of the set to which to add the current
record

Description
ADD TO SET adds the current record of table to set. The set must already exist; if it does
not, an error occurs. If a current record does not exist for Table, ADD TO SET has no effect.

See Also
REMOVE FROM SET.

4th Dimension Language Reference 1037

REMOVE FROM SET Sets

version 6.0
__

REMOVE FROM SET ({table; }set)

Parameter Type Description
table Table ® Current record's table, or

Default table, if omitted
set String ® Name of the set from which to remove

the current record

Description
REMOVE FROM SET removes the current record of table from set. The set must already
exist; if it does not, an error occurs. If a current record does not exist for Table, REMOVE
FROM SET has no effect.

See Also
ADD TO SET.

1038 4th Dimension Language Reference

CLEAR SET Sets

version 3
__

CLEAR SET (set)

Parameter Type Description
set String ® Name of the set to clear from memory

Description
CLEAR SET clears set from memory and frees the memory used by set. CLEAR SET does not
affect tables, selections, or records. To save a set before clearing it, use the SAVE SET
command. Since sets use memory, it is good practice to clear them when they are no
longer needed.

Example
See the example for USE SET.

See Also
CREATE EMPTY SET, CREATE SET, LOAD SET.

4th Dimension Language Reference 1039

Is in set Sets

version 3
__

Is in set (set) ® Boolean

Parameter Type Description
set String ® Name of the set to test

Function result Boolean ¬ Current record of set's table is in set (True) or
Current record of set's table is not in set (False)

Description
Is in set tests whether or not the current record for the table is in set. The Is in set function
returns TRUE if the current record of the table is in set, and returns FALSE if the current
record of the table is not in set.

Example
The following example is a button object method. It tests to see whether or not the
currently displayed record is in the set of best customers:

Þ If (Is in set ("Best")) ` Check if it is a good customer
ALERT ("They are one of our best customers.")

Else
ALERT ("They are not one of our best customers.")

End if

See Also
ADD TO SET, REMOVE FROM SET.

1040 4th Dimension Language Reference

Records in set Sets

version 3
__

Records in set (set) ® Number

Parameter Type Description
set String ® Name of the set to test

Function result Number ¬ Number of records in test

Description
Records in set returns the number of records in set. If set does not exist, or if there are no
records in set, Records in set returns 0.

Example
The following example displays an alert telling what percentage of the customers are rated
as the best:

` First calculate the percentage
Þ $Percent := (Records in set ("Best") / Records in table ([Customers])) * 100

` Display an alert with the percentage
ALERT (String ($Percent; "##0%") + " of our customers are the best.")

See Also
Records in selection, Records in table.

4th Dimension Language Reference 1041

SAVE SET Sets

version 3
__

SAVE SET (set; document)

Parameter Type Description
set String ® Name of the set to save
document String ® Name of the disk file to which to save the set

Description
SAVE SET saves Set to document, a document on disk.

The document need not have the same name as the set. If you supply an empty string for
document, a Create File dialog box appears so that the user can enter the name of the
document. You can load a saved set with the LOAD SET command.

If the user clicks Cancel in the Save File dialog box, or if there is an error during the save
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

SAVE SET is often used to save to disk the results of a time-consuming search.

WARNING: Remember that a set is a representation of a selection of records at the
moment that the set is created. If the records represented by the set change, the set may
no longer be accurate. Therefore, a set saved to disk should represent a group of records
that does not change frequently. A number of things can invalidate a set invalid:
modifying a record of the set, deleting a record of the set, or changing the criteria that
determined the set. Also remember that sets do not save field values.

Example
The following example displays the Save File dialog box, wihch the user can enter the
name of the document that contains the set:

Þ SAVE SET ("SomeSet"; "")

System Variables or Sets
If the user clicks Cancel in the Save File dialog box, or if there is an error during the load
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

See Also
LOAD SET.

1042 4th Dimension Language Reference

LOAD SET Sets

version 3
__

LOAD SET ({table; }set; document)

Parameter Type Description
table Table ® Table to which the set belongs, or

Default table, if omitted
set String ® Name of the set to be created in memory
document String ® Document holding the set

Description
LOAD SET loads a set from document that was saved with the SAVE SET command.

The set that is stored in document must be from table. The set created in memory is
overwritten if it already exists.

The document parameter is the name of the disk document containing the set. The
document need not have the same name as the set. If you supply an empty string for
document, an Open File dialog box appears so that the user can choose the set to load.

Remember that a set is a representation of a selection of records at the moment that the
set is created. If the records represented by the set change, the set may no longer be
accurate. Therefore, a set loaded from disk should represent a group of records that does
not change frequently. A number of things can make a set invalid: modifying a record of
the set, deleting a record of the set, or changing the criteria that determined a set.

Example
The following example uses LOAD SET to load a set of the Acme locations in New York:

Þ LOAD SET ([Companies]; "NY Acme"; "NYAcmeSt") ` Load the set into memory
USE SET ("NY Acme") ` Change current selection to NY Acme
CLEAR SET ("NY Acme") ` Clear the set from memory

System Variables or Sets
If the user clicks Cancel in the Open File dialog box, or there is an error during the load
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

See Also
SAVE SET.

4th Dimension Language Reference 1043

DIFFERENCE Sets

version 3
__

DIFFERENCE (set; subtractSet; resultSet)

Parameter Type Description
set String ® Set
subtractSet String ® Set to subtract
resultSet String ® Resulting set

Description
DIFFERENCE compares set1 and set2 and excludes all records that are in set2 from the
resultSet. In other words, a record is included in the resultSet only if it is in set1, but not
in set2. The following table shows all possible results of a set Difference operation.

Set1 Set2 Result Set
Yes No Yes
Yes Yes No
No Yes No
No No No

The result of a Difference operation is depicted here. The shaded area is the result set.

The resultSet is created by DIFFERENCE. The resultSet replaces any existing set having the
same name, including set1 and set2. Both set1 and set2 must be from the same table. The
resultSet belongs to the same table as set1 and set2.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. DIFFERENCE requires the
three sets to be on the same machine. Consequently, all or none of the sets must be local.
See the discussion 4D Server and Sets in the 4D Server Reference manual for more
information.

1044 4th Dimension Language Reference

Example
This example excludes the records that a user selects from a displayed selection. The
records are displayed on screen with the following line:

DISPLAY SELECTION ([Customers]) ` Display the customers in a list

At the bottom of the list of records is a button with an object method. The object method
excludes the records that the user has selected (the set named “UserSet”), and displays the
reduced selection:

CREATE SET ([Customers]; "$Current") ` Create a set of current selection
Þ DIFFERENCE ("$Current";"UserSet";"$Current") ` Exclude selected records

USE SET ("$Current") ` Use the new set
CLEAR SET ("$Current") ` Clear the set

See Also
INTERSECTION, UNION.

4th Dimension Language Reference 1045

INTERSECTION Sets

version 3
__

INTERSECTION (set1; set2; resultSet)

Parameter Type Description
set1 String ® First set
set2 String ® Second set
resultSet String ® Resulting set

Description
INTERSECTION compares set1 and set2 and selects only the records that are in both. The
following table lists all possible results of a set Intersection operation.

Set1 Set2 Result Set
Yes No No
Yes Yes Yes
No Yes No
No No No

The graphical result of an Intersection operation is displayed here. The shaded area is the
result set.

The resultSet is created by INTERSECTION. The resultSet replaces any existing set having
the same name, including set1 and set2. Both set1 and set2 must be from the same table.
The resultSet belongs to the same table as set1 and set2.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. INTERSECTION requires
the three sets to be on the same machine. Consequently, all or none of the sets must be
local. See the discussion 4D Server and Sets in the 4D Server Reference manual for more
information.

1046 4th Dimension Language Reference

Example
The following example finds the customers who are served by two sales representatives,
Joe and Abby. Each sales representative has a set that represents his or her customers. The
customers that are in both sets are represented by both Joe and Abby:

Þ INTERSECTION ("Joe"; "Abby"; "Both") ` Put customers in both sets in Both
USE SET ("Both") ` Use the set
CLEAR SET ("Both") ` Clear this set but save the others
DISPLAY SELECTION ([Customers]) ` Display customers served by both

See Also
DIFFERENCE, UNION.

4th Dimension Language Reference 1047

UNION Sets

version 3
__

UNION (set1; set2; resultSet)

Parameter Type Description
set1 String ® First set
set2 String ® Second set
resultSet String ® Resulting set

Description
UNION creates a set that contains all records from set1 and set2. The following table
shows all possible results of a set Union operation.

Set1 Set2 Result Set
Yes No Yes
Yes Yes Yes
No Yes Yes
No No No

The result of a Union operation is depicted here. The shaded area is the result set.

The resultSet is created by UNION. The resultSet replaces any existing set having the same
name, including set1 and set2. Both set1 and set2 must be from the same table. The
resultSet belongs to the same table as set1 and set2. The current record for the resultSet is
the current record from Set1.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. UNION requires the
three sets to be on the same machine. Consequently, all or none of the sets must be local.
See the discussion 4D Server and Sets in the 4D Server Reference manual for more
information.

1048 4th Dimension Language Reference

Example
This example adds records to a set of best customers. The records are displayed on screen
with the first line. After the records are displayed, a set of the best customers is loaded
from disk, and any records that the user selected (the set named “UserSet”) are added to
the set. Finally, the new set is saved on disk:

ALL RECORDS ([Customers]) ` Select all the customers
DISPLAY SELECTION ([Customers]) ` Display all the customers in a list
LOAD SET ("$Best"; "$SaveBest") ` Load the set of best customers

Þ UNION ("$Best"; "UserSet"; "$Best") ` Add any selected to the set
SAVE SET ("$Best"; "$SaveBest") ` Save the set of best customers

See Also
DIFFERENCE, INTERSECTION.

4th Dimension Language Reference 1049

COPY SET Sets

version 6.0
__

COPY SET (srcSet; dstSet)

Parameter Type Description
srcSet String ® Source set name
dstSet String ® Destination set name

Description
The command COPY SET copies the contents of the set srcSet into the set dstSet.

Both sets can be process, interprocess or local sets.

4D Server: In Client/Server, interprocess and process sets are maintained on the server
machine, while local sets are maintained on the client machines. COPY SET allows you to
copy sets between the two machines. See the discussion 4D Server and Sets in the 4D
Server Reference manual for more information.

Examples
1. The following example, in Client/Server, copies the local set "$SetA", maintained on the
client machine, to the process set "SetB", maintained on the server machine:

Þ COPY SET("$SetA";"SetB")

(1) The following example, in Client/Server, copies the process set "SetA", maintained on
the server machine, to the local process set "$SetB", maintained on the client machine:

Þ COPY SET("SetA";"$SetB")

See Also
Sets.

1050 4th Dimension Language Reference

43 String

4th Dimension Language Reference 1051

1052 4th Dimension Language Reference

String String

version 3
__

String (expression{; format}) ® String

Parameter Type Description
expression ® Expression for which to return the string form

(can be Real, Integer, Long Integer,
Date, or Time)

format String | Number ® Display format

Function result String ¬ String form of the expression

Description
The command String returns the string form of the numeric, Date, or Time expression
you pass in expression.

If you do not pass the optional format parameter, the string is returned with the
appropriate default format. If you pass format, you can force the result string to be of a
specific format.

Numeric Expressions
If expression is a numeric expression (Real, Integer, Long Integer), you can pass an
optional string format. Following are some examples:

Example Result
String(2^15) ` Use default format 32768 (Default format used here)
String(2^15;"###,##0 Inhabitants") 32,768 Inhabitants
String(1/3;"##0.00000") 0.33333
String(1/3) ` Use default format 0.3333333333333333 (Default format used here)
String(Arctan(1)*4) 3.1415926535897931 (Default format used here)
String(Arctan(1)*4;"##0.00") 3.14
String(-1;"&x") 0xFFFFFFFF
String(-1;"&$") $FFFFFFFF
String(0 ?+ 7;"&x") 0x80
String(0 ?+ 7;"&$") $80
String(0 ?+ 14;"&x") 0x4000
String(0 ?+ 14;"&$") $4000
String(Num(1=1);"True;;False") True
String(Num(1=2);"True;;False") False

The format is specified in the same way as it would be for a number field on a form. See
the 4th Dimension Design Reference for more information about formatting numbers. You
can also pass the name of a custom style in format. The name of the custom style must be
preceded by the “|” character.

4th Dimension Language Reference 1053

Date Expressions
If expression is a Date expression, the string is returned using the default country format
(i.e., MM/DD/YY for the U.S. English langauge version).
You can pass an optional numeric format from the following table:

Format Name Example
1 Short 12/29/96
2 Abbreviated Sun, Dec 29, 1996
3 Long Sunday, December 29, 1996
4 MM/DD/YYYY 12/29/96 or 12/29/1896 or 12/29/2096
5 Month Date, Year December 29, 1996
6 Abbr: Month Date, Year Dec 29, 1996
7 MM/DD/YYYY Forced 12/29/1996

4D provides the following predefined constants:

Constant Type Value
Short Long Integer 1
Abbreviated Long Integer 2
Long Long Integer 3
MM DD YYYY Long Integer 4
Month Date Year Long Integer 5
Abbr Month Date Long Integer 6
MM DD YYYY Forced Long Integer 7

These examples assume that the current date is 12/29/96):

` $vsResult gets "12/29/96"
$vsResult:=String(Current date)

` $vsResult gets "December 29, 1996"
$vsResult:=String(Current date;Month Date Year)

Time Expressions
If expression is a Time expression, the string is returned using the default HH:MM:SS
format. You can pass an optional numeric format from the following table:

Format Name Example
1 HH:MM:SS 01:02:03
2 HH:MM 01:02
3 hour min sec 1 hour 2 minutes 3 seconds
4 hour min 1 hour 2 minutes
5 H:MM AM/PM 1:02 AM

1054 4th Dimension Language Reference

4D provides the following predefined constants:

Constant Type Value
HH MM SS Long Integer 1
HH MM Long Integer 2
Hour Min Sec Long Integer 3
Hour Min Long Integer 4
HH MM AM PM Long Integer 5

These examples assume that the current time is 5:30 PM and 45 seconds):

$vsResult:=String(Current time) ` $vsResult gets "17:30:45"
$vsResult:=String(Current time;Hour Min Sec) ` $vsResult gets "17 hours 30 minutes

45 seconds"

See Also
Date, Num, Time string.

4th Dimension Language Reference 1055

Num String

version 3
__

Num (expression) ® Number

Parameter Type Description
expression String | Boolean ® String for which to return the numeric
form, or

Boolean to return 0 or 1

Function result Number ¬ Numeric form of the string or Boolean

Description
The command Num returns the numeric form of the String or Boolean expression you
pass in expression.

String Expressions
If string consists only of one or more alphabetic characters, Num returns a zero. If string
includes alphabetic and numeric characters, Num ignores the alphabetic characters. Thus,
Num transforms the string "a1b2c3" into the number 123.

Note: Only the first 32 characters of string are evaluated.

There are three reserved characters that Num treats specially: the decimal separator in the
US English version (i.e., the period “.”) , the hyphen “-”, and “e” or “E”. These characters
are interpreted as numeric format characters.

• The decimal separator is interpreted as a decimal place and must appear embedded in a
numeric string.
• The hyphen causes the number or exponent to be negative. The hyphen must appear
before any negative numeric characters or after the “e” for an exponent. If a hyphen is
embedded in a numeric string, the string is considered invalid and the Num function
returns a zero (0). For example, Num(123-456) returns 0, but Num(-9) returns -9.
• The e or E causes any numeric characters to its right to be interpreted as the power of an
exponent. The “e” must be embedded in a numeric string. Thus, Num("123e–2") returns
1.23.

Boolean Expressions
If you pass a Boolean expression, Num returns 1 if the expression is True; otherwise, it
returns 0 (zero).

1056 4th Dimension Language Reference

Examples
1. The following example illustrates how Num works when passed a string argument. Each
line assigns a number to the vResult variable. The comments describe the results:

Þ vResult := Num ("ABCD") ` vResult gets 0
Þ vResult := Num ("A1B2C3") ` vResult gets 123
Þ vResult := Num ("123") ` vResult gets 123
Þ vResult := Num ("123.4") ` vResult gets 123.4
Þ vResult := Num ("–123") ` vResult gets –123
Þ vResult := Num ("–123e2") ` vResult gets –12300

2. Here, [Client]Debt is compared with $1000. The Num command applied to these
comparisons returns 1 or 0. Multiplying 1 or 0 with a string repeats the string once or
returns the empty string. As a result, [Client]Risk gets either “Good” or “Bad”:

` If client owes less than 1000, a good risk.
` If client owes more than 1000, a bad risk.

Þ [Client]Risk:=("Good"*Num ([Client]Debt<1000))+("Bad"*Num([Client]Debt>=1000))

See Also
Logical Operators, String, String Operators.

4th Dimension Language Reference 1057

Position String

version 3
__

Position (find; string) ® Number

Parameter Type Description
find String ® String to find
string String ® String in which to search

Function result Number ¬ Position of first occurrence

Description
Position returns the position of the first occurrence of find in string.

If string does not contain find, it returns a zero (0).

If Position locates an occurrence of find, it returns the position of the first character of the
occurrence in string.

If you ask for the position of an empty string within an empty string, Position returns
zero (0).

Warning: You cannot use the @ wildcard character with Position. For example, if you pass
"abc@" in find, the command will actually look for "abc@" and not for "abc" plus any
character.

Examples
1. This example illustrates the use of Position. The results, described in the comments, are
assigned to the variable vlResult.

Þ vlResult := Position ("ll"; "Willow") ` vlResult gets 3
Þ vlResult := Position (vtText1; vtText2) ` Returns first occurrence of vtText1 in vtText2

2. See example for the command Substring.

See Also
Comparison Operators, Substring.

1058 4th Dimension Language Reference

Substring String

version 3
__

Substring (source; firstChar{; numChars}) ® String

Parameter Type Description
source String ® String from which to get substring
firstChar Number ® Position of first character
numChars Number ® Number of characters to get

Function result String ¬ Substring of source

Description
The command Substring returns the portion of source defined by firstChar and numChars.

The firstChar parameter points to the first character in the string to return, and numChars
specifies how many characters to return.

If firstChar plus numChars is greater than the number of characters in the string, or if
numChars is not specified, Substring returns the last character(s) in the string, starting
with the character specified by firstChar. If firstChar is greater than the number of
characters in the string, Substring returns an empty string ("").

Examples
1. This example illustrates the use of Substring. The results, described in the comments, are
assigned to the variable vsResult.

Þ vsResult := Substring ("08/04/62"; 4; 2) ` vsResult gets "04"
Þ vsResult := Substring ("Emergency"; 1; 6) ` vsResult gets "Emerge"
Þ vsResult := Substring (var; 2) ` vsResult gets all characters except ` the first

4th Dimension Language Reference 1059

2. The following project method appends the paragraphs found in the text (passed as first
parameter) to a string or text array (the pointer of which is passed as second parameter):

` EXTRACT PARAGRAPHS
` EXTRACT PARAGRAPHS (text ; Pointer)
` EXTRACT PARAGRAPHS (Text to parse ; -> Array of ¶s)

C_TEXT ($1)
C_POINTER ($2)

$vlElem:=Size of array($2->)
Repeat

$vlElem:=$vlElem+1
INSERT ELEMENT($2->;$vlElem)
$vlPos:=Position(Char(Carriage return);$1)
If ($vlPos>0)

Þ $2->{$vlElem}:=Substring($1;1;$vlPos-1)
Þ $1:=Substring($1;$vlPos+1)

Else
$2->{$vlElem}:=$1

End if
Until ($1="")

See Also
Position.

1060 4th Dimension Language Reference

Length String

version 3
__

Length (string) ® Number

Parameter Type Description
string String ® String for which to return length

Function result Number ¬ Length of string

Description
Length is used to find the length of string. Length returns the number of characters that
are in string.

Note: The test If (vtAnyText="") is equivalent to the test If(Length(vtAnyText)=0).

Examples
This example illustrates the use of Length. The results, described in the comments, are
assigned to the variable vlResult.

Þ vlResult := Length ("Topaz") ` vlResult gets 5
Þ vlResult := Length ("Citizen") ` vlResult gets 7

4th Dimension Language Reference 1061

Ascii String

version 3
__

Ascii (character) ® Number

Parameter Type Description
character String ® Character to return as an ASCII code

Function result Number ¬ ASCII code for the character

Description
The command Ascii returns the ASCII code of character.

If there is more than one character in the string, Ascii returns the code of the first
character.

The Char function is the counterpart of Ascii. It returns the character that an ASCII code
represents.

Important: Within 4D, all the text values, fields, or variables that you have not yet
converted to another ASCII map are MacOS-encoded on both Macintosh and Windows.
For more information, see the section ASCII Codes.

Examples
1. Uppercase and lowercase characters are considered equal within a comparison. You can
use Ascii to differentiate between uppercase and lowercase characters. Thus, this line
returns True:

("A" = "a")

On the other hand, this line returns False:

Þ (Ascii("A")=Ascii("a"))

2. This example returns the ASCII value of the first character of the string "ABC":

Þ vlAscii:=Ascii("ABC") ` vlAscii gets 65, the ASCII code of A

1062 4th Dimension Language Reference

3. The following example tests for carriage returns and tabs:

For($vlChar;1;Length(vtText))
Case of

: (vtText[[$vlChar]]=Char(Carriage return))
` Do something

: (vtText[[$vlChar]]=Char(Tab))
` Do something else

: (...)
` ...

End case
End for

When executed multiple times on large texts, this test will run faster when compiled if it
is written this way:

For($vlChar;1;Length(vtText))
Þ $vlAscii:=Ascii(vtText[[$vlChar]])

Case of
: ($vlAscii=Carriage return)

` Do something
: ($vlAscii=Tab)

` Do something else
: (...)

` ...
End case

End for

The second piece of code runs faster for two reasons: it does only one character reference
by iteration and uses LongInt comparisons instead of string comparisons to test for
carriage returns and tabs. Use this technique when working with common ASCII codes
such as CR and TAB.

See Also
ASCII Codes, Char, Character Reference Symbols.

4th Dimension Language Reference 1063

Char String

version 3
__

Char (asciiCode) ® String

Parameter Type Description
asciiCode Number ® ASCII code from 0 to 255

Function result String ¬ Character represented by the ASCII code

Description
The command Char returns the character whose ASCII code is asciiCode.

Tip: In editing a method, the command Char is commonly used to specify characters that
cannot be entered from the keyboard or that would be interpreted as an editing
command in the Method editor.

Important: Within 4D, all the text values, fields, or variables that you have not yet
converted to another ASCII map are MacOS-encoded on both Macintosh and Windows.
For more information, see the section ASCII Codes.

Example
The following example uses Char to insert a carriage return within the text of an alert
message:

Þ ALERT("Employees: "+String(Records in table([Employees]))+
Char(13)+"Press OK to continue.")

See Also
Ascii, ASCII Codes, Character Reference Symbols.

1064 4th Dimension Language Reference

Character Reference Symbols String

version 3
__

Introduction
The character reference symbols:

are used to refer to a single character within a string. This syntax allows you to
individually address the characters of a text variable, string variable, or field.

Note: On Macintosh, you obtain the first two symbols by typing Option+"<" and
Option+">".

If the character reference symbols appear on the left side of the assignment operator (:=),
a character is assigned to the referenced position in the string. For example, if vsName is
not an empty string, the following line sets the first character of vsName to uppercase:

If (vsName#"")
vsName[[1]]:=Uppercase(vsName[[1]])

End if

Otherwise, if the character reference symbols appear within an expression, they return
the character (to which they refer) as a 1-character string. For example:

` The following example tests if the last character of vtText is an At sign "@"
If (vtText # "")

If (Ascii(Substring(vtText;Length(vtText);1))=At Sign)
` ...

End if
End if

` Using the character reference syntax, you would write in a simpler manner:
If (vtText # "")

If (Ascii(vtText[[Length(vtText)]])=At Sign)
` ...

End if
End if

4th Dimension Language Reference 1065

Advanced note about invalid character reference
When you use the character reference symbols, you must address existing characters in
the string in the same way you address existing elements of an array. For example if you
address the 20th character of a string variable, this variable MUST contain at least 20
characters.

• Failing to do so, in interpreted mode, does not cause a syntax error.
• Failing to do so, in compiled mode (with no options), may lead to memory corruption,
if, for instance, you write a character beyond the end of a string or a text.
• Failing to do so, in compiled mode, causes an error with the option Range Checking
On. For example, executing the following code:

vsAnyText:=""
vsAnyText[[1]]:="A" ` Very bad and nasty thing to do, booh!

will trigger the Runtime Error shown here:

Example
The following project method capitalizes the first character of each word of the text
received as parameter and returns the resulting capitalized text:

` Capitalize text project method
` Capitalize text (Text) -> Text
` Capitalize text (Source text) -> Capitalized text

$0:=$1
$vlLen:=Length($0)
If ($vlLen>0)

$0[[1]]:=Uppercase($0[[1]])
For ($vlChar;1;$vlLen-1)

If (Position($0[[$vlChar]];" !&()-{}:;<>?/,.=+*")>0)
$0[[$vlChar+1]]:=Uppercase($0[[$vlChar+1]])

End if
End for

End if

1066 4th Dimension Language Reference

For example, the line:

ALERT(Capitalize text ("hello, my name is jane doe and i'm running for president!"))

displays the alert shown here:

See Also
Ascii, ASCII Codes, Char.

4th Dimension Language Reference 1067

Uppercase String

version 3
__

Uppercase (chaîne) ® String

Parameter Type Description
chaîne Alpha ® Chaîne à convertir en majuscules

Function result String ¬ String in uppercase

Description
Uppercase takes string and returns the string with all alphabetic characters in uppercase.

Examples
See the example for Lowercase.

See Also
Lowercase.

1068 4th Dimension Language Reference

Lowercase String

version 3
__

Lowercase (string) ® String

Parameter Type Description
string String ® String to convert to lowercase

Function result String ¬ String in lowercase

Description
Lowercase takes string and returns the string with all alphabetic characters in lowercase.

Example
The following project method capitalizes the string or text received as parameter. For
instance, Caps ("john") would return "John".

` Caps project method
` Caps (String) -> String
` Caps (Any text or string) -> Capitalized text

Þ $0:=Lowercase($1)
If (Length($0)>0)

$0[[1]]:=Uppercase($0[[1]])
End if

See Also
Uppercase.

4th Dimension Language Reference 1069

Change string String

version 3
__

Change string (source; newChars; where) ® String

Parameter Type Description
source String ® Original string
newChars String ® New characters
where Number ® Where to start the changes

Function result String ¬ Resulting string

Description
Change string changes a group of characters in source and returns the resulting string.
Change string overlays source, with the characters in newChars, at the character described
by where.

If newChars is an empty string (""), Change string returns source unchanged. Change string
always returns a string of the same length as source. If where is less than one or greater
than the length of source, Change string returns source.

Change string is different from Insert string in that it overwrites characters instead of
inserting them.

Example
The following example illustrates the use of Change string. The results are assigned to the
variable vtResult.

Þ vtResult := Change string ("Acme"; "CME"; 2) ` vtResult gets "ACME"
Þ vtResult := Change string ("November";"Dec"; 1) ` vtResult gets "December"

See Also
Delete string, Insert string, Replace string.

1070 4th Dimension Language Reference

Insert string String

version 3
__

Insert string (source; what; where) ® String

Parameter Type Description
source String ® String in which to insert the other string
what String ® String to insert
where Number ® Where to insert

Function result String ¬ Resulting string

Description
Insert string inserts a string into source and returns the resulting string. Insert string inserts
the string what before the character at position where.

If what is an empty string (""), Insert string returns source unchanged.

If where is greater than the length of source, then what is appended to source. If where is
less than one (1), then what is inserted before source.

Insert string is different from Change string in that it inserts characters instead of
overwriting them.

Example
The following example illustrates the use of Insert string. The results are assigned to the
variable vtResult.

Þ vtResult := Insert string ("The tree"; " green"; 4) ` vtResult gets "The green tree"
Þ vtResult := Insert string ("Shut"; "o"; 3) ` vtResult gets "Shout"
Þ vtResult := Insert string ("Indention"; "ta"; 6) ` vtResult gets "Indentation"

See Also
Change string, Delete string, Replace string.

4th Dimension Language Reference 1071

Delete string String

version 3
__

Delete string (source; where; numChars) ® String

Parameter Type Description
source String ® String from which to delete characters
where Number ® First character to delete
numChars Number ® Number of characters to delete

Function result String ¬ Resulting string

Description
Delete string deletes numChars from source, starting at where, and returns the resulting
string.

Delete string returns the same string as source when:
• source is an empty string
• where is greater than the length of Source
• numChars is zero (0)

If where is less than one, the characters are deleted from the beginning of the string.

If where plus numChars is equal to or greater than the length of source, the characters are
deleted from where to the end of source.

Example
The following example illustrates the use of Delete string. The results are assigned to the
variable vtResult.

Þ vtResult:=Delete string("Lamborghini"; 6; 6) ` vtResult gets "Lambo"
Þ vtResult:=Delete string("Indentation"; 6; 2) ` vtResult gets "Indention"
Þ vtResult:=Delete string(vtOtherVar;3;32000) ` vtResult gets the first two characters of
vtOtherVar

See Also
Change string, Insert string, Replace string.

1072 4th Dimension Language Reference

Replace string String

version 3
__

Replace string (source; oldString; newString{; howMany}) ® String

Parameter Type Description
source String ® Original string
oldString String ® Characters to replace
newString String ® Replacement string

(if empty string, occurrences are deleted)
howMany Number ® How many times to replace

If omitted, all occurrences are replaced

Function result String ¬ Resulting string

Description
Replace string replaces howMany occurrences of oldString in source with newString.

If newString is an empty string (""), Replace string deletes each occurrence of oldString in
source.

If howMany is specified, Replace string will replace only the number of occurrences of
oldString specified, starting at the first character of source. If howMany is not specified,
then all occurrences of oldString are replaced.

If oldString is an empty string, Replace string returns the unchanged source.

Examples
1. The following example illustrates the use of Replace string. The results, described in the
comments, are assigned to the variable vtResult.

Þ vtResult:=Replace string("Willow"; " ll"; "d") ` Result gets "Widow"
Þ vtResult:=Replace string("Shout"; "o ";"") ` Result gets "Shut"
Þ vtResult:=Replace string(vtOtherVar;Char(9);",") ` Replaces all tabs in vtOtherVar with
commas

2. The following example eliminates CRs and TABs from the text in vtResult:

Þ vtResult:=Replace string(Replace string(vtResult;Char(13);"");Char(9);"")

See Also
Change string, Delete string, Insert string.

4th Dimension Language Reference 1073

Mac to Win String

version 6.0
__

Mac to Win (text) ® String

Parameter Type Description
text String ® Text expressed using MacOS ASCII map

Function result String ¬ Text expressed using Windows ANSI map

Description
The command Mac to Win returns the text, expressed using the Windows ANSI map,
equivalent to the text you pass in Text, expressed using the MacOS ASCII map.

This command expects a text parameter expressed using the MacOS ASCII map.

Generally, when running on Windows, you do not need to use this command to convert
ASCII codes. When you copy or paste text between 4D and Windows or when you import
or export data, 4D automatically performs these conversions. However, when you use disk
read/write commands such as SEND PACKET or RECEIVE PACKET, you need to explicitly
invoke ASCII conversions. This is the main purpose of the Mac to Win command.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are MacOS-encoded on both Macintosh and Windows. For more
information, see the section ASCII Codes.

Example
On Windows, when you write characters into a document using SEND PACKET, if you do
not use an output ASCII map for filtering characters from MacOS to Windows (see USE
ASCII MAP), you need to convert the text from MacOS to Windows yourself. You can do it
this way:

` ...
Þ SEND PACKET ($vhDocRef;Mac to Win(vtSomeText))

` ...

See Also
ASCII Codes, SEND PACKET, USE ASCII MAP, Win to Mac.

1074 4th Dimension Language Reference

Win to Mac String

version 6.0
__

Win to Mac (text) ® String

Parameter Type Description
text String ® Text expressed using Windows ANSI map

Function result String ¬ Text expressed using Macintosh ASCII map

Description
The command Win to Mac returns text, expressed using the MacOS ASCII map, equivalent
to the text you pass in Text, expressed using the Windows ANSI map.

This command expects a text parameter expressed using the Windows ANSI map.

Generally, when running on Windows, you do not need to use this command to convert
ASCII codes. When you copy or paste text between 4D and Windows or when you import
or export data, 4D automatically performs these conversions. However, when you use disk
read/write commands such as SEND PACKET or RECEIVE PACKET, you need to explicitly
invoke ASCII conversions. This is the main purpose of the Win to Mac command.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are MacOS-encoded on both Macintosh and Windows. For more
information, see the section ASCII Codes.

Example
On Windows, when you read characters from a document using RECEIVE PACKET, if you
do not use an input ASCII map for filtering characters from Windows to MacOS (see USE
ASCII MAP), you need to convert the text from Windows to MacOS yourself. You can do it
this way:

` ...
RECEIVE PACKET ($vhDocRef;vtSomeText;16*1024)

Þ vtSomeText:=Win to Mac(vtSomeText)
` ...

See Also
ASCII Codes, Mac to Win, RECEIVE PACKET, USE ASCII MAP.

4th Dimension Language Reference 1075

Mac to ISO String

version 6.0
__

Mac to ISO (text) ® String

Parameter Type Description
text String ® Text expressed using MacOS ASCII map

Function result String ¬ Text expressed using ISO Latin-1 character map

Description
The command Mac to ISO returns text, expressed using the ISO Latin-1 character map,
equivalent to the text you pass in text, expressed using the MacOS ASCII map.

You will generally not need to use this command.

This command expects a text parameter expressed using the MacOS ASCII map.

4D converts characters received from and sent to a Web Browser. As a result, the text
values you deal with, inside a Web Connection process, are always expressed using the
MacOS ASCII map.

Generally, when running on Windows, you do not need to convert ASCII codes. When
you copy or paste text between 4D and Windows or when you import or export data, 4D
automatically performs these conversions. However, when you use disk read/write
commands such as SEND PACKET or RECEIVE PACKET, you need to explicitly invoke ASCII
conversions.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are MacOS-encoded on both Macintosh and Windows. For more
information, see the section ASCII Codes.

On Windows, it is necessary that, in this case, you do not filter the characters using an
output filter ASCII map.

Consequently, no matter what the platform, if you want to write ISO Latin-1 HTML
documents on disk, you just need to convert the text using Mac to ISO. This is the main
purpose of the Mac to ISO command.

1076 4th Dimension Language Reference

Examples
1. The following line of code converts the (assumed) MacOS encoded text stored in
vtSomeText into an ISO-Latin 1 encoded text:

Þ vtSomeText:=Mac to ISO(vtSomeText)

2. While developing a 4D Web Server application, you build HTML documents that you
later send over Intranet or Internet, using the command SEND HTML FILE. Some of these
documents have references or links to other documents.
The following project method calculates an HTML-based pathname from the Windows or
Macintosh pathname received as parameter:

` HTML Pathname project method
` HTML Pathname (Text) -> Text
` HTML Pathname (Native File Manager Pathname) -> HTML Pathname

C_TEXT($0;$1)
C_LONGINT($vlChar;$vlAscii)
C_STRING(31;$vsChar)

$0:=""
If (On Windows)

$1:=Replace string($1;"\";"/")
Else

$1:=Replace string($1;":";"/")
End if

Þ $1:=Mac to ISO($1)
For ($vlChar;1;Length($1))

$vlAscii:=Ascii($1[[$vlChar]])
Case of

: ($vlAscii>=127)
$vsChar:="%"+Substring(String($vlAscii;"&$");2)

: (Position(Char($vlAscii);":<>&%= "+Char(34))>0)
$vsChar:="%"+Substring(String($vlAscii;"&$");2)

Else
$vsChar:=Char($vlAscii)

End case
$0:=$0+$vsChar

End for

Note: The project method On Windows is listed in the section System Documents.

4th Dimension Language Reference 1077

Once this project method is present in your database, if you want to include a list of FTP
links to documents present in a particular directory, you can write:

` Interprocess variables set, for instance, in the On Startup database method
<>vsFTPURL:="ftp://123.4.56.78/Spiders/"
<>vsFTPDirectory:="APS500:Spiders:" ` Here, a MacOS File Manager pathname

` ...

` ...
ARRAY STRING(31;$asDocuments;0)
DOCUMENT LIST(...;$asDocuments)
$vlNbDocuments:=Size of array($asDocuments)
jsHandler:=...
For ($vlDocument;1;$vlNbDocuments)

vtHTMLCode:=vtHTMLCode+"<P><A HREF="+Char(34)+<>vsFTPURL
+HTML Pathname

(Substring($1+$asDocuments{$vlDocument};Length(<>vsFTPDirectory)+1))
+Char(34)+jsHandler+">

"+$asDocuments{$vlDocument}+"</P>"+Char(13)
End for

` ...

See Also
ASCII Codes, ISO to Mac, SEND HTML FILE, SEND PACKET, USE ASCII MAP.

1078 4th Dimension Language Reference

ISO to Mac String

version 6.0
__

ISO to Mac (text) ® String

Parameter Type Description
text String ® Text expressed using ISO Latin-1 character map

Function result String ¬ Text expressed using MacOS ASCII map

Description
The command ISO to Mac returns text, expressed using the MacOS ASCII map, equivalent
to the text you pass in text, expressed using the ISO Latin-1 character map.

You will generally not need to use this command.

This command expects a text parameter expressed using the ISO Latin-1 character map.

4D converts characters received from and sent to a Web Browser. As a result, the text
values you deal with, inside a Web Connection process, are always expressed using the
MacOS ASCII map.

Generally, when running on Windows, you do not need to convert ASCII codes. When
you copy or paste text between 4D and Windows or when you import or export data, 4D
automatically performs these conversions. However, when you use disk read/write
commands such as SEND PACKET or RECEIVE PACKET, 4D does not perform any ASCII
code conversion.

Within 4D, all the text values, fields, or variables that you have not yet converted to
another ASCII map are MacOS-encoded on both Macintosh and Windows. For more
information, see the section ASCII Codes.

On Windows, it is necessary that, in this case, you do not filter the characters using an
output filter ASCII map.

Consequently, no matter what the platform, if you want to use RECEIVE PACKET to read
ISO Latin-1 HTML documents from the disk, you just need to convert the text using ISO
to Mac. This is the main purpose of the ISO to Mac command.

4th Dimension Language Reference 1079

Example
The following line of code converts the (assumed) ISO Latin-1 encoded text stored in
vtSomeText into a MacOS encoded text:

RECEIVE PACKET ($vhDocRef;vtSomeText;16*1024) ` Read some text from an ISO
Latin-1 HTML document
Þ vtSomeText:=ISO to Mac(vtSomeText)

See Also
ASCII Codes, Mac to ISO, RECEIVE PACKET, USE ASCII MAP.

1080 4th Dimension Language Reference

44 Structure Access

4th Dimension Language Reference 1081

1082 4th Dimension Language Reference

Structure Access Structure Access

version 6.0
__

The commands in this theme return a description of the database structure. They return
the number of tables, the number of fields in each table, the names of the tables and
fields, and the type and properties of each field.

Determining the database structure is extremely useful when you are developing and
using groups of project methods and forms that can be copied into different databases.

The ability to read the database structure allows you to develop and use portable code.

See Also
Count fields, Count tables, Field, GET FIELD PROPERTIES, Pointers, SET INDEX, Table, Table
name.

4th Dimension Language Reference 1083

Count tables Structure Access

version 3
__

Count tables ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of tables in the database

Description
Count tables returns the number of tables in the database. Tables are numbered in the
order in which they are created.

Example
The following example builds an array, named asTables, with the names of tables defined
in the database. This array can be used as a drop-down list (or tab control, scrollable area,
and so on) to display the list of the tables, within a form:

Þ ARRAY STRING (31;asTables;Count tables)
For ($vlTable; 1; Size of array(asTables))

asTables {$vlTable}:=Table name ($vlTable)
End for

See Also
Arrays, Count fields, Table name.

1084 4th Dimension Language Reference

Count fields Structure Access

version 3
__

Count fields (tableNum | tablePtr) ® Number

Parameter Type Description
tableNum | tablePtr Number | Pointer ® Table number or Pointer to table

Function result Number ¬ Number of fields in table

Description
The command Count fields returns the number of fields in the table whose number or
pointer you pass in TableNum or TablePtr.

Fields are numbered in the order in which they are created.

Example
The following project method builds the array asFields, consisting of the field names, for
the table whose pointer is received as first parameter:

$vlTable:=Table($1)
Þ ARRAY STRING(31;asFields;Count fields($vlTable))

For ($vlField;1;Size of array(asFields))
asFields{$vlTable}:=Field name($vlTable;$vlField)

End for

See Also
Arrays, Count tables, Field name, GET FIELD PROPERTIES.

4th Dimension Language Reference 1085

Table name Structure Access

version 3
__

Table name (tableNum | tablePtr) ® String

Parameter Type Description
tableNum | tablePtr Number | Pointer ® Table number or Table pointer

Function result String ¬ Name of the table

Description
The command Table name returns the name of the table whose number of pointer you
pass in tableNum or tablePtr.

Example
The following is an example of a generic method that displays the records of a table. The
reference to the table is passed as a pointer to the table. The Table name command is used
to include the name of the table in the title bar for the window:

` SHOW CURRENT SELECTION Project method
` SHOW CURRENT SELECTION (Pointer)
` SHOW CURRENT SELECTION (->[Table])

Þ SET WINDOW TITLE("Records for "+Table name($1)) ` Sets the window title
DISPLAY SELECTION($1->) ` Displays the selection

See Also
Count tables, Field name, Table.

1086 4th Dimension Language Reference

Field name Structure Access

version 3
__

Field name ((tableNum; fieldNum) | fieldPtr) ® String

Parameter Type Description
tableNum Number ® Table number
fieldNum | fieldPtr Number ® Field number if Table number is passed, or

Field pointer

Function result String ¬ Name of the field

Description
The command Field name returns the name of the field whose pointer you pass in fieldPtr
or whose table and field number you pass in tableNum and fieldNum.

Examples
1. This example sets the second element of the array FieldArray{1} to the name of the
second field in the first table. FieldArray is a two-dimensional array:

Þ FieldArray{1}{2}:=Field name(1;2)

2. This example sets the second element of the array FieldArray{1} to the name of the field
[MyTable]MyField. FieldArray is a two-dimensional array:

Þ FieldArray{1}{2}:=Field name(->[MyTable]MyField)

3. This example displays an alert. This method passes a pointer to a field:

Þ ALERT("The ID number for the field "+Field name($1)+" in the table "
+Table name(Table($1))+" has to be longer than five characters.")

See Also
Count fields, Field, Table name.

4th Dimension Language Reference 1087

Table Structure Access

version 3
__

Table (tableNum | aPtr) ® Pointer | Number

Parameter Type Description
tableNum | aPtr Number | Pointer ® Table number, or

Table pointer, or
Field pointer

¬

Function result Pointer | Number ¬ Table pointer, if a Table number is passed
Table number, if a Table pointer is passed
Table number, if a Field pointer is passed

Description
The command Table has three forms:
• If you pass a table number in tableNum, Table returns a pointer to the table.
• If you pass a table pointer in aPtr, Table returns the table number of the table.
• If you pass a field pointer in aPtr, Table returns the table number of the field.

Examples
1. This example sets the tablePtr variable to a pointer to the third table of the database:

Þ TablePtr:=Table(3)

2. Passing tablePtr (a pointer to the third table) to Table returns the number 3. The
following line sets TableNum to 3:

Þ TableNum:=Table(TablePtr)

3. This example sets the tableNum variable to the table number of [Table3]:

Þ TableNum:=Table(->[Table3])

4. This example sets the tableNum variable to the table number of the table to which the
[Table3]Field1 field belongs:

Þ TableNum:=Table (->[Table3]Field1)

See Also
Count tables, Field, Pointers, Table name.

1088 4th Dimension Language Reference

Field Structure Access

version 3
__

Field (tableNum | fieldPtr{; fieldNum}) ® Number | Pointer

Parameter Type Description
tableNum | fieldPtr Number | Pointer ® Table number or Field pointer
fieldNum Number ® Field number, if Table number is passed

Function result Number | Pointer ¬ Field number, if Field pointer is passed
Field pointer, if Table and Field numbers
are passed

Description
The command Field has two forms:
• If you pass a table number in tableNum and a field number in fieldNum, Field returns a
pointer to the field.
• If you pass a field pointer in fieldPtr, Field returns the field number of the field.

Examples
1. The following example sets the fieldPtr variable to a pointer to the second field in the
third table:

Þ FieldPtr:=Field(3; 2)

2. Passing fieldPtr (a pointer to the second field of a table) to Field returns the number 2.
The following line sets FieldNum to 2:

Þ FieldNum:=Field(FieldPtr)

3. The following example sets the FieldNum variable to the field number of [Table3]Field2:

Þ FieldNum:=Field(->[Table3]Field2)

See Also
Count fields, Field name, GET FIELD PROPERTIES, Table.

4th Dimension Language Reference 1089

GET FIELD PROPERTIES Structure Access

version 3
__

GET FIELD PROPERTIES ((tableNum; fieldNum) | fieldPtr; fieldType{; fieldLen{; indexed}})

Parameter Type Description
tableNum Number ® Table number
fieldNum | fieldPtr Number | Pointer ® Field number, if Table number is passed, or

Field pointer
fieldType Number ¬ Type of field
fieldLen Number ¬ Length of field, if Alphanumeric
indexed Boolean ¬ TRUE = Indexed, FALSE = Non indexed

Description
The command GET FIELD PROPERTIES returns information about the field specified by
fieldPtr or by tableNum and fieldNum.

You either pass:
• the table and field numbers in tableNum and fieldNum, or
• a pointer to the field in fieldPtr.

After the call:

• fieldType returns the type of the field. The fieldType variable parameter can take a value
provided by the following predefined constants:

Constant Type Value
Is Alpha Field Long Integer 0
Is Text Long Integer 2
Is Real Long Integer 1
Is Integer Long Integer 8
Is LongInt Long Integer 9
Is Date Long Integer 4
Is Time Long Integer 11
Is Boolean Long Integer 6
Is Picture Long Integer 3
Is Subtable Long Integer 7
Is BLOB Long Integer 30

• The fieldLen parameter returns the length of the field, if the field is Alphanumeric (i.e.,
fieldType=Is Alpha Field). The value of fieldLen is meaningless for the other field types.

• The indexed parameter returns TRUE is the field is indexed, and FALSE if not. The value
of indexed is meaningful only for Alphanumeric, Integer, Long Integer, Real, Date, Time,
and Boolean fields.

1090 4th Dimension Language Reference

Examples
1. This example sets the variables vType, vLength, and vIndex to the properties for the
third field of the first table:

Þ GET FIELD PROPERTIES(1; 3;vType;vLength;vIndex)

2. This example sets the variables vType, vLength, and vIndex to the properties for the field
named [Table3]Field2:

Þ GET FIELD PROPERTIES(->[File3]Field2;vType;vLength;vIndex)

See Also
Field, Field name, SET INDEX.

4th Dimension Language Reference 1091

SET INDEX Structure Access

version 3
__

SET INDEX (field; index{; *})

Parameter Type Description
field Field or Subfield ® Field for which to create or delete the index
index Boolean ® Create index (TRUE) or Delete index (FALSE)
* ® Asynchronous indexing if * is passed

Description
The command SET INDEX creates or removes the index for the field or subfield you pass in
field.

To index the field or subfield, pass TRUE in index. If the index already exists, the call has
no effect. To delete the index, pass FALSE. If the index does not exist, the call has no
effect.

Since indexing is done in a separate process, the database remains available for use during
this time. If an operation that uses the index is executed while the index is being built,
the index will not be used. To determine if a field has been indexed, use the GET FIELD
PROPERTIES command.

SET INDEX will not index locked records; it will wait until the record becomes unlocked.

The optional * parameter indicates an asynchronous (simultaneous) indexing.
Asynchronous indexing allows the execution of the calling method to continue
immediately, whether or not indexing is completed. However, execution will halt at any
command that requires the index.

Example
The following example indexes the field [Customers]ID:

UNLOAD RECORD([Customers])
Þ SET INDEX ([Customers]ID; True)

See Also
GET FIELD PROPERTIES, ORDER BY, QUERY.

1092 4th Dimension Language Reference

45 Subrecords

4th Dimension Language Reference 1093

1094 4th Dimension Language Reference

CREATE SUBRECORD Subrecords

version 3
__

CREATE SUBRECORD (subtable)

Parameter Type Description
subtable Subtable ® Subtable for which to create a new subrecord

Description
CREATE SUBRECORD creates a new subrecord for subtable and makes the new subrecord
the current subrecord. The new subrecord is saved only when the parent record is saved.
The parent record can be saved by a command such as SAVE RECORD or by the user
accepting the record. If there is no current record, CREATE SUBRECORD has no effect. To
add a new subrecord through a subrecord input form, use ADD SUBRECORD.

Example
The following example is an object method for a button. When it is executed (that is,
when the button is clicked), it creates new subrecords for children in the [People] table.
The Repeat loop lets the user add children until the Cancel button is clicked. The form
displays the children in an subform, but will not allow direct data entry into the subtable
because the Enterable option has been turned off:

Repeat
` Get the child’s name

vChild := Request("Name (cancel when done):")
` If the user clicked OK

If (OK = 1)
` Add a new subrecord for a child

Þ CREATE SUBRECORD([People]Children)
` Assign child’s name to the subfield

[People]Children'Name:=vChild
End if

Until (OK=0)

See Also
ADD SUBRECORD, DELETE SUBRECORD, SAVE RECORD.

4th Dimension Language Reference 1095

DELETE SUBRECORD Subrecords

version 3
__

DELETE SUBRECORD (subtable)

Parameter Type Description
subtable Subtable ® Subtable from which to delete the current
subrecord

Description
DELETE SUBRECORD deletes the current subrecord of subtable. If there is no current
subrecord, DELETE SUBRECORD has no effect. After the subrecord is deleted, the current
subselection for subtable is empty. As a result, DELETE SUBRECORD can’t be used to scan
through a subselection and delete selected subrecords.

The deletion of subrecords is not permanent until the parent record is saved. Deleting a
parent record automatically deletes all its subrecords.

To delete a subselection, create the subselection you want to delete, delete the first
subrecord, create the subselection again, delete the first subrecord, and so on.

Examples
1. The following example deletes all the subrecords of a subtable:

ALL SUBRECORDS([People]Children)
While (Records in subselection([People]Children)>0)

Þ DELETE SUBRECORD([People]Children)
ALL SUBRECORDS([People]Children)

End while

1096 4th Dimension Language Reference

2. The following example deletes the subrecords in which the age of the child is greater
than or equal to 12, from the [People]Children subtable :

ALL RECORDS([People]) ` Select all the records
For ($vlRecord;1;Records in selection([People])) ` For all the records in the table

` Query all records that have subrecords with the criteria
QUERY SUBRECORDS([People]Children;[People]Children'Age>=12)

` Loop until no subrecords are left by the query
While (Records in subselection([People]Children)>0)

` Delete the subrecord
Þ DELETE SUBRECORD([People]Children)

` Query again
QUERY SUBRECORDS([People]Children;[People]Children'Age>=12)

End while
SAVE RECORD([People]) ` Save the parent record
NEXT RECORD([People])

End for

See Also
ALL SUBRECORDS, QUERY SUBRECORDS, Records in subselection, SAVE RECORD.

4th Dimension Language Reference 1097

ALL SUBRECORDS Subrecords

version 3
__

ALL SUBRECORDS (subtable)

Parameter Type Description
subtable Subtable ® Subtable in which to select all subrecords

Description
ALL SUBRECORDS makes all the subrecords of subtable the current subselection. If a
current parent record does not exist, ALL SUBRECORDS has no effect. When a parent
record is first loaded, the subselection contains all subrecords. A subselection may not
contain all subrecords after ADD SUBRECORD, QUERY SUBRECORDS, or DELETE
SUBRECORD is executed.

Example
The following example selects all subrecords to ensure that they are all included in the
sum:

Þ ALL SUBRECORDS ([Stats]Sales)
TotalSales := Sum ([Stats]Sales'Dollars)

See Also
QUERY SUBRECORDS, Records in subselection.

1098 4th Dimension Language Reference

Records in subselection Subrecords

version 3
__

Records in subselection (subtable) ® Number

Parameter Type Description
subtable Subtable ® Subtable for which to count the number

of selected subrecords

Function result Number ¬ Number of subrecords in current subselection

Description
Records in subselection returns the number of subrecords in the current subselection of
subtable. Records in subselection applies only to subrecords in the current record. It is the
subrecord equivalent of Records in selection. The result is undefined if no parent record
exists.

Example
The following example selects all the subrecords and displays the number of children for
the parent record:

` Select all children, then display how many
ALL SUBRECORDS ([People]Children)

Þ ALERT ("Number of children: "+String(Records in subselection ([People]Children)))

See Also
ALL SUBRECORDS, QUERY SUBRECORDS.

4th Dimension Language Reference 1099

APPLY TO SUBSELECTION Subrecords

version 3
__

APPLY TO SUBSELECTION (subtable; statement)

Parameter Type Description
subtable Subtable ® Subtable to which to apply the formula
statement Statement ® One line of code or a method

Description
APPLY TO SUBSELECTION applies statement to each subrecord in the current subselection
of subtable. The statement may be a statement or a method. If the statement modifies a
subrecord, the modified subrecord is written to disk only when the parent record is
written. If the subselection is empty, APPLY TO SUBSELECTION has no effect.

APPLY TO SUBSELECTION can be used to gather information from the subselection or to
modify the subselection.

Example
The following example capitalizes the first names in [People]Children:

ALL SUBRECORDS ([People]Children)
Þ APPLY TO SUBSELECTION([People]Children;[People]Children'Name:=

Uppercase(Substring([People]Children'Name;1;1))
+Lowercase(Substring([People]Children'Name;2)))

Note: The statement has been put on several lines for clarity in documentation only.

See Also
ALL SUBRECORDS, QUERY SUBRECORDS, SAVE RECORD.

1100 4th Dimension Language Reference

FIRST SUBRECORD Subrecords

version 3
__

FIRST SUBRECORD (subtable)

Parameter Type Description
subtable Subtable ® Subtable in which to move

to the first selected subrecord

Description
FIRST SUBRECORD makes the first subrecord of the current subselection of subtable the
current subrecord. All query, selection, and order by commands also set the current
subrecord to the first subrecord. If the current subselection is empty, FIRST SUBRECORD
has no effect.

Example
The following example concatenates the first and last names in child records stored in a
subtable. It copies the names into the array atNames:

` Create an array to hold the names
ARRAY TEXT (atNames; Records in subselection ([People]Children))

Þ FIRST SUBRECORD ([People]Children) ` Start at the first subrecord and loop once for
each child

For ($vlSub; 1; Records in subselection ([People]Children))
atNames{$vlSub} := [People]Children'First Name+" "+ [People]Children'Last Name
NEXT SUBRECORD ([People]Children)

End for

See Also
LAST SUBRECORD, NEXT SUBRECORD, PREVIOUS SUBRECORD.

4th Dimension Language Reference 1101

LAST SUBRECORD Subrecords

version 3
__

LAST SUBRECORD (subtable)

Parameter Type Description
subtable Subtable ® Subtable in which to move

to the last selected subrecord

Description
LAST SUBRECORD makes the last subrecord of the current subselection of subtable the
current subrecord. If the current subselection is empty, LAST SUBRECORD has no effect.

Example
The following example concatenates the first and last names in child records stored in a
subtable. It copies the names into an array, called atNames. It is the same as the example
for FIRST SUBRECORD except that it moves through the subrecords from last to first:

` Create an array to hold the names
ARRAY TEXT (atNames; Records in subselection ([People]Children))

` Start at the last subrecord and loop once for each child
Þ LAST SUBRECORD ([People]Children)

For ($vlSub;1;Records in subselection ([People]Children))
atNames{$vlSub}:=[People]Children'First Name + " " + [People]Children'Last Name
PREVIOUS SUBRECORD ([People]Children)

End for

See Also
FIRST SUBRECORD, NEXT SUBRECORD, PREVIOUS SUBRECORD.

1102 4th Dimension Language Reference

NEXT SUBRECORD Subrecords

version 3
__

NEXT SUBRECORD (subtable)

Parameter Type Description
subtable Subtable ® Subtable in which to move

to the next selected subrecord

Description
NEXT SUBRECORD moves the current subrecord pointer to the next subrecord in the
current subselection of subtable. If NEXT SUBRECORD moves the pointer past the last
subrecord, End subselection returns TRUE, and there is no current subrecord. If End
subselection returns TRUE, use FIRST SUBRECORD or LAST SUBRECORD to move the pointer
back into the current subselection. If the current subselection is empty, or Before
subselection returns TRUE, NEXT SUBRECORD has no effect.

Example
See the example for FIRST SUBRECORD.

See Also
FIRST SUBRECORD, LAST SUBRECORD, PREVIOUS SUBRECORD.

4th Dimension Language Reference 1103

PREVIOUS SUBRECORD Subrecords

version 3
__

PREVIOUS SUBRECORD (subtable)

Parameter Type Description
subtable Subtable ® Subtable in which to move to

the previous selected subrecord

Description
PREVIOUS SUBRECORD moves the current subrecord pointer to the previous subrecord in
the current subselection of subtable. If PREVIOUS SUBRECORD moves the pointer before
the first subrecord, Before subselection returns TRUE, and there is no current subrecord. If
Before subselection returns TRUE, use FIRST SUBRECORD or LAST SUBRECORD to move the
pointer back into the current subselection. If the current subselection is empty, or End
subselection returns TRUE, PREVIOUS SUBRECORD has no effect.

Example
See the example for LAST SUBRECORD.

See Also
FIRST SUBRECORD, LAST SUBRECORD, NEXT SUBRECORD.

1104 4th Dimension Language Reference

Before subselection Subrecords

version 3
__

Before subselection (subtable) ® Boolean

Parameter Type Description
subtable Subtable ® Subtable for which to test if subrecord pointer

is before the first selected subrecord

Function result Boolean ¬ Yes (TRUE) or No (FALSE)

Description
Before subselection returns True when the current subrecord pointer is before the first
subrecord of subtable. Before subselection is used to check whether or not PREVIOUS
SUBRECORD has moved the pointer before the first subrecord. If the current subselection
is empty, Before subselection returns True.

Example
The following example is an object method for a button. When the button is clicked, the
pointer moves to the previous subrecord. If the pointer is before the first subrecord, it
moves to the last subrecord:

PREVIOUS SUBRECORD ([People]Children) ` Move to the previous subrecord
Þ If (Before subselection ([People]Children) ` If we have gone too far...

LAST SUBRECORD ([People]Children) ` move to the last subrecord
End if

See Also
PREVIOUS SUBRECORD.

4th Dimension Language Reference 1105

End subselection Subrecords

version 3
__

End subselection (subtable) ® Boolean

Parameter Type Description
subtable Subtable ® Subtable for which to test if subrecord pointer

is after the last selected subrecord

Function result Boolean ¬ Yes (TRUE) or No (FALSE)

Description
End subselection returns True when the current subrecord pointer is after the end of the
current subselection of subtable. End subselection is used to check whether or not NEXT
SUBRECORD has moved the pointer after the last subrecord. If the current subselection is
empty, End subselection returns True.

Example
The following example is an object method for a button. When the button is clicked, the
pointer moves to the next subrecord. If the pointer is after the last subrecord, it moves to
the first subrecord:

NEXT SUBRECORD ([People]Children) ` Move to the next subrecord
Þ If (End subselection ([People]Children)) ` If we have gone too far...

FIRST SUBRECORD ([People]Children) ` move to the first subrecord
End if

See Also
NEXT SUBRECORD.

1106 4th Dimension Language Reference

ORDER SUBRECORDS BY Subrecords

version 3
__

ORDER SUBRECORDS BY (subtable; subfield{; > or <}{; subfield2; > or <2; ...; subfieldN;
> or <N})

Parameter Type Description
subtable Subtable ® Subtable by which to order

the selected subrecords
subfield Subfield ® Subfield on which to order by for each level
> or < ® Ordering direction for each level:

> to order in ascending order or
< to order in descending order

Description
ORDER SUBRECORDS BY sorts the current subselection of subtable. It sorts only the
subselection of the subtable contained in the current parent record.

The direction parameter specifies whether to sort subfield in ascending or descending
order. If direction is the “greater than” symbol (>), the subrecords are ordered in
ascending order. If direction is the “less than” symbol (<), the subrecords are ordered in
descending order.

You can specify more than one level of sort by including more subfields and sort symbols.
After the sort is completed, the first subrecord of the sorted subselection is the current
subrecord. Sorting subrecords is a dynamic process. Subrecords are never saved in their
sorted order. If neither a current record nor a higher-level subrecord exists, ORDER
SUBRECORDS BY has no effect.
If a form contains a subform that is to be printed in a fixed frame, this command needs
to be called just once before printing in the Before phase of the parent form method.

Example
The following example sorts the [Stats]Sales subtable into ascending order, based on the
SalesDollars subfield:

Þ ORDER SUBRECORDS BY ([Stats]Sales; [Stats]SalesDollars; >)

See Also
QUERY SUBRECORDS.

4th Dimension Language Reference 1107

QUERY SUBRECORDS Subrecords

version 3
__

QUERY SUBRECORDS (subtable; queryFormula)

Parameter Type Description
subtable Subtable ® Subtable to search
queryFormula Boolean ® Query formula

Description
QUERY SUBRECORDS queries subtable and creates a new subselection. This is the only
command that queries subrecords and returns a selection of subrecords. The queryFormula
is applied to each subrecord in subtable. If the formula evaluates as TRUE, the subrecord is
added to the new subselection. When the query is complete, QUERY SUBRECORDS makes
the first subrecord the current subrecord of subtable.

Remember that QUERY SUBRECORDS queries only the subrecords of the subtable
contained in the currently selected parent record, and not all the subrecords associated
with the records of the parent table. QUERY SUBRECORDS does not change the current
parent record.

Typically, queryFormula tests a subfield against a variable or a constant, using a relational
operator. The queryFormula can contain multiple tests that are joined by AND
conjunctions (&) or OR conjunctions (|). Also, the queryFormula can be a function or
contain a function. The wildcard character (@) can be used with string arguments.

If neither a current record nor a higher-level subrecord exists, QUERY SUBRECORDS has no
effect.

Example
The following example queries for children older than 10 years:

Þ QUERY SUBRECORDS ([People]Children; [People]Children'Age>10)

See Also
ALL SUBRECORDS, ORDER SUBRECORDS BY, Records in subselection.

1108 4th Dimension Language Reference

46 System Documents

4th Dimension Language Reference 1109

1110 4th Dimension Language Reference

System Documents System Documents

version 6.0
__

Introduction
All the documents and applications you use on your computer are stored as files on the
hard disk(s) connected to or mounted on your machine, or floppy disk(s) or other similar
permanent storage devices. Within 4th Dimension we use the terms file or document to
refer to these documents and applications. However, most commands in this theme use
the term "document" because most of the time you will use them to access documents
(rather than application or system files) on disk.

A hard disk can be formatted as one or several partitions, each of which is called a
volume. It does not matter if two volumes are physically present on the same hard disk;
at the 4D First level, you will usually treat these volumes as separate and equal entities.

A volume can be located on a hard disk physically connected to your machine or
mounted over the network through a file sharing protocol such as NetBEUI (Windows) or
AFP (Macintosh). Whatever the case, when using the System Documents commands at
the 4D level, you treat all these volumes in the same way (unless you know what you are
doing and use Plug-ins to extend the capability of your application in that domain).

Each volume has a volume name. On Windows, volumes are designated by a letter
followed by a colon. Usually A: and B: are used to designate the 5 1/4 or 3 1/2 floppy
drives. Usually C: designates the volume you use for booting your system (unless you
configure your PC otherwise). Then the letters D: through Z: are used for the additional
volumes connected or mounted to your PC (CD-ROM drives, additional drives, network
drives, and so on). On Macintosh, volumes have natural names whose maximal length is
31 characters; these are the names you see on the desktop at the Finder level.

Normally, you classify your documents into folders, which themselves can contain other
folders. It is not a good idea to accumulate hundreds or thousands of files at the same
level of a volume; it is messy and it slows down your system. On Windows, a folder is (or
was) called a directory; since the introduction of Windows 95, the term folder is used.
Folders have always been called so on the Macintosh.

To uniquely identify a document, you need to know the name of the volume and the
name(s) of the folder(s) where the document is located as well as the name of the
document itself. If you concatenate all these names, you get the pathname to the
document. Within this pathname, folder name are separated by a special character called
the directory (separator) symbol. On Windows, this character is the anti-slash (\); on
Macintosh it is the colon (:).

4th Dimension Language Reference 1111

Let's look at an example. You have a document Important Memo located in the folder
Memos, which is located in the folder Documents, which is located in the folder Current
Work.

On Windows, if the whole thing is located on the C: drive (volume), the pathname of the
document is:

C:\Current Work\Documents\Memos\Important Memo.TXT

On Macintosh, if the whole thing is located on the disk (volume) Internal Drive, the
pathname of the document is:

Internal Drive:Current Work:Documents:Memos:Important Memo

On Windows, the name of the document is suffixed with .TXT; we will see why in the
next section.

Whatever the platform, the full pathname of a document can be expressed as follows:
VolName DirSep { DirName DirSep { DirName DirSep { ... } } } DocName

All the documents (files) located on volumes have several characteristics, usually called
attributes or properties: the name of the document itself (up to 31 characters on
Macintosh, up to 8 characters on Windows 3.1.1, up to 255 characters on Windows 95 or
NT 4.0), the type and the creator.

Document Type and Creator
__

On Windows, a document has a type. On Macintosh, a document has a type and a
creator. The type of a document generally indicates what the document is or what it
contains. For instance, a text document contains some text (without style variations).

On Windows, the type of a document is determined by the suffix (called the file
extension) attached to the document name. For instance, .TXT is the Windows file
extension for text documents. On Macintosh, the type of a document is determined by
the file type property, which is a 4-character signature (not displayed at the Finder level).
For instance, the file type of a text document is "TEXT".

In addition, on Macintosh, a document has a creator, which designates the application
that created the document. This concept does not exist on Windows. The creator of a
document is determined by the file creator property, which is a 4-character signature
(not displayed at the Finder level). For instance, the file creator of a document created by
4D V6 is "4D06".

1112 4th Dimension Language Reference

DocRef: Document reference number
__

A document is open or closed. Using the built-in 4D commands, a document can be open
by only one process at a time. One process can open several documents, several processes
can open multiple documents, but you cannot open the same document twice at a time.

You open a document with the commands Open document, Create document and Append
document.
Once a document is open, you can read and write characters from and to the document
(see the command RECEIVE PACKET and SEND PACKET). When you are finished with the
document, you usually close it using the command CLOSE DOCUMENT.

All open documents are referred to using DocRef expression returned by the commands
Open document, Create document and Append document. A DocRef uniquely identifies an
open document. It is formally an expression of type Time. All commands working with
open documents expect DocRef as a parameter. If you pass an incorrect DocRef to one of
these commands, a file manager error occurs.

Handling I/O errors
__

When you access (open, close, delete, rename, copy) documents, when you change the
properties of a document or when you read and write characters in a document, I/O errors
may occur. A document might not be found, it can be locked, it can be already open. You
can catch these errors with an error-handling method installed with ON ERR CALL. Most
the errors that can occur while using system documents are described in the section OS
File Manager Errors.

The Document system variable
__

The three commands Open document, Create document and Append document enables
you to access a document using the standard Open or Save file dialog boxes. When you
access a document through a standard dialog, 4D returns the full pathname of the
document in the Document system variable. This system variable has to be distinguished
from the document parameter that appears in the parameter list of the commands.

Specifying Document names or Document pathnames
__

Most of the routines of this section expecting a document name accept both a name or a
pathname to the document (except when signaled otherwise). If you pass a name, the
command looks for the document within the folder of the database. If you pass a
pathname, it must be valid.

4th Dimension Language Reference 1113

If you pass a wrong name or a wrong pathname, the command generates a file manager
error that you can intercept using an ON ERR CALL method.

Warning: The maximum length of the parameter document is 255 characters. If you pass
a longer name, it will be truncated and a File manager error will be generated.

Useful Project Methods when handling documents on disk
__

• Detecting on which platform you're running
Although 4th Dimension provides commands, such as MAP FILE TYPES, for eliminating
coding variations due to platform specificities, once you start to work at a lower level
when handling documents on disk (such as programmatically obtaining pathnames), you
need to know if you are running on a Macintosh or on a Windows platform.

The On Windows project method listed here tells if your database is running on Windows:

` On windows Project Method
` On windows -> Boolean
` On windows -> True if on Windows

C_BOOLEAN($0)
C_LONGINT($vlPlatform;$vlSystem;$vlMachine)

PLATFORM PROPERTIES($vlPlatform;$vlSystem;$vlMachine)
$0:=($vlPlatform=Windows)

• Using the right directory separator symbol

On Windows, a directory level is symbolized by an anti-slash (\). On Macintosh, a folder
level is symbolized by a colon (:). Depending on which platform you are running, the
Directory symbol project method listed here returns the ASCII code of the right directory
symbol (character).

` Directory symbol Project Method
` Directory symbol -> Integer
` Directory symbol -> ASCII of "\" (Windows) or ":" (MacOS)

C_INTEGER($0)

If (On Windows)
$0:=Ascii("\")

Else
$0:=Ascii(":")

End if

1114 4th Dimension Language Reference

• Extracting the file name from a long name
Once you have obtained the long name (pathname + file name) to a document, you
may need to extract from that long name the file name of the document to, for example,
display it in the title of a window. The Long name to file name project method does this on
both Windows and Macintosh.

` Long name to file name Project Method
` Long name to file name (String) -> String
` Long name to file name (Long file name) -> file name

C_STRING(255;$1;$0)
C_INTEGER($viLen;$viPos;$viChar;$viDirSymbol)

$viDirSymbol:=Directory symbol
$viLen:=Length($1)
$viPos:=0
For ($viChar;$viLen;1;-1)

If (Ascii($1£$viChar³)=$viDirSymbol)
$viPos:=$viChar
$viChar:=0

End if
End for
If ($viPos>0)

$0:=Substring($1;$viPos+1)
Else

$0:=$1
End if
If (àvbDebugOn) ` Set this variable to True or False in the On Startup database method

If ($0="")
TRACE

End if
End if

• Extracting the pathname from a long name
Once you have obtained the long name (pathname + file name) to a document, you may
need to extract from that long name the pathname of the directory where the document
is located; for instance, you may want to save additional documents at the same place.
The Long name to path name project method does this on both Windows and Macintosh.

` Long name to path name Project Name
` Long name to path name (String) -> String
` Long name to path name (Long file name) -> Path name

C_STRING(255;$1;$0)
C_STRING(1;$vsDirSymbol)
C_INTEGER($viLen;$viPos;$viChar;$viDirSymbol)

4th Dimension Language Reference 1115

$viDirSymbol:=Directory symbol
$viLen:=Length($1)
$viPos:=0
For ($viChar;$viLen;1;-1)

If (Ascii($1£$viChar³)=$viDirSymbol)
$viPos:=$viChar
$viChar:=0

End if
End for
If ($viPos>0)

$0:=Substring($1;1;$viPos)
Else

$0:=$1
End if
If (àvbDebugOn) ` Set this variable to True or False in the On Startup database method

If ($0="")
TRACE

End if
End if

See Also
Append document, CLOSE DOCUMENT, COPY DOCUMENT, Create document, CREATE
FOLDER, DELETE DOCUMENT, Document creator, DOCUMENT LIST, Document type,
FOLDER LIST, Get document position, GET DOCUMENT PROPERTIES, Get document size,
MAP FILE TYPES, MOVE DOCUMENT, Open document, SET DOCUMENT CREATOR, SET
DOCUMENT POSITION, SET DOCUMENT PROPERTIES, SET DOCUMENT SIZE, SET
DOCUMENT TYPE, Test path name, VOLUME ATTRIBUTES, VOLUME LIST.

1116 4th Dimension Language Reference

Open document System Documents

version 3
__

Open document (document{; fileType}) ® DocRef

Parameter Type Description
document String ® Document name or

Full document pathname or
Empty string for standard file dialog box

fileType String ® MacOS file type (4-character string) or
Windows file extension (1 to 3-character

string) or
TEXT (.TXT) document if omitted

Function result DocRef ¬ Document reference number

Description
The command Open document opens the document whose name or pathname you pass
in document.

If you pass an empty string in document, the Open File dialog box is presented, you then
select the document to be open. If you cancel the dialog, no document is open, Open
document returns a null DocRef and sets the OK variable to 0.

If the document is correctly opened, Open document returns its document reference
number and set the OK variable to 1. If the document does not exist or is already open an
error is generated.

On Macintosh, if you use the Open File dialog box, all documents are by default
presented. To show another type of documents, specify the a document type in the
optional fileType parameter.

On Windows, if you use the Open File dialog box, all types of documents *.* are by
default presented. To show another type of documents, pass in fileType, a 1 to 3-character
Windows file extension or a Macintosh file type mapped using the command MAP FILE
TYPES.

On Windows, even though you do not use the Open File dialog box, you might pass the
fileType parameter to specify the file extension of the document you want to open. By
default, Open document attempts to open a .TXT file. If you specify the fileType parameter,
Open document tries to open the document whose name is “Document.fileType”.

4th Dimension Language Reference 1117

For example:

Þ vhDocRef:=Open document("C:\Letter";"WRI")

will try to open the document “C:\Letter.WRI” on your disk. If you pass more than three
characters in fileType, Open document takes into account only the first three characters. If
a document type is not specified, Open document tries to open the document with no file
extension. If it does not find it, it tries to open the document with the .TXT extension. If
it does not find it, it will return a “File not found” error.

If a document is open, Open document initially sets the file position at the beginning of
the document while Append document sets it at the end of the document.

Once you have open a document you can read and write in the document using the
command RECEIVE PACKET and SEND PACKET that you can combine with the commands
Get file position and SET FILE POSITION to directly access any part of the document.

Do not forget to eventually call CLOSE DOCUMENT for the document.

Example
The following example opens an existing document called Note, writes the string “Good-
bye” into it, and closes the document. If the document already contained the string
“Hello”, the string would be overwritten:

C_TIME(vhDocRef)
Þ vhDocRef:=Open document ("Note") ` Open a document called Note

If (OK=1)
SEND PACKET (vhDocRef;"Good-bye") ` Write one word into the document
CLOSE DOCUMENT (vhDocRef) ` Close the document

End if

See Also
Append document, Create document, Open document.

1118 4th Dimension Language Reference

Create document System Documents

version 3
__

Create document (document{; type}) ® DocRef

Parameter Type Description
document String ® Document name or

Full document pathname or
Empty string for standard file dialog box

type String ® MacOS file type (4-character string) or
Windows file extension (1 to 3-character

string) or
TEXT (.TXT) document if omitted

Function result DocRef ¬ Document reference number

Description
The command Create document creates a new document and returns its document
reference number.

You pass the name or the full pathname of the new document in document. If document
already exists on the disk, it is overwritten. However, if document is locked or already
open, an error is generated.

If you pass an empty in document, the Save As dialog box is presented, you can then
enter the name of the document you want to create. If you cancel the dialog, no
document is created, Create document returns a null DocRef and sets the OK variable to 0.

If the document is correctly created and open, Create document returns its document
reference number and set the OK variable to 1.

Whether or not you use the Save As dialog box, Create document creates by default a .TXT
(Windows) or TEXT (Macintosh) document. If you want to create another type of
document, pass the fileType parameter.

On Macintosh, you pass a file type. On Windows you pass a 1 to 3-character Windows file
extension or Macinsoth file type mapped through the MAP FILE TYPES mechanism.

Once you have created and open a document you can write and read the document using
the command SEND PACKET and RECEIVE PACKET that you can combine with the
commands Get file position and SET FILE POSITION to directly access any part of the
document.

Do not forget to eventually call CLOSE DOCUMENT for the document.

4th Dimension Language Reference 1119

Example
The following example creates and opens a new document called Note, writes the string
“Hello” into it, and closes the document:

C_TIME(vhDocRef)
Þ vhDocRef:=Create document ("Note") ` Create new document called Note

If (OK=1)
SEND PACKET(vhDocRef; "Hello") ` Write one word into the document
CLOSE DOCUMENT(vhDocRef) ` Close the document

End if

See Also
Append document, Open document.

1120 4th Dimension Language Reference

Append document System Documents

version 3
__

Append document (document{; type}) ® DocRef

Parameter Type Description
document String ® Document name or

Full document pathname or
Empty string for standard file dialog box

type String ® MacOS file type (4-character string) or
Windows file extension (1 to 3-character

string) or
TEXT (.TXT) document if omitted

Function result DocRef ¬ Document reference number

Description
The command Append document does the same as thing as Open document: it allows you
to open a document on disk.

The only difference is that Append document sets the file position at the end of the
document while Open document sets its at the beginning of the document.

Refer to Open document for more details about using Append document.

Example
The following example opens an existing document called Note, appends the string “and
so long” and a carriage return onto the end of the document, and closes the document. If
the document already contained the string “Good-bye”, the document would now
contain the string “Good-bye and so long”, followed by a carriage return:

C_TIME(vhDocRef)
Þ vhDocRef:=Append document ("Note") ` Open Note document

SEND PACKET (vhDocRef;" and so long"+Char(13)) ` Append a string
CLOSE DOCUMENT (vhDocRef) ` Close the document

See Also
Create document, Open document.

4th Dimension Language Reference 1121

CLOSE DOCUMENT System Documents

version 3
__

CLOSE DOCUMENT (docRef)

Parameter Type Description
docRef DocRef ® Document reference number

Description
CLOSE DOCUMENT closes the document specified by docRef.

Closing a document is the only way to ensure that the data written to a file is saved. You
must close all the documents you open with the commands Open document, Create
document or Append document.

Example
The following example lets the user create a new document, writes the string “Hello” into
it, and closes the document:

C_TIME(vhDocRef)
vhDocRef:=Create document ("")
If (OK=1)

SEND PACKET(vhDocRef; "Hello") ` Write one word into the document
Þ CLOSE DOCUMENT(vhDocRef) ` Close the document

End if

See Also
Append document, Create document, Open document.

1122 4th Dimension Language Reference

COPY DOCUMENT System Documents

version 6.0
__

COPY DOCUMENT (sourceName; destinationName{; *})

Parameter Type Description
sourceName String ® Name of document to be copied
destinationName String ® Name of copied document
* ® Override existing document if any

Description
The command COPY DOCUMENT copies the document specified by sourceName to the
location specified by destinationName.

Both sourceName and destinationName can be a name referring to a document located in
the database folder or a pathname referring to a document relatively to the root level of a
volume.

An error will occur if there is already a document named destinationName unless you
specify the optional * parameter instructing COPY DOCUMENT to delete and override the
destination document.

Examples
(1) The following example duplicates a document in its own folder:

Þ COPY DOCUMENT("C:\FOLDER\DocName";"C:\FOLDER\DocName2")

(2) The following example copies a document to the database folder (provided C:\FOLDER
is not the database folder):

Þ COPY DOCUMENT("C:\FOLDER\DocName";"DocName")

(3) The following example copies and from a document from one volume to another one:

Þ COPY DOCUMENT("C:\FOLDER\DocName";"F:\Archives\DocName.OLD")

(4) The following example duplicates a document in its own folder overriding an already
existing copy:

Þ COPY DOCUMENT("C:\FOLDER\DocName";"C:\FOLDER\DocName2";*)

See Also
MOVE DOCUMENT.

4th Dimension Language Reference 1123

MOVE DOCUMENT System documents

version 6.0
__

MOVE DOCUMENT (srcPathname; dstPathname)

Parameter Type Description
srcPathname String ® Full pathname to existing document
dstPathname String ® Destination pathname

Description
The command MOVE DOCUMENT moves or renames a document.

You specify the full pathname to the document in srcPathName and the new name
and/or new location for the document in dstPathName.

Warning: Using MOVE DOCUMENT, you can move a document from and to any directory
on the same volume. If you want to move a document between two distinct volumes, use
COPY DOCUMENT to “move” the document then delete the original copy of the
document using DELETE DOCUMENT.

Examples
(1) The following example renames the document DocName:

Þ MOVE DOCUMENT("C:\FOLDER\DocName";"C:\FOLDER\NewDocName")

(2) The following example moves and renames the document DocName:

Þ MOVE DOCUMENT("C:\FOLDER1\DocName";"C:\FOLDER2\NewDocName")

(3) The following example moves the document DocName:

Þ MOVE DOCUMENT("C:\FOLDER1\DocName";"C:\FOLDER2\DocName")

Note: In the last two example, the destination folder "C:\FOLDER2" must exist. The
command MOVE DOCUMENT only moves a document, does not create folders.

See Also
COPY DOCUMENT.

1124 4th Dimension Language Reference

DELETE DOCUMENT System Documents

version 3
__

DELETE DOCUMENT (document)

Parameter Type Description
document String ® Document name or

Full document pathname

Description
The command DELETE DOCUMENT deletes the document whose name you pass in
document.

If the document does not exist, no error is generated. On the other hand, an error is
generated if you try to delete an open document.

DELETE DOCUMENT doesn’t accept an empty string argument for document. If an empty
string is used, the Open File dialog box is not displayed and an error is generated.

WARNING: DELETE DOCUMENT can delete any file on a disk. This includes documents
created with other applications as well as the applications themselves. DELETE DOCUMENT
should be used with extreme caution. Deleting a document is a permanent operation and
cannot be undone.

Examples
(1) The following example deletes the document named Note:

Þ DELETE DOCUMENT ("Note") ` Delete the document

(2) See example for the command APPEND TO CLIPBOARD.

System Variables or Sets
Deleting a document sets the OK system variable to 1. If DELETE DOCUMENT can’t delete
the document, the OK system variable is set to 0.

4th Dimension Language Reference 1125

Test path name System Documents

version 6.0
__

Test path name (pathname) ® Number

Parameter Type Description
pathname String ® Pathname to directory, folder or document

Function result Number ¬ 1, pathname refers to an existing document
0, pathname refers to an existing directory or

folder
<0, invalid pathname, OS file manager error

code

Description
The function Test path name checks if a document or folder whose name or pathname
you pass in pathname is present on the disk.

If a document is found, Test path name returns 1. If a folder found, Test path name
returns 0.

The following predefined constant are provided by 4D:

Constant Type Value
Is a document Long Integer 1
Is a directory Long Integer 0

If no document nor folder is found, Test path name returns a negative value (i.e. -43 for
File not found).

Example
The following tests if the document “Journal” is present in the folder of the database,
then creates it if it was not found:

Þ If (Test path name("Journal") # Is a document)
$vhDocRef:=Create document("Journal")
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
End if

End if

See Also
Create document, CREATE FOLDER.

1126 4th Dimension Language Reference

CREATE FOLDER System Documents

version 6.0
__

CREATE FOLDER (folderPath)

Parameter Type Description
folderPath String ® Pathname to new folder to create

Description
The command CREATE FOLDER creates a folder according to the pathname you pass in
folderPath.

If you pass a name, the folder is created in the folder of the database. If you pass a path
name, it must refer to a valid path up to the name of the folder you want to create;
starting at the root level of a volume or at the level of the database folder.

Examples
(1) The following example creates the folder “Archives” in the folder of the database:

Þ CREATE FOLDER("Archives")

(2) The following example creates the folder Archives in the folder of the database, then
it creates the subfolder “January” and “February”:

Þ CREATE FOLDER("Archives")
Þ CREATE FOLDER("Archives\January")
Þ CREATE FOLDER("Archives\February")

(3) The following example creates the folder “Archives” at the root level of the C volume:

Þ CREATE FOLDER("C:\Archives")

(4) The following example will fail if there is no “NewStuff” folder at the root level of the
C volume:

Þ CREATE FOLDER("C:\NewStuff\Pictures") ` WRONG, can't two folder levels in one
call

See Also
FOLDER LIST, Test path name.

4th Dimension Language Reference 1127

VOLUME LIST System Documents

version 6.0
__

VOLUME LIST (volumes)

Parameter Type Description
volumes Array ¬ Names of the volumes currently mounted

Description
The command VOLUME LIST populates the Text or String array volumes with the names of
the volumes currently defined (Windows) or mounted (Macintosh) on your machine.

On Macintosh, it returns the list of the volumes visible at the Finder level.

On the other hand, on Windows, it returns the list of the volumes currently defined
whether or not each volume is physically present (i.e. the volume A: will be returned
whether or not a disk is actually present in the floppy drive).

Example
Using a scrollable area named asVolumes you want to display the list of the volumes
defined or mounted on your machine, you write:

Case of
: (Form event=On Load)

ARRAY STRING(31;asVolumes;0)
Þ VOLUME LIST(asVolumes)

` ...
End case

See Also
DOCUMENT LIST, FOLDER LIST, VOLUME ATTRIBUTES.

1128 4th Dimension Language Reference

VOLUME ATTRIBUTES System Documents

version 6.0
__

VOLUME ATTRIBUTES (volume; size; used; free)

Parameter Type Description
volume String ® Volume name
size Number ¬ Volume size expressed in bytes
used Number ¬ Used space expressed in bytes
free Number ¬ Free space expressed in bytes

Description
The command VOLUME ATTRIBUTES returns, expressed in bytes, the size, the used space
and the free space for the volume whose name you pass in volume.

Example
Your application includes some batch operations running the night or the week-end that
store huge temporary files on disk. To make this process as automatic and flexible as
possible, you write a routine that will automatically find the first volume whose free space
is sufficient for your temporary files. You might write the following project method:

` Find volume for space Project Method
` Find volume for space (Long) -> String
` Find volume for space (Space needed in bytes) -> Volume name or Empty string

C_STRING(31;$0)
C_STRING(255;$vsDocName)
C_LONGINT($1;$vlNbVolumes;$vlVolume;$vlSize;$vlUsed;$vlFree)
C_TIME($vhDocRef)

` Initialize function result
$0:=""

` Protect all I/O operations with an error interruption method
ON ERR CALL("ERROR METHOD")

` Get the list of the volumes
ARRAY STRING(31;$asVolumes;0)
gError:=0
VOLUME LIST($asVolumes)
If (gError=0)

` If running on windows, skip the (usual) two floppy drives
If (On Windows)

$vlVolume:=Find in array($asVolumes;"A:")

4th Dimension Language Reference 1129

If ($vlVolume>0)
DELETE ELEMENT($asVolumes;$vlVolume)

End if
$vlVolume:=Find in array($asVolumes;"B:")
If ($vlVolume>0)

DELETE ELEMENT($asVolumes;$vlVolume)
End if

End if
$vlNbVolumes:=Size of array($asVolumes)

` For each volume
For ($vlVolume;1;$vlNbVolumes)

` Get the size, used space and free space
gError:=0

Þ VOLUME ATTRIBUTES($asVolumes{$vlVolume};$vlSize;$vlUsed;$vlFree)
If (gError=0)

` Is the free space large enough (plus an extra 32K) ?
If ($vlFree>=($1+32768))

` If so, check if the volume is unlocked...
$vsDocName:=$asVolumes{$vlVolume}+Char(Directory symbol)

+"XYZ"+String(Random)+".TXT"
$vhDocRef:=Create document($vsDocName)
If (OK=1)

CLOSE DOCUMENT($vhDocRef)
DELETE DOCUMENT($vsDocName)

` If everything's fine, return the name of the volume
$0:=$asVolumes{$vlVolume}
$vlVolume:=$vlNbVolumes+1

End if
End if

End if
End for

End if
ON ERR CALL("")

Once this project method is added to your application, you can for instance write:

$vsVolume:=Find volume for space (100*1024*1024)
If($vsVolume#"")

` Continue
Else

ALERT("A volume with at least 100 MB of free space is required!")
End if

See Also
VOLUME LIST.

1130 4th Dimension Language Reference

FOLDER LIST System Documents

version 6.0
__

FOLDER LIST (pathname; directories)

Parameter Type Description
pathname String ® Pathname to volume, directory or folder
directories Array ¬ Names of the directories present at this
location

Description
The command FOLDER LIST populates the Text or String array directories with the names
of the folders located at the pathname you pass in pathname.

If there are no folders at the specified location, the command returns an empty array. If
the pathname you pass in pathname is invalid, FOLDER LIST generate a file manager error
that you can intercept using an ON ERR CALL method.

Warning: The maximum length of the parameter pathname is 255 characters. If you pass a
longer pathname, it will be truncated and a File manager error will be generated.

See Also
DOCUMENT LIST, VOLUME LIST.

4th Dimension Language Reference 1131

DOCUMENT LIST System Documents

version 6.0
__

DOCUMENT LIST (pathname; documents)

Parameter Type Description
pathname String ® Pathname to volume, directory or folder
documents Array ¬ Names of the documents present at this
location

Description
The DOCUMENT LIST command populates the Text or String array directories with the
names of the documents located at the pathname you pass in pathname.

If there are no documents at the specified location, the command returns an empty array.
If the pathname you pass in pathname is invalid, DOCUMENT LIST generates a file
manager error that you can intercept using an ON ERR CALL method.

Warning: The maximum length of the parameter pathname is 255 characters. If you pass a
longer pathname, it is truncated and a File Manager error is generated.

See Also
FOLDER LIST, VOLUME LIST.

1132 4th Dimension Language Reference

Document type System documents

version 6.0
__

Document type (document) ® String

Parameter Type Description
document String ® Document name

Function result String ¬ Windows file extension (1 to 3-character
string)

or MacOS file type (4-character string)

Description
The command Document type returns the type of the document whose name or
pathname you pass in document.

On Windows, Document type returns the file extension of the document (i.e. 'DOC' for a
Microsoft Word document, 'EXE' for an executable file, and so on) or the corresponding
MacOS-based 4 characters file type if this latter has been mapped with its equivalent
Windows file extension by 4th Dimension (i.e. 'TEXT' for the 'TXT' file extension) or by a
prior call to MAP FILE TYPES.

On Macintosh, Document type returns the 4-characters file type of the document (i.e.
'TEXT' for a Text document, 'APPL' for a double-clickable application and so on).

See Also
Document creator, GET DOCUMENT PROPERTIES, MAP FILE TYPES, SET DOCUMENT TYPE.

4th Dimension Language Reference 1133

SET DOCUMENT TYPE System Documents

version 6.0
__

SET DOCUMENT TYPE (document; fileType)

Parameter Type Description
document String ® Document name or

full document pathname
fileType String ® Windows file extension (1 to 3-character string)

or Mac OS file type (4-character string)

Description
The SET DOCUMENT TYPE command sets the type of the document whose name
or pathname you pass in document.

You pass the new type of the document in fileType.

See the discussion of file types in System Documents and Document type.

On Windows, this command modifies the file extension and therefore the value
of document. For example, the instruction:

Þ SET TYPE DOCUMENT("C:\Docs\Invoice.asc";"TEXT")

renames the file "Invoice.asc" to "Invoice.txt". In 4D, the Macintosh "TEXT" type
corresponds to the Windows "txt" type.

If the type has no equivalent provided by 4D, you will have to pass the extension.
For example, the following instruction renames the file "Invoice.asc" to "Invoice.zip":

Þ SET TYPE DOCUMENT("C:\Docs\Invoice.asc";"zip")

See Also
Document type, MAP FILE TYPES, SET DOCUMENT CREATOR, SET DOCUMENT PROPERTIES.

1134 4th Dimension Language Reference

MAP FILE TYPES System Documents

version 3.5
__

MAP FILE TYPES (macOS; windows; context)

Parameter Type Description
macOS String ® MacOS file type (4-character string)
windows String ® Windows file extension (1 to 3-character
string)
context String ® String displayed in List of Types drop-down list

of the Windows file dialog boxes

Description
MAP FILE TYPES lets you associate a Windows file extension with a Macintosh file type.

You need to call this routine only once to establish a mapping for an entire worksession
with a database. Once the call has been made, the commands Append document, Create
document, Create resource file, Open resource file and Open resource file while running on
Windows will automatically substitute the Windows file extension for the Macintosh file
type you actually pass as a parameter to the routine.

In the macOS parameter you pass a 4-character Macintosh file type. If you do not pass a 4-
character string, the command does nothing and generates an error.

In the windows parameter you pass a 1 to 3-character Windows file extension. If you do
not pass a 1 to 3-character string, the command does nothing and generates an error.

In the context parameter you pass the string that will be displayed in the List Files of Type
drop-down list of the Windows Open File dialog box. The context string is limited to 32
characters; additional characters are ignored.

IMPORTANT: Once you have mapped a Windows file extension to a Macintosh file type,
you cannot change or delete this mapping within a single work session. If you need to
change a mapping while developing and debugging a 4D application, reopen the database
and remap the file extension.

4th Dimension Language Reference 1135

Example
The following line of 4D code (that could be part of the Startup database method) maps
the Macintosh MS-Word file type “WDBN” to the Windows file extension “.DOC”:

Þ MAP FILE TYPES ("WDBN";"DOC";"Word documents")

Once the call above has been made, the following code will display only Word documents
in the Open file dialog on Windows and Macintosh:

$DocRef:=Open document("";"WDBN")
If (OK=1)

` ...
End if

See Also
Append document, Create document, Create resource file, Open resource file, Open resource
file.

1136 4th Dimension Language Reference

Document creator System documents

version 6.0
__

Document creator (document) ® String

Parameter Type Description
document String ® Document name or

Full document pathname

Function result String ¬ Empty string (Windows) or
File Creator (MacOS)

Description
The command Document creator returns the creator of the document whose name or
pathname you pass in document.

On Windows, Document creator returns an empty string.

See Also
Document type, SET DOCUMENT CREATOR.

4th Dimension Language Reference 1137

SET DOCUMENT CREATOR System Documents

version 6.0
__

SET DOCUMENT CREATOR (document; fileCreator)

Parameter Type Description
document String ® Document name

or Full document pathname
fileCreator String ® MacOS file creator (4-character string)

or empty string (Windows)

Description
The command SET DOCUMENT CREATOR sets the creator of the document whose name
or pathname you pass in document.

You pass the new creator of the document in fileCreator.

This command does nothing on Windows.

See discussion about file creators in System Documents.

See Also
Document creator, SET DOCUMENT PROPERTIES, SET DOCUMENT TYPE.

1138 4th Dimension Language Reference

GET DOCUMENT PROPERTIES System Documents

version 6.0
__

GET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;
modified on; modified at)

Parameter Type Description
document String ® Document name
locked Boolean ¬ Locked (True) or unlocked (False)
invisible Boolean ¬ Invisible (True) or visible (False)
created on Date ¬ Creation date
created at Time ¬ Creation time
modified on Date ¬ Last modification date
modified at Time ¬ Last modification time

Description
The command GET DOCUMENT PROPERTIES returns information about the document
whose name or pathname you pass in document.

After the call:
• Locked returns True if the document is locked. A locked document cannot be open nor
deleted.
• Invisible returns True if the document is hidden.
• created on and created at return the date and time when the document was created.
• modified on and modified at return the date and time when the document modified for
the last time.

Example
You have created a documentation database and you would like to export all the records
you created in the database to documents on disk. Because the database is regularly
updated you want to write an export algorithm that create or recreate each document on
disk if the document does not exist or if the corresponding record has been modified after
the document was saved for the last time. Consequently, you need to compare the date
and time of modification of a document (if it exists) with its corresponding record.

4th Dimension Language Reference 1139

For illustrating this example, we use the table whose definition is shown below:

Rather than saving both a date and time values into each record, you can save a “time
stamp” value which expresses the number of seconds elapsed between an arbitrary
anterior date and time (in this example we use Jan, 1st 1995 at 00:00:00) and the date
and time when the record was saved.

In our example, the field [Documents]Creation Stamp holds the time stamp when the
record was first created and the field [Documents]Modification Stamp holds the time stamp
when the record was last modified.

The Time stamp project method listed below calculates the time stamp for a specific date
and time or for the current date and time if no parameters are passed:

` Time stamp Project Method
` Time stamp { (date ; Time) } -> Long
` Time stamp { (date ; Time) } -> Number of seconds since Jan, 1st 1995

C_DATE($1;$vdDate)
C_TIME($2;$vhTime)
C_LONGINT($0)

If (Count parameters=0)
$vdDate:=Current date
$vhTime:=Current time

Else
$vdDate:=$1
$vhTime:=$2

End if
$0:=(($vdDate-!01/01/95!)*86400)+$vhTime

1140 4th Dimension Language Reference

Note: Using this method, you can encode dates and times from the 01/01/95 at 00:00:00
to the 01/19/2063 at 03:14:07 which cover the long integer range 0 to 2^31 minus one.

Conversely, the Time stamp to date and Time stamp to time project methods listed below
allow extracting the date and the time stored into a time stamp:

` Time stamp to date Project Method
` Time stamp to date (Long) -> Date
` Time stamp to date (Time stamp) -> Extracted date

C_DATE($0)
C_LONGINT($1)

$0:=!01/01/95!+($1\86400)

` Time stamp to time Project Method
` Time stamp to time (Long) -> Date
` Time stamp to time (Time stamp) -> Extracted time

C_TIME($0)
C_LONGINT($1)

$0:=Time(Time string(†00:00:00†+($1%86400)))

For insuring that the records have their time stamps correctly updated no matter the way
they are created or modified, we just need to enforce that rule using the trigger of the
table [Documents]:

` Trigger for table [Documents]

Case of
: (Database event=Save New Record Event)

[Documents]Creation Stamp:=Time stamp
[Documents]Modification Stamp:=Time stamp

: (Database event=Save Existing Record Event)
[Documents]Modification Stamp:=Time stamp

End case

Once this is implemented in the database, we have all we need to write the project
method CREATE DOCUMENTATION listed below. We use of GET DOCUMENT PROPERTIES
and SET DOCUMENT PROPERTIES for handling the date and time of creation and
modification of the documents.

4th Dimension Language Reference 1141

` CREATE DOCUMENTATION Project Method

C_STRING(255;$vsPath;$vsDocPathName;$vsDocName)
C_LONGINT($vlDoc)
C_BOOLEAN($vbOnWindows;$vbDoIt;$vbLocked;$vbInvisible)
C_TIME($vhDocRef;$vhCreatedAt;$vhModifiedAt)
C_DATE($vdCreatedOn;$vdModifiedOn)

If (Application type=4D Client)
` If we are running 4D Client, save the documents
` locally on the Client machine where 4D Client is located

$vsPath:=Long name to path name (Application file)
Else

` Otherwise, save the documents where the data file is located
$vsPath:=Long name to path name (Data file)

End if
` Save the documents in a directory we arbitrarily name "Documentation"

$vsPath:=$vsPath+"Documentation"+Char(Directory symbol)
` If this directory does not exist, create it

If (Test path name($vsPath) # Is a directory)
CREATE FOLDER($vsPath)

End if
` Establish the list of the already existing documents
` because we'll have to delete the obsolete ones, in other words,
` the documents whose corresponding records have been deleted.

ARRAY STRING(255;$asDocument;0)
DOCUMENT LIST($vsPath;$asDocument)

` Select all the records from the [Documents] table
ALL RECORDS([Documents])

` For each record
$vlNbRecords:=Records in selection([Documents])
$vlNbDocs:=0
$vbOnWindows:=On Windows
For ($vlDoc;1;$vlNbRecords)

` Assume we will have to (re)create the document on disk
$vbDoIt:=True

` Calculate the name and the path name of the document
$vsDocName:="DOC"+String([Documents]Number;"00000")
$vsDocPathName:=$vsPath+$vsDocName

` Does this document already exist?
If (Test path name($vsDocPathName+".HTM")=Is a document)

` If so, remove the document from the list of the documents
` that may end up deleted

$vlElem:=Find in array($asDocument;$vsDocName+".HTM")
If ($vlElem>0)

DELETE ELEMENT($asDocument;$vlElem)
End if

1142 4th Dimension Language Reference

` Was the document saved after the last time the record was modified?
GET DOCUMENT PROPERTIES($vsDocPathName+".HTM";$vbLocked;

$vbInvisible;$vdCreatedOn;$vhCreatedAt;$vdModifiedOn;$vhModifiedAt)
If (Time stamp ($vdModifiedOn;$vhModifiedAt)>=

[Documents]Modification Stamp)
` If so, we do not need to recreate the document

$vbDoIt:=False
End if

Else
` The document does not exist, reset these two variables so
` we know we'll have to compute them before setting the final properties
` of the document

$vdModifiedOn:=!00/00/00!
$vhModifiedAt:=†00:00:00†

End if
` Do we need to (re)create the document?

If ($vbDoIt)
` If so, increment the number of updated documents

$vlNbDocs:=$vlNbDocs+1
` Delete the document if it already exists

DELETE DOCUMENT($vsDocPathName+".HTM")
` And create it again

If ($vbOnWindows)
$vhDocRef:=Create document($vsDocPathName;"HTM")

Else
$vhDocRef:=Create document($vsDocPathName+".HTM")

End if
If (OK=1)

` Here write the contents of the document
CLOSE DOCUMENT($vhDocRef)
If ($vdModifiedOn=!00/00/00!)

` The document did not exist, set the modification date and time
` to their right values

$vdModifiedOn:=Current date
$vhModifiedAt:=Current time

End if
` Change the properties of the document so its date and time of creation
` are made equal to those of the corresponding record

SET DOCUMENT PROPERTIES($vsDocPathName+".HTM";$vbLocked;
$vbInvisible;Time stamp to date ([Documents]Creation Stamp);

Time stamp to time ([Documents]Creation
Stamp);$vdModifiedOn;$vhModifiedAt)

End if
End if

` Just to know what's going on
SET WINDOW TITLE("Processing Document "+String($vlDoc)+

" of "+String($vlNbRecords))

4th Dimension Language Reference 1143

NEXT RECORD([Documents])
End for

` Delete the obsolete documents, in other words
` those which are still in the array $asDocument

For ($vlDoc;1;Size of array($asDocument))
DELETE DOCUMENT($vsPath+$asDocument{$vlDoc})
SET WINDOW TITLE("Deleting obsolete document: "+Char(34)+

$asDocument{$vlDoc}+Char(34))
End for

` We're done
ALERT("Number of documents processed: "+String($vlNbRecords)+Char(13)+

"Number of documents updated: "+String($vlNbDocs)+Char(13)+
"Number of documents deleted: "+String(Size of array($asDocument)))

See Also
Document creator, Document type, SET DOCUMENT PROPERTIES.

1144 4th Dimension Language Reference

SET DOCUMENT PROPERTIES System Documents

version 6.0
__

SET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;
modified on; modified at)

Parameter Type Description
document String ® Document name

or Full document pathname
locked Boolean ® Locked (True) or Unlocked (False)
invisible Number ® Invisible (True) or Visible (False)
created on Date ® Creation date
created at Time ® Creation time
modified on Date ® Last modification date
modified at Time ® Last modification time

Description
The command SET DOCUMENT PROPERTIES changes the information about the
document whose name or pathname you pass in document.

Before the call:
• Pass True in Locked to lock the document. A locked document cannot be open nor
deleted. Pass False in Locked to unlock a document.
• Pass True in invisible to hide the document. Pass False in invisible to make the document
visible in the desktop windows.
• Pass the document creation date and time in created on and created at.
• Pass the document last modification date and time in modified on and modified at.

The dates and times of creation and last modification are managed by the file manager of
your system each time you create or access a document. Using this command, you can
change those properties for special purpose. See example for the command GET
DOCUMENT PROPERTIES.

See Also
GET DOCUMENT PROPERTIES, SET DOCUMENT CREATOR, SET DOCUMENT TYPE.

4th Dimension Language Reference 1145

Get document size System Documents

version 6.0
__

Get document size (document{; *}) ® Number

Parameter Type Description
document DocRef | String ® Document reference number or

Document name
* ® On MacOS only:

- if omitted, size of data fork
- if specified, size of resource fork

Function result Number ¬ Size (expressed in bytes) of the document

Description
The command Get document size returns the size, expressed in bytes, of a document.

If the document is open, you pass its document reference number in document.
If the document is not open, you pass its name or pathname in document.

On Macintosh, if you do not pass the optional * parameter, the size of the data fork is
returned. If you do pass the * parameter, the size of the resource fork is returned.

See Also
Get document position, SET DOCUMENT POSITION, SET DOCUMENT SIZE.

1146 4th Dimension Language Reference

SET DOCUMENT SIZE System Documents

version 6.0
__

SET DOCUMENT SIZE (document; size)

Parameter Type Description
document DocRef ® Document reference number
size Number ® New size expressed in bytes

Description
The SET DOCUMENT SIZE command sets the size of a document to the number of bytes
you pass in size.

If the document is open, you pass its document reference number in document.

On Macintosh, the size of the document's data fork is changed.

See Also
Get document position, Get document size, SET DOCUMENT POSITION.

4th Dimension Language Reference 1147

Get document position System Documents

version 6.0
__

Get document position (docRef) ® Number

Parameter Type Description
docRef DocRef ® Document reference number

Function result Number ¬ File position (expressed in bytes)
from the beginning of the file

Description
This command operates only on a document currently open whose document reference
number you pass in docRef.

Get document position returns the position, starting from the beginning of the
document, where the next read (RECEIVE PACKET) or write (SEND PACKET) will occur.

See Also
RECEIVE PACKET, SEND PACKET, SET DOCUMENT POSITION.

1148 4th Dimension Language Reference

SET DOCUMENT POSITION System Documents

version 6.0
__

SET DOCUMENT POSITION (docRef; offset{; anchor})

Parameter Type Description
docRef DocRef ® Document reference number
offset Number ® File position (expressed in bytes)
anchor ® 1 = Relatively to the beginning of the file

2 = Relatively to the end of the file
3 = Relatively to current position

Description
This command operates only on a document currently open whose document reference
number you pass in docRef.

SET DOCUMENT POSITION sets the position you pass in offset where the next read
(RECEIVE PACKET) or write (SEND PACKET) will occur.

If you omit the optional anchor parameter, the position is relative to the beginning of the
document. If you do specify the anchor parameter, you pass one of the values listed
above.

Depending on the anchor you can pass positive or negative values in offset.

See Also
Get document position, RECEIVE PACKET, SEND PACKET.

4th Dimension Language Reference 1149

1150 4th Dimension Language Reference

47 System Environment

4th Dimension Language Reference 1151

1152 4th Dimension Language Reference

Screen height System Environment

version 3.5
__

Screen height {(*)} ® Number

Parameter Type Description
* Number ® Windows: height of application window, or

height of screen if * is specified
Macintosh: height of main screen

Function result Number ¬ Height expressed in pixels

Description
On Windows, Screen height returns the height of 4D application window (MDI window).
If you specify the optional * parameter, Screen height returns the height of the screen.

On Macintosh, Screen height returns the height of the main screen, the screen where the
menu bar is located.

See Also
SCREEN COORDINATES, Screen width.

4th Dimension Language Reference 1153

Screen width System Environment

version 3.5
__

Screen width {(*)} ® Number

Parameter Type Description
* Number ® Windows: width of application window, or

width of screen if * is specified
Macintosh: width of main screen

Function result Number ¬ Width expressed in pixels

Description
On Windows, Screen width returns the width of 4D application window (MDI window). If
you specify the optional * parameter, Screen width returns the width of the screen.

On Macintosh, Screen width returns the width of the main screen, the screen where the
menu bar is located.

See Also
SCREEN COORDINATES, Screen height.

1154 4th Dimension Language Reference

Count screens System Environment

version 6.0
__

Count screens ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of monitors

Description
The command Count screens returns the number of screen monitors connected to your
machine.

Windows note: On Windows, Count screens usually returns 1.

See Also
Menu bar screen, SCREEN COORDINATES, SCREEN DEPTH, Screen height, Screen width.

4th Dimension Language Reference 1155

SCREEN COORDINATES System Environment

version 6.0
__

SCREEN COORDINATES (left; top; right; bottom{; screen})

Parameter Type Description
left Number ¬ Global left coordinate of screen area
top Number ¬ Global top coordinate of screen area
right Number ¬ Global right coordinate of screen area
bottom Number ¬ Global bottom coordinate of screen area
screen Number ® Screen number, or main screen if omitted

Description
The command SCREEN COORDINATES returns in left, top, right, and bottom the global
coordinates of the screen specified by screen.

On Windows
Usually, you will not pass the screen parameter.

On Macintosh
If you omit the screen parameter, the command returns the coordinates of the main
screen, the screen where the menu bar is displayed.

See Also
Count screens, Menu bar screen, SCREEN DEPTH.

1156 4th Dimension Language Reference

SCREEN DEPTH System Environment

version 6.0
__

SCREEN DEPTH (depth; color{; screen})

Parameter Type Description
depth Number ¬ Depth of the screen

(number of colors = 2 ^ depth)
color Number ¬ 1 = Color screen, 0 = Black and white or Gray
scale
screen Number ® Screen number, or main screen if omitted

Description
The command Screen depth returns in depth and color information about the monitor.

After the call:

• The depth of the screen is returned in depth. The depth of the screen is the exponent of
the power of 2 expressing the number of colors displayed on your monitor. For example,
if your monitor is set for 256 colors (2^8), the depth of your screen is 8.

The following predefined constants are provided by 4th Dimension:
Constant Type Value
Black and white Long Integer 0
Four colors Long Integer 2
Sixteen colors Long Integer 4
Two fifty six colors Long Integer 8
Thousands of colors Long Integer 16
Millions of colors 24 bit Long Integer 24
Millions of colors 32 bit Long Integer 32

If the monitor is set to display in color, 1 is returned in color. If the monitor is set to
display in gray scale, 0 is returned in color. Note that this value is significant on the
Macintosh platform.

The following predefined constants are provided by 4th Dimension:
Constant Type Value
Is gray scale Long Integer 0
Is color Long Integer 1

4th Dimension Language Reference 1157

• The optional parameter screen specifies the monitor for which you want to get
information. On Windows, you will not usually pass the screen parameter. On Macintosh,
if you omit the screen parameter, the command returns the depth of the main screen, the
screen where the menu bar is displayed.

Example
Your application displays many color graphics. Somewhere in your database, you could
write:

Þ SCREEN DEPTH ($vlDepth;$vlColor)
If ($vlDepth<8)

ALERT("The forms will look better if the monitor"+" was set to display 256 colors or
more.")

End if

See Also
Count screens, SET SCREEN DEPTH.

1158 4th Dimension Language Reference

SET SCREEN DEPTH System environment

version 6.0
__

SET SCREEN DEPTH (depth{; color{; screen}})

Parameter Type Description
depth Number ® Depth of the screen

(number of colors = 2 ^ Screen depth)
color Number ® 1 = Color, 0 = Gray Scale
screen Number ® Screen number, or main screen if omitted

Description
This command does nothing on Windows.

On Macintosh, SET SCREEN DEPTH changes the depth and color/gray scale settings of the
screen whose number you pass in screen. If you omit this parameter, the command is
applied to the main screen.

For details about the values you pass in color and depth, see the description of the
command SCREEN DEPTH.

See Also
SCREEN DEPTH.

4th Dimension Language Reference 1159

Menu bar screen System Environment

version 6.0
__

Menu bar screen ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Number of screen where menu bar is located

Description
Menu bar screen returns the number of the screen where the menu bar is located.

Windows note: On Windows, Menu bar screen usually returns 1.

See Also
Count screens, Menu bar height.

1160 4th Dimension Language Reference

Menu bar height System Environment

version 6.0
__

Menu bar height ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Height (expressed in pixels) of menu bar
(returns zero if menu bar is hidden)

Description
Menu bar height returns the height of the menu bar, expressed in pixels.

See Also
HIDE MENU BAR, Menu bar screen, SHOW MENU BAR.

4th Dimension Language Reference 1161

FONT LIST System Environment

version 6.0
__

FONT LIST (fonts)

Parameter Type Description
fonts Array ¬ Array of font names

Description
The command FONT LIST populates the string or text array fonts with the names of the
fonts available on your system.

Example
In a form, you want a drop-down list that displays a list of the fonts available on your
system. The method of the drop-down list is as follows:

Case of
: (Form event=On Load)

ARRAY STRING(63;asFont;0)
Þ FONT LIST(asFont)

` ...

End case

See Also
Font name, Font number.

1162 4th Dimension Language Reference

Font name System Environment

version 6.0
__

Font name (fontNumber) ® String

Parameter Type Description
fontNumber Number ® Font number for which to return the font
name

Function result String ¬ Font name

Description
The command Font name returns the name of the font whose number is fontNumber. If
there is no available font with that number, the command returns an empty string.

Examples
1. To display a form object with the default system font, you write:

Þ FONT(myObject;Font name(0)) ` 0 is the font number of the default system font

2. To display a form object with the default application font, you write:

Þ FONT(myObject;Font name(1)) ` 1 is the font number of the default application font

See Also
FONT LIST, Font number.

4th Dimension Language Reference 1163

Font number System Environment

version 6.0
__

Font number (fontName) ® Number

Parameter Type Description
fontName String ® Font name for which to return the font
number

Function result Number ¬ Font number

Description
The command Font number returns the number of the font whose name is fontName. If
there is no font with this name, the command returns 0.

Example
Some forms in your database use the font whose name is “Kind of Special.” Somewhere in
your database, you could write:

Þ If (Font number("Kind of Special")=0)
ALERT("This form would look better if the font Kind of Special was installed.")

End if

See Also
FONT LIST, Font name.

1164 4th Dimension Language Reference

System folder System Environment

version 6.0
__

System folder ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Pathname to active system directory or folder

Description
The command System folder returns the pathname to the active Windows or Macintosh
system folder.

See Also
ACI folder, Temporary folder.

4th Dimension Language Reference 1165

Temporary folder System Environment

version 6.0
__

Temporary folder ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Pathname to temporary folder

Description
The command Temporary folder returns the pathname to the current temporary folder set
by your system.

Example
See example for the command APPEND TO CLIPBOARD.

See Also
System folder.

1166 4th Dimension Language Reference

Current machine System Environment

version 6.0
__

Current machine ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Network name of the machine

Description
The command Current machine returns the network name of your machine, as set in the
Network Control Panel.

Example
Even if you are not running with the Client/Server version of the 4D environment, your
application can include some network services that require your machine to be correctly
configured. In the On Startup database method of your application, you write:

Þ If ((Current machine="") | (Current machine owner=""))
` Display a dialog box asking the user to setup
` the Network identity of his or her machine

End if

See Also
Current machine owner.

4th Dimension Language Reference 1167

Current machine owner System Environment

version 6.0
__

Current machine owner ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ Network name of machine owner

Description
The command Current machine owner returns the owner name of your machine, as set in
the Network Control Panel.

Example
See example for the command Current machine.

See Also
Current machine.

1168 4th Dimension Language Reference

Gestalt System Environment

version 6.0
__

Gestalt (selector; value) ® Number

Parameter Type Description
selector String ® 4-character gestalt selector
value Number ¬ Gestalt result

Function result Number ¬ Error code result

Description
The command Gestalt returns in value a numeric value that denotes the characteristics of
your system hardware and software, depending on the selector you pass in selector.

If the requested information is obtained, Gestalt returns 0 in function result; otherwise, it
returns the error -5550. If the selector is unkown, Gestalt returns the error -5551.

Important: The Gestalt Manager is part of MacOS. On Windows, some of the selectors are
also implemented, but the usefulness of this command is limited.

For more information about the selectors that you can pass to Gestalt, refer to the Apple
Developer documentation related to the Gestalt Manager.

Example
On Macintosh, using version 7.6 of MacOS, the following code displays the alert “You're
running system version 0x0760”:

Þ $vlErrCode:=Gestalt("sysv";$vlInfo)
If ($vlErrCode=0)

 ALERT("You're running system version "+String($vlInfo;"&x"))
End if

4th Dimension Language Reference 1169

1170 4th Dimension Language Reference

48 Table

4th Dimension Language Reference 1171

1172 4th Dimension Language Reference

DEFAULT TABLE Table

version 3
__

DEFAULT TABLE (table)

Parameter Type Description
table Table ® Table to set as the default

Description
DEFAULT TABLE sets table as the default table for the current process.

There is no default table for a process until the DEFAULT TABLE command is executed.
After a default table has been set, any command that omits the table parameter will
operate on the default table. For example, consider this command:

INPUT FORM ([Table]; "form")

If the default table is first set to [Table], the same command could be written this way:

INPUT FORM ("form")

One reason for setting the default table is to create code that is not table specific. Doing
this allows the same code to operate on different tables. You can also use pointers to tables
to write code that is not table specific. For more information about this technique, see the
description of the Table name command.

DEFAULT TABLE does not allow the omission of table names when referring to fields. For
example:

[My Table]My Field:="A string" ` Good

could not be written as:

DEFAULT TABLE ([My Table])
My Field:="A string" ` WRONG

because a default table had been set. However, you can omit the table name when
referring to fields in the table method, form, and objects that belong to the table.

4th Dimension Language Reference 1173

In 4th Dimension, all tables are “open” and ready for use. DEFAULT TABLE does not open a
table, set a current table, or prepare the table for input or output. DEFAULT TABLE is simply
a programming convenience to reduce the amount of typing and make the code easier to
read.

Tip: Although using DEFAULT TABLE and omitting the table name may make the code
easier to read, many programmers find that using this command actually causes more
problems and confusion than it is worth.

Example
The following example first shows code without the DEFAULT TABLE command. It then
shows the same code, with DEFAULT TABLE. The code is a loop commonly used to add new
records to a database. The INPUT FORM and ADD RECORD commands both require a table
as the first parameter:

INPUT FORM ([Customers];"Add Recs")
Repeat

ADD RECORD ([Customers])
Until (OK = 0)

Specifying the default table results in this code:

Þ DEFAULT TABLE ([Customers])
INPUT FORM ("Add Recs")
Repeat

ADD RECORD
Until (OK = 0)

See Also
Current default table.

1174 4th Dimension Language Reference

Current default table Table

version 3
__

Current default table ® Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ¬ Pointer to the default table

Description
Current default table returns a pointer to the table that has been passed to the last call to
DEFAULT TABLE for the current process.

Example
Provided a default table has been set, the following line of code sets the window title to
the name of the current default table:

Þ SET WINDOW TITLE(Table name(Current default table))

See Also
DEFAULT TABLE, Table, Table name.

4th Dimension Language Reference 1175

INPUT FORM Table

version 6.0 (Modified)
__

INPUT FORM ({table; }form{; *})

Parameter Type Description
table Table ® Table for which to set the input form, or

Default table, if omitted
form String ® Name of the form to set as input form
* ® Automatic window size

Description
The command INPUT FORM sets the current input form for table to form. The form must
belong to table.

The scope of this command is the current process. Each table has its own input form in
each process.

INPUT FORM does not display the form; it just designates which form is used for data
entry, import, or operation by another command. For information about creating forms,
see the 4th Dimension Design Reference..

The default input form is defined in the Design environment Explorer window for each
table. This default input form is used if the INPUT FORM command is not used to specify
an input form, or if you specify a form that does not exist.

Input forms are displayed by a number of commands, which are generally used to allow
the user to enter new data or modify old data. The following commands display an input
form for data entry or query purposes:
• ADD RECORD
• DISPLAY RECORD
• MODIFY RECORD
• QUERY BY EXAMPLE

The DISPLAY SELECTION and MODIFY SELECTION commands display a list of records
using the output form. The user can double-click on a record in the list, which displays
the input form.

The import commands IMPORT TEXT, IMPORT SYLK and IMPORT DIF use the current
input form for importing records.

1176 4th Dimension Language Reference

The optional * parameter is used in conjunction with the form properties you set in the
Design environment Form Properties window and the command Open window.
Specifying the * parameter tells 4D to use the form properties to automatically resize the
window for the next use of the form (as an input form or as a dialog box). See Open
window for more information.

Note: Whether or not you pass the optional * parameter, INPUT FORM changes the input
form for the table.

Example
The following example shows a typical use of INPUT FORM:

Þ INPUT FORM ([Companies]; "New Comp") ` Form for adding new companies
ADD RECORD ([Companies]) ` Add a new company

See Also
ADD RECORD, DISPLAY RECORD, DISPLAY SELECTION, IMPORT DIF, IMPORT SYLK, IMPORT
TEXT, MODIFY RECORD, MODIFY SELECTION, Open window, OUTPUT FORM, QUERY BY
EXAMPLE.

4th Dimension Language Reference 1177

OUTPUT FORM Table

version 3
__

OUTPUT FORM ({table; }form)

Parameter Type Description
table Table ® Table for which to set the output form, or

Default table, if omitted
form String ® Form name

Description
The command OUTPUT FORM sets the current output form for table to form. The form
must belong to table.

The scope of this command is the current process. Each table has its own output form in
each process.

OUTPUT FORM does not display the form; it just designates which form is printed,
displayed, or used by another command. For information about creating forms, see the
4th Dimension Design Reference.

The default output form is defined in the Design environment Explorer window for each
table. This default output form is used if the OUTPUT FORM command is not used to
specify an output form, or if you specify a form that does not exist.

Output forms are used by three groups of commands. One group displays a list of records
on screen, another group generates reports, and the third group exports data. The
DISPLAY SELECTION and MODIFY SELECTION commands display a list of records using an
output form. You use the output form when creating reports with the PRINT LABEL and
PRINT SELECTION commands. Each of the export commands (EXPORT DIF, EXPORT SYLK
and EXPORT TEXT) also uses the output form.

Example
The following example shows a typical use of OUTPUT FORM. Note that although the
OUTPUT FORM command appears immediately before the output form is used, this is not
required. In fact, the command may be executed in a completely different method, as
long as it is executed prior to this method:

INPUT FORM ([Parts]; "Parts In") ` Select the input form
Þ OUTPUT FORM ([Parts]; "Parts List") ` Select the output form

MODIFY SELECTION ([Parts]) ` This command uses both forms

See Also
DISPLAY SELECTION, EXPORT DIF, EXPORT SYLK, EXPORT TEXT, INPUT FORM, MODIFY
SELECTION, PRINT LABEL, PRINT SELECTION.

1178 4th Dimension Language Reference

Current form table Table

version 6.0
__

Current form table ® Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ¬ Pointer to the table of the currently displayed
form

Description
The command Current form table returns the pointer to the table of the form being
displayed or printed in the current process.

If there is no form being displayed or printed in the current process, the command
returns Nil.

If there are several windows open for the current process (which means that the window
opened last is the current active window), the command returns the pointer to the table
of the form displayed in the active window.

If the currently displayed form is the Detail form for a subform area, you are in data entry
and you double-clicked on a record or a subrecord of a double-clickable subform area. In
this case, the command returns:
• The pointer to the table shown in the subform area, if the subform displays a table.
• A non-significant pointer, if the subform area displays a subtable.

Example
Throughout your application, you use the following convention when displaying a
record:
If the variable vsCurrentRecord is present in a form, it displays “New Record” if you are
working with a new record. If you are working with the 56th record of a selection
composed of 5200 records, it displays “56 of 5200”.

4th Dimension Language Reference 1179

To do so, use the object method to create the variable vsCurrentRecord, then copy and
paste it into all of your forms:

` vsCurrentRecord non enterable variable object method
Case of

: (Form event =On Load)
C_STRING (31;vsCurrentRecord)
C_POINTER ($vpParentTable)
C_LONGINT ($vlRecordNum)

Þ $vpParentTable:=Current form table
$vlRecordNum:=Record number ($vpParentTable->)
Case of

: ($vlRecordNum=-3)
vsCurrentRecord:="New Record"

: ($vlRecordNum=-1)
vsCurrentRecord:="No Record"

: ($vlRecordNum>=0)
vsCurrentRecord:=String (Selected record number ($vpParentTable->))+

" of "+String (Records in selection ($vpParentTable->))
End case

End case

See Also
DIALOG, INPUT FORM, OUTPUT FORM, PRINT SELECTION.

1180 4th Dimension Language Reference

49 Transactions

4th Dimension Language Reference 1181

1182 4th Dimension Language Reference

Using Transactions Transactions

version 6.0
__

Transactions are a series of related data modifications made to a database within a process.
A transaction is not saved to a database permanently until the transaction is validated. If a
transaction is not completed, either because it is canceled or because of some outside
event, the modifications are not saved.

During a transaction, all changes made to the database data within a process are stored
locally in a temporary buffer. If the transaction is accepted with VALIDATE TRANSACTION,
the changes are saved permanently. If the transaction is canceled with CANCEL
TRANSACTION, the changes are not saved.

Since transactions deal with temporary record addresses, after a transaction is validated or
canceled, the selection for each table of the current process becomes empty. For this
reason, you should be cautious when using named selections inside a transaction. After a
transaction is validated or canceled, a named selection created before or during the
transaction may contain incorrect record addresses. For example, a named selection may
contain the address of a deleted record or the temporary address of a record added during
the transaction. This warning also applies to sets, because they are based on bit tables with
record addresses.

The following commands use record numbers—do not use them in a transaction:
• GOTO RECORD
• RELATE ONE SELECTION
• RELATE MANY SELECTION

Transaction Examples
__

In this example, the database is a simple invoicing system. The invoice lines are stored in
a table called [Invoice Lines], which is related to the table [Invoices] by means of a relation
between the fields [Invoices]Invoice ID and [Invoice Lines]Invoice ID. When an invoice is
added, a unique ID is calculated, using the Sequence number command. The relation
between [Invoices] and [Invoice Lines] is an automatic Relate Many relation. The Auto
Assign Related Value check box is checked.

4th Dimension Language Reference 1183

The relation between [Invoice Lines] and [Parts] is manual.

When a user enters an invoice, the following actions are executed:
• Add a record in the table [Invoices].
• Add several records in the table [Invoice Lines].
• Update the [Parts]In Warehouse field of each part listed in the invoice.

This example is a typical situation in which you need to use a transaction. You must be
sure that you can save all these records during the operation or that you will be able to
cancel the transaction if a record cannot be added or updated. In other words, you must
save related data.

If you do not use a transaction, you cannot guarantee the logical data integrity of your
database. For example, if one record of the [Parts] records is locked, you will not be able to
update the quantity stored in the field [Parts]In Warehouse. Therefore, this field will
become logically incorrect. The sum of the parts sold and the parts remaining in the
warehouse will not be equal to the original quantity entered in the record. You can avoid
such a situation by using transactions.

There are several ways of performing data entry using transactions:

1. You can let 4D handle the transactions for you by selecting Automatic Transactions
during Data Entry in the Design environment Database Properties dialog box. In this case,
4D starts the transaction and then validates or cancels it depending on whether or not
you accepted the data entry. A data entry operation with a form containing a related table
in a subform requires a transaction. This option applies to the whole database.

If you want to handle the transactions yourself, you need to use the transaction
commands START TRANSACTION, VALIDATE TRANSACTION, and CANCEL TRANSACTION.

1184 4th Dimension Language Reference

2. You can write:

READ WRITE([Invoice Lines])
READ WRITE([Parts])
INPUT FORM([Invoices];"Input")
Repeat

START TRANSACTION
ADD RECORD([Invoices])
If (OK=1)

VALIDATE TRANSACTION
Else

CANCEL TRANSACTION
End if

Until (OK=0)
READ ONLY(*)

3. To reduce record locking while performing the data entry, you can also choose to
manage transactions from within the form method and access the tables in READ WRITE
only when it becomes necessary.

You perform the data entry using the input form for [Invoices], which contains the
related table [Invoice Lines] in a subform. The form has two buttons: bCancel and bOK,
both of which are no action buttons.

The adding loop becomes:

READ WRITE([Invoice Lines])
READ ONLY([Parts])
INPUT FORM([Invoices];"Input")
Repeat

ADD RECORD([Invoices])
Until (bOK=0)
READ ONLY([Invoice Lines])

Note that the [Parts] table is now in read-only access mode during data entry. Read/write
access will be available only if the data entry is validated.

The transaction is started in the [Invoices] input form method listed here:

Case of
: (Form Event=On Load)

START TRANSACTION
[Invoices]Invoice ID:=Sequence number([Invoices]Invoice ID)

Else
[Invoices]Total Invoice:=Sum([Invoice Lines]Total line)

End case

4th Dimension Language Reference 1185

If you click the bCancel button, the data entry as well as the transaction must be canceled.
Here is the object method of the bCancel button:

Case of
: (Form Event=On Clicked)

CANCEL TRANSACTION
CANCEL

End case

If you click the bValidate button, the data entry must be accepted and the transaction
must be validated. Here is the object method of the bOK button:

Case of
: (Form Event=On Clicked)

$NbLines:=Records in selection([Invoice Lines])
READ WRITE([Parts]) ` Switch to Read/Write access for the [Parts] table
FIRST RECORD([Invoice Lines]) ` Start at the first line
$ValidTrans:=True ` Assume everything will be OK
For ($Line;1;$NbLines) ` For each line

RELATE ONE([Invoice Lines]Part No)
OK:=1 ` Assume you want to continue

` Try getting the record in Read/Write access
While (Locked([Parts]) & (OK=1))

CONFIRM("The Part "+[Invoice Lines]Part No+" is in use. Wait?")
If (OK=1)

DELAY PROCESS(Current process;60)
LOAD RECORD([Parts])

End if
End while
If (OK=1)

` Update quantity in the warehouse
[Parts]In Warehouse:=[Parts]In Warehouse-[Invoice Lines]Quantity
SAVE RECORD([Parts]) ` Save the record

Else
$Line:=$NbLines+1 ` Leave the loop
$ValidTrans:=False

End if
NEXT RECORD([Invoice Lines]) ` Go next line

End for
READ ONLY([Parts]) ` Set the table state to read only
If ($ValidTrans)

SAVE RECORD([Invoices]) ` Save the Invoices record
VALIDATE TRANSACTION ` Validate all database modifications

Else
CANCEL TRANSACTION ` Cancel everything

End if
CANCEL ` Leave the form

End case

1186 4th Dimension Language Reference

In this code, we call the CANCEL command regardless of the button clicked. The new
record is not validated by a call to ACCEPT, but by the SAVE RECORD command. In
addition, note that SAVE RECORD is called just before the VALIDATE TRANSACTION
command. Therefore, saving the [Invoices] record is actually a part of the transaction.
Calling the ACCEPT command would also validate the record, but in this case the
transaction would be validated before the [Invoices] record was saved. In other words, the
record would be saved outside the transaction.

Depending on your needs, you can let 4D handle transactions during data entry or you
can customize your database, as shown in these examples. In the last example, the
handling of locked records in the [Parts] table could be developed further.

See Also
CANCEL TRANSACTION, In transaction, START TRANSACTION, VALIDATE TRANSACTION.

4th Dimension Language Reference 1187

START TRANSACTION Transactions

version 3
__

START TRANSACTION

Parameter Type Description
This command does not require any parameters

Description
START TRANSACTION starts a transaction in the current process. All changes to the
database are stored temporarily until the transaction is accepted (validated) or canceled.

If you have several global processes, you can have several transactions. You cannot,
however, nest transactions. If you start a transaction inside another transaction,
4th Dimension ignores the second transaction.

See Also
CANCEL TRANSACTION, In transaction, Using Transactions, VALIDATE TRANSACTION.

1188 4th Dimension Language Reference

VALIDATE TRANSACTION Transactions

version 3
__

VALIDATE TRANSACTION

Parameter Type Description
This command does not require any parameters

Description
VALIDATE TRANSACTION accepts the transaction in the current process that was started
with START TRANSACTION. VALIDATE TRANSACTION saves the changes to the database
that occurred during the transaction.

See Also
CANCEL TRANSACTION, In transaction, START TRANSACTION, Using Transactions.

4th Dimension Language Reference 1189

CANCEL TRANSACTION Transactions

version 3
__

CANCEL TRANSACTION

Parameter Type Description
This command does not require any parameters

Description
CANCEL TRANSACTION cancels the transaction in the current process that was started
with START TRANSACTION. CANCEL TRANSACTION leaves the database unchanged by
canceling the operations executed during the transaction.

See Also
In transaction, START TRANSACTION, Using Transactions, VALIDATE TRANSACTION.

1190 4th Dimension Language Reference

In transaction Transactions

version 6.0
__

In transaction ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ Returns TRUE if current process is in
transaction

Description
The command In transaction returns TRUE if the current process is in a transaction,
otherwise it returns FALSE.

Example
If you perform a multi-record operation (adding, modifying, or deleting records), you
may encounter locked records. In this case, if you have to maintain data integrity, you
must be in transaction so you can “roll-back” the whole operation and leave the database
untouched.

If you perform the operation from within a trigger or from a subroutine (that can be
called while in transaction or not), you can use In transaction to check whether or not
the current process method or the caller method started a transaction. If a transaction was
not started, you do not even start the operation, because you already know that you will
not be able to roll it back if it fails.

See Also
CANCEL TRANSACTION, START TRANSACTION, Triggers, VALIDATE TRANSACTION.

4th Dimension Language Reference 1191

1192 4th Dimension Language Reference

50 Triggers

4th Dimension Language Reference 1193

1194 4th Dimension Language Reference

Triggers Triggers

version 6.0
__

A Trigger is a method attached to a table. It is a property of a table. You do not call
triggers; they are automatically invoked by the 4D database engine each you manipulate
table records (add, delete, modify, and load). You can write very simple triggers, and then
make them more sophisticated.

Triggers can prevent “illegal” operations on the records of your database. They are a very
powerful tool for restricting operations on a table, as well as preventing accidental data
loss or tampering. For example, in an invoicing system, you can prevent anyone from
adding an invoice without specifying the customer to whom the invoice is billed.

Compatibility with Previous Versions of 4D
__

Triggers are a new type of method introduced in version 6. In previous versions, table
methods (called file procedures) were executed by 4D only when a form for a table was
used for data entry, display, or printing—they were rarely used. Note that triggers execute
at a much lower level than the old file procedures. No matter what you do to a record via
user actions (such as data entry) or programmatically (such as a call to SAVE RECORD), the
trigger of a table will be invoked by 4D. Triggers are truly quite different from the old file
procedures. If you have converted a version 3 database to version 6, and you want to take
advantage of the new Trigger capability, you must deselect the Use Old File Procedures
Scheme property in the Database Properties dialog box shown here.

4th Dimension Language Reference 1195

Activating and Creating a Trigger
__

By default, when you create a table in the Design Environment, it has no trigger.

To use a trigger for a table, you need to:
• Activate the trigger and tell 4D when it has to be invoked.
• Write the code for the trigger.

Activating a trigger that is not yet written or writing a trigger without activating it will
not affect the operations performed on a table.

1. Activating a Trigger
To activate a trigger for a table, you must select one of the Triggers options (database
events) for the table in the Table Properties window:

On saving new record
If this option is selected, the trigger will be invoked each time a record is added to the
table.
This happens when:
• Adding a record in data entry (User environment or ADD RECORD command).
• Creating and saving a record with CREATE RECORD and SAVE RECORD. Note that the
trigger is invoked at the moment you call SAVE RECORD, not when it is created.
• Importing records (User environment or using an import command).
• Calling any other commands that create and/or save new records (i.e., ARRAY TO
SELECTION, SAVE RELATED ONE, etc.).
• Using a Plug-in that calls the CREATE RECORD and SAVE RECORD commands.

On saving an existing record
If this option is selected, the trigger will be invoked each time a record of the table is
modified.

1196 4th Dimension Language Reference

This happens when:
• Modifying a record in data entry (User environment or MODIFY RECORD command).
• Saving an already exiting record SAVE RECORD.
• Calling any other commands that save existing records (i.e., ARRAY TO SELECTION,
APPLY TO SELECTION,MODIFY SELECTION, etc.).
• Using a Plug-in that calls the SAVE RECORD command.

On deleting a record
If this option is selected, the trigger will be invoked each time a record of the table is
deleted.
This happens when:
• Deleting a record (User environment or calling DELETE RECORD or DELETE SELECTION).
• Performing any operation that provokes deletion of related records through the
deletion control options of a relation.
• Using a Plug-in that calls the DELETE RECORD command.

On loading a record
If this option is selected, the trigger will be invoked each time a record of the table is
loaded. This includes all situations in which a current record is loaded from the data file.
You will this option less often than the three previous ones.

Note: This option covers all situations when a current record is loaded from the data file,
except for the following functions:

• Queries: User queries that were prepared in the standard query editor or by using the
QUERY or QUERY SELECTION commands.
• Order by: Sorts that were prepared in the standard Order by Editor or by using the
ORDER BY command.
• On a series: Sum, Average, Min, Max, Std deviation, Variance, Sum square.
• Commands: RELATE ONE SELECTION, RELATE MANY SELECTION.

In order to optimize the operation of 4D, the On loading a record option never triggers a
call to the trigger when using a command that may take advantage of the index. In fact,
when the index is used, records are not loaded. Conversely, if the index is not used (i.e., if
the field being processed is not indexed), records are loaded. This uncertainty regarding
the call to the trigger does not allow you to use it in a reliable way.

IMPORTANT: If you execute an operation or call a command that acts on multiple
records, the trigger is called once for each record. For example, if you call APPLY TO
SELECTION for a table whose current selection is composed of 100 records, the trigger will
be invoked 100 times.

2. Creating a Trigger
To create a trigger for a table, use the Explorer Window or press Alt (on Windows) or
Option (Macintosh) and double-click on the table title in the Structure window. For more
information, see the 4th Dimension Design Reference manual.

4th Dimension Language Reference 1197

Database Events
__

A trigger can be invoked for one of the four database events described above. Within the
trigger, you detect which event is occurring by calling the function Database event. This
function returns a numeric value that denotes the database event.

Typically, you write a trigger with a Case of structure on the result returned by Database
event:

` Trigger for [anyTable]
C_LONGINT($0)
$0:=0 ` Assume the database request will be granted
Case of

Þ : (Database event=Save New Record Event)
` Perform appropriates action for the saving of a newly created record

Þ : (Database event=Save Existing Record Event)
` Perform appropriates actions for the saving of an already existing record

Þ : (Database event=Delete Record Event)
` Perform appropriates actions for the deletion of a record

Þ : (Database event=Load Record Event)
` Perform appropriates actions for the loading into memory of a record

End case

Triggers are Functions
__

A trigger has two purposes:
• Performing actions on the record before it saved, deleted or after it is just being loaded.
• Granting or rejecting a database operation.

1. Performing Actions
Each time a record is saved (added or modified) to a [Documents] table , you want to
“mark” the record with a time stamp for creation and another one for the most recent
modification. You can write the following trigger:

` Trigger for table [Documents]
Case of

: (Database event=Save New Record Event)
[Documents]Creation Stamp:=Time stamp
[Documents]Modification Stamp:=Time stamp

: (Database event=Save Existing Record Event)
[Documents]Modification Stamp:=Time stamp

End case

Note: The function Time stamp used in this example is a small project method that
returns the number of seconds elapsed since a fixed date was chosen arbitrarily.

1198 4th Dimension Language Reference

After this trigger has been written and activated, no matter what way you add or modify
a record to the [Documents] table (data entry, import, project method, 4D plug-in), the
fields [Documents]Creation Stamp and [Documents]Modification Stamp will automatically be
assigned by the trigger before the record is eventually written to the disk.

Note: See the example for the command GET DOCUMENT PROPERTIES for a complete
study of this example.

2. Granting or rejecting the database operation
To grant or reject a database operation, the trigger must return a trigger error code in the
$0 function result.

Example
Let’s take the case of an [Employees] table. During data entry, you enforce a rule on the
field [Employees]Social Security Number. When you click the validation button, you check
the field using the object method of the button:

` bAccept button object method
If (Good SS number ([Employees]SS number))

ACCEPT
Else

BEEP
ALERT ("Enter a Social Number then click OK again.")

End if

If the field value is valid, you accept the data entry; if the field value is not valid, you
display an alert and you stay in data entry.

If you also create [Employees] records programmatically, the following piece of code would
be programmatically valid, but would violate the rule expressed in the previous object
method:

` Extract from a project method
` ...

CREATE RECORD ([Employees])
[Employees]Name :="DOE"
SAVE RECORD ([Employees]) ` ¬ DB rule violation! The SS number has not been assigned!

` ...

4th Dimension Language Reference 1199

Using a trigger for the table [Employees], you can enforce the [Employees]SS number rule at
all the levels of the database. The trigger would look like:

` Trigger for [Employees]
$0:=0
$dbEvent:=Get database event
Case of

: (($dbEvent=Save New Record Event) | ($dbEvent=Save Existing Record Event))
If (Not(Good SS number ([Employees]SS number)))

$0:=-15050
Else

` ...
End if

` ...
End case

Once this trigger is written and activated, the line SAVE RECORD ([Employees]) will
generate a database engine error -15050, and the record will NOT be saved.

Similarily, a 4D Plug-in would attempt to save an [Employees] record with an invalid social
security number. The trigger would generate the same error and the record would not be
saved.

The trigger guarantees that nobody (user, database designer, Plug-in, 4D Open client with
4D Server) can violate the social security number rule, either deliberately or accidentally.

Note that even if you do not have a trigger for a table, you can get database engine errors
while attempting to save or delete a record. For example, if you attempt to save a record
with a duplicated value in a unique indexed field, you the error -9998 is returned.

Therefore, triggers returning errors add new database engine errors to your application:
• 4D manages the “regular” errors: unique index, relational data control, and so on.
• Using triggers, you manage the custom errors unique to your application.

Important: You can return an error code value of your choice. However, do NOT use error
codes already taken by the 4D database engine. We strongly recommend that you use
error codes between -32000 and -15000. We reserve error codes above -15000 for the
database engine.

At the process level, you handle trigger errors the same way you handle database engine
errors:
• You can let 4D display the standard error dialog box, then the method is halted.
• You can use an error-handling method installed using ON ERR CALL and recover the
error the appropriate way.

1200 4th Dimension Language Reference

Note: During data entry, if a trigger error is returned while attempting to validate or
delete a record, the error is handled like a unique indexed error. The error dialog is
displayed, and you stay in the data entry. Even though you only use a database in the
User environment (not in Custom menus), you have the benefit of using triggers.

Although a trigger returns no error ($0:=0), this does not mean that a database operation
will be successful—a unique index violation may occur. If the operation is the update of a
record, the record may be locked, an I/O error may occur, and so on. The checking is
done after the execution of the trigger. However, at the higher level of the executing
process, errors returned by the database engine or a trigger are the same—a trigger error is
a database engine error.

Triggers and the 4D Architecture
__

Triggers execute at the database engine level. This is summarized in the following
diagram:

4th Dimension Language Reference 1201

Triggers are executed on the machine where the database engine is actually located. This
is obvious with a 4D single-user version. On 4D Server, triggers are executed within the
acting process on the server machine, not on the client machine.

When a trigger is invoked, it executes within the context of the process that attempts the
database operation. This process, which invokes the trigger execution, is called the
invoking process.

In particular, the trigger works with the current selections, current records, table
read/write states, and record locking operations of the invoking process.

Warning: A trigger cannot and must not change the current record of the table to which
it is attached. Within a trigger, if you need to check a unique value on multiple fields, use
the command SET QUERY DESTINATION, which allows you to query a table without
changing the current selection or current record of the table.

Be careful about using other database or language objects of the 4D environment, because
a trigger may execute on a machine different than that of the invoking process—this is
the case with 4D Server!

• Interprocess variables: A trigger has access to the interprocess variables of the machine
where it executes. With 4D Server, it can access a machine different than that of the
invoking process.
• Process variables: An independent process variables table is shared by all the triggers. A
trigger has no access to the process variables of the invoking process.
• Local variables: You can use local variables in a trigger. Their scope is the trigger
execution; they are created/deleted at each execution.
• Semaphores: A trigger can test or set global semaphores as well as local semaphores (on
the machine where it executes). However, a trigger must execute quickly, so you must be
very careful when testing or setting semaphores from within triggers.
• Sets and Named selections: If you use a set or a named selection from within a trigger,
you work on the machine where the triggers executes.
• User Interface: Do NOT use user interface elements in a trigger (no alerts, no messages,
no dialog boxes). Accordingly, you should limit any tracing of triggers in the Debugger
window. Remember that in Client/Server, triggers execute on the 4D Server machine. An
alert message on the server machine does not help a user on a client. Let the invoking
process handle the user interface.

1202 4th Dimension Language Reference

Triggers and Transactions

You must handle transactions at the invoking process level. Do not manage transactions
at the trigger level. During one trigger execution, if you have to add, modify or delete
multiple records (see the following case study), you must first use the In transaction
command from within the trigger to test if the invoking process is currently in
transaction. If this is not the case, the trigger may potentially encounter a locked record.
Therefore, if the invoking process is not in transaction, do not even start the operations
on the records. Just return an error in $0 in order to signal the invoking process that the
database operation it tries to perform must be executed in transaction. Otherwise, if
locked records are met, the invoking process will have no means to roll back the actions
of the trigger.

Note: In order to optimize the combined operation of triggers and transactions, 4D does
not call triggers after the execution of VALIDATE TRANSACTION. This prevent triggers
from being executed twice.

Cascading Triggers
__

Given the following example structure:

Note: The tables have been collapsed; they have more fields than shown here.

Let’s say that the database “authorizes” the deletion of an invoice. We can examine how
such an operation would be handled at the trigger level (because you could also perform
deletions at the process level).

In order to maintain the relational integrity of the data, deleting an invoice requires the
following actions to be performed in the trigger for [Invoices]:
• In the [Customer] record, decrement the Gross Sales field by the amount of the invoice.
• Delete all the [Line Items] records related to the invoice.
• This also implies that the [Line Items] trigger decrements the Quantity Sold field of the
[Products] record related to the line item to be deleted.
• Delete all the [Payments] records related to the deleted invoice.

4th Dimension Language Reference 1203

First, the trigger for [Invoices] must perform these actions only if the invoking process is
in transaction, so a roll-back is possible if a locked record is met.

Second, the trigger for [Line Items] is cascading with the trigger for [Invoices]. The [Line
Items] trigger executes “within” the execution of the [Invoices] trigger, because the
deletion of the list items are consequent to a call to DELETE SELECTION from within the
[Invoices] trigger.

Consider that all tables in this example have triggers activated for all database events. The
cascade of triggers will be:

• [Invoices] trigger is invoked because the invoking process delete an invoice
• [Customers] trigger is invoked because the [Invoices] trigger updates the Gross Sales field
• [Line Items] trigger is invoked because the [Invoices] trigger deletes a line item (repeated)

• [Products] trigger is invoked because the [Line Items] trigger updates the
Quantity Sold field

• [Payments] trigger is invoked because the [Invoices] trigger deletes a payment (repeated)

In this cascade relationship, the [Invoices] trigger is said to be executing at level 1, the
[Customers], [Line Items], and [Payments] triggers at level 2, and the [Products] trigger at
level 3.

From within the triggers, you can use the command Trigger level to detect at the level at
which a trigger is executed. In addition, you get can command TRIGGER PROPERTIES to
get information about the other levels.

For example, if a [Products] record is being deleted at a process level, the [Products] trigger
would be executed at level 1, not at level 3.

Using Trigger level and TRIGGER PROPERTIES, you can detect the cause of an action. In our
example, an invoice is deleted at a process level. If we delete a [Customers] record at a
process level, then the [Customers] trigger should attempt to delete all the invoices related
to that customer. This means that the [Invoices] trigger will be invoked as above, but for
another reason. From within the [Invoices] trigger, you can detect if it executed at level 1
or 2. If it did execute at level 2, you can then check whether or not it is because the
[Customers] record is deleted. If this the case, you do not even need to bother updating
the Gross Sales field.

1204 4th Dimension Language Reference

Using Sequence Numbers within a Trigger
__

While handling an On saving new record database event, you can call the
Sequence number function to maintain a unique ID number for the records of a table.

Example

` Trigger for table [Invoices]
Case of

: (Database event=On Saving new record)
` ...

[Invoices]Invoice ID Number:=Sequence number ([Invoices])
` ...

End case

See Also
Database event, Methods, Record number, Trigger level, TRIGGER PROPERTIES.

4th Dimension Language Reference 1205

Database event Triggers

version 6.0
__

Database event ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ 0 Outside any trigger execution cycle
1 Saving a new record
2 Saving an existing record
3 Deleting a record
4 Loading a record

Description
Called from within a trigger, the command Database event returns a numeric value that
denotes the type of the database event, in other words, the reason why the trigger has
been invoked.

The following predefined constants are provided:
Constant Type Value
Save New Record Event Long Integer 1
Save Existing Record Event Long Integer 2
Delete Record Event Long Integer 3
Load Record Event Long Integer 4

Within a trigger, if you perform database operations on multiple records, you may
encounter conditions (usually locked records) that will make the trigger unable to
perform correctly. An example of this situation is updating multiple records in a
[Products] table when a record is being added to an [Invoices] table. At this point, you
must stop attempting database operations, and return a database error so the invoking
process will know that its database request cannot be performed. Then the invoking
process must be able to cancel, during the transaction, the incomplete database operations
performed by the trigger. When this type of situation occurs, you need to know from
within the trigger if you are in transaction even before attempting anything. To do so,
use the command In transaction.

When cascading trigger calls, 4th Dimension has no limit other than the available
memory. To optimize trigger execution, you may want to write the code of your triggers
depending not only on the database event, but also on the level of the call when triggers
are cascaded. For example, during a deletion database event for the [Invoices] table, you
may want to skip the update of the [Customers] Gross Sales field if the deletion of the
[Invoices] record is part of the deletion of all the invoices related to a [Customers] record
being deleted. To do so, use the commands Trigger level and TRIGGER PROPERTIES.

1206 4th Dimension Language Reference

Example
You use the command Database event to structure your triggers as follows:

` Trigger for [anyTable]
C_LONGINT($0)
$0:=0 ` Assume the database request will be granted
Case of

Þ : (Database event=Save New Record Event)
` Perform appropriates action for the saving of a newly created record

Þ : (Database event=Save Existing Record Event)
` Perform appropriates actions for the saving of an already existing record

Þ : (Database event=Delete Record Event)
` Perform appropriates actions for the deletion of a record

Þ : (Database event=Load Record Event)
` Perform appropriates actions for the loading into memory of a record

End case

See Also
In transaction, Trigger level, TRIGGER PROPERTIES, Triggers.

4th Dimension Language Reference 1207

Trigger level Triggers

version 6.0
__

Trigger level ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Level of trigger execution
(0 if outside any trigger execution cycle)

Description
The command Trigger level returns the execution level of the trigger.

For more information on execution levels, see the topic Cascading Triggers in the section
Triggers.

See Also
Database event, TRIGGER PROPERTIES, Triggers.

1208 4th Dimension Language Reference

TRIGGER PROPERTIES Triggers

version 6.0
__

TRIGGER PROPERTIES (triggerLevel; dbEvent; tableNum; recordNum)

Parameter Type Description
triggerLevel Number ® Trigger execution cycle level
dbEvent Number ¬ Database event
tableNum Number ¬ Involved table number
recordNum Number ¬ Involved record number

Description
The command TRIGGER PROPERTIES returns information about the trigger execution level
you pass in triggerLevel. You use TRIGGER PROPERTIES in conjunction with Trigger level to
perform different actions depending on the cascading of trigger execution levels. For
more information, see the topic Cascading Triggers in the section Triggers.

If you pass a non-existing trigger execution level, the command returns 0 (zero) in all
parameters.

The nature of the database event for the trigger execution level is returned in dbEvent.
The following predefined constants are provided:
Constant Type Value
Save New Record Event Long Integer 1
Save Existing Record Event Long Integer 2
Delete Record Event Long Integer 3
Load Record Event Long Integer 4

The table number and record number for the record involved by the database event for
the trigger execution level are returned in tableNum and recordNum.

Note: Remember that while in transaction, newly created records have temporary record
numbers.

See Also
About Record Numbers, Database event, Trigger level, Triggers.

4th Dimension Language Reference 1209

1210 4th Dimension Language Reference

51 User Interface

4th Dimension Language Reference 1211

1212 4th Dimension Language Reference

BEEP User Interface

version 3
__

BEEP

Parameter Type Description
This command does not require any parameters

Description
The command BEEP causes the PC or Macintosh to generate a beep. Your computer (on
Windows or Macintosh) can emit a sound other than a beep, depending on the sound
chosen in the Sound control panel.

Warning: Do not call BEEP from within a Web connection process, because the beep will
be produced on the 4th Dimension Web server machine and not on the client Web
browser machine.

Example
In the following example, if no records are found by the query, a beep is emitted and an
alert is displayed:

QUERY([Customers];[Customers]Name=$vsNameToLookFor)
If (Records in selection([Customers])=0)

Þ BEEP
ALERT("There is no Customer with such a name.")

End if

See Also
PLAY.

4th Dimension Language Reference 1213

PLAY User Interface

version 3
__

PLAY (objectName{; channel})

Parameter Type Description
objectName String ® Sound name

Windows: .WAV, .MID or .AVI file
any platform: ® MacOS-based ‘snd’ resource
or empty string for stopping asynchronous

play
channel Number ® if specified, synthesizer channel and
asynchronous

if omitted, synchronous

Description on Windows
On Windows, the command PLAY plays sound (.WAV files), MIDI (.MID files), or Video
(.AVI files) Windows files. You pass the full pathname of the file you want to play in
objectName.

Note: You cannot play multimedia files or objects in asynchronous mode. To do so, use
OLE Services.

On Macintosh or on Windows (with some restrictions, see Important Note below), the
command PLAY plays the sound resource named by objectName on Macintosh.

The channel parameter specifies the Macintosh synthesizer channel. If channel is not
specified, the channel is for simple digitized sounds and is synchronous. Synchronous
means that all processing stops until the sound has finished. If channel is 0, the channel is
for simple digitized sounds and is asynchronous. Asynchronous means that processing
does not stop and the sound plays in the background.

To stop playing a synchronous sound, use the following statement:

Þ PLAY ("";0)

If you work with a database on Macintosh and Windows concurrently, you can also play
Macintosh sounds on the Windows platform. To do so:
• On the Macintosh, using a resource editor such as ResEdit or Resorcerer, copy the
required 'snd ' resources into the resource fork of the structure file.
• Transport the database from Macintosh to Windows, using 4D Transporter.

1214 4th Dimension Language Reference

Important Note: The Windows version of 4th Dimension does not play Macintosh sounds
that have been compressed by MACE. If your Macintosh ‘snd’ resource does not play on
Windows, determine whether it complies with the following requirements:

snd resource field Value (in hexadecimal)
Version 0x0001
NbSynth 0x0001
SynthResID 0x0005
SynthInitOptions 0x000000A0
NbSoundCommand 0x0001
FirstCommand 0x8051

You can check the internal data of a ‘snd’ resource using Resorcerer.

Examples
1. The following example shows how to play a video file on Windows:

$DocRef := Open document (""; "AVI")
If (OK=1)

CLOSE DOCUMENT($DocRef)
Þ PLAY (Document)

End if

2. The following example code appears in a startup method. It welcomes the user with a
sound called Welcome Sound on Macintosh:

Þ PLAY ("Welcome Sound") ` Play the Welcome Sound

See Also
BEEP.

4th Dimension Language Reference 1215

Get platform interface User Interface

version 6.0
__

Get platform interface ® Number

Parameter Type Description
This command does not require any parameters

Function result Number ¬ Current platform interface in use

Description
The command Get platform interface returns a numeric value that denotes the current
platform interface used for displaying forms.

The function can return one of the following values:

Constant Type Value
Automatic interface Long Integer -1
Macintosh interface Long Integer 0
Windows 3.1 interface Long Integer 1
Windows 95 interface Long Integer 2
Copland interface Long Integer 3

You can change the platform interface using the command SET PLATFORM INTERFACE or
within the Design environment Database Properties dialog box.

See Also
GET PLATFORM INTERFACE.

1216 4th Dimension Language Reference

SET PLATFORM INTERFACE User Interface

version 3.5
__

SET PLATFORM INTERFACE (interface)

Parameter Type Description
interface Number ® New platform interface setting:

-1 Automatic
0 MacOS (System7)
1 Windows 3.1
2 Windows 95
3 Copland

Description
The command SET PLATFORM INTERFACE sets the platform interface used for displaying
the forms.

You pass in interface one of the following predefined constants:

Constant Type Value
Automatic interface Long Integer -1
Macintosh interface Long Integer 0
Windows 3.1 interface Long Integer 1
Windows 95 interface Long Integer 2
Copland interface Long Integer 3

The command does nothing if the value you pass does not change the current platform
interface.

Note: The platform interface can also be changed in the Design environment Database
Properties dialog box.

4th Dimension Language Reference 1217

Example
In a 4D Client/Server architecture, the Macintosh and Windows stations can use different
platform interfaces concurrently. To do so, you can call the SET PLATFORM INTERFACE
command in the On Startup database method:

` This example assumes that user preferences are stored in a [Preferences] table
` Look for the record corresponding to the current user

QUERY([Preferences];[Preferences]User name=Current User)
If (Records in selection([Preferences])=0)

` If not found, look for the default preferences
QUERY([Preferences];[Preferences]User name="Default")

End if
` Set the Platform Interface according to the user preferences

SET PLATFORM INTERFACE ([Preferences]Platform Interface)

See Also
Get platform interface.

1218 4th Dimension Language Reference

SET TABLE TITLES User Interface

version 6.0
__

SET TABLE TITLES (tableTitles; tableNumbers)

Parameter Type Description
tableTitles String Array ® Table names as they must appear in dialog
boxes
tableNumbers Numeric Array ® Actual table numbers

Description
SET TABLE TITLES enables you to mask, rename, and reorder the tables of your database
when they appear in standard 4th Dimension dialog boxes such as the Query editor,
within the User or Custom Menus environments.

The arrays tableTitles and tableNumbers must be synchronized. In the array tableTitles, you
pass the names of the tables as you would like them to appear. If you do not want to
show a particular table, do not include its name or new title in the array. The tables will
appear in the order you specify in this array. In each element of the array tableNumbers,
you pass the actual table number corresponding to the table name or new title passed in
the same element number in the array tableTitles.

For example, you have a database composed of the tables A, B, and C, created in that
order. You want these tables to appear as X, Y, and Z. In addition you do not want to
show table B. Finally, you want to show Z and X, in that order. To do so, you pass Z and X
in a two-element tableTitles array, and you pass 3 and 1 in a two-element tableNumbers
array.

SET TABLE TITLES does NOT change the actual structure of your database. It only affects
posterior uses of the standard 4th Dimension dialog boxes, such as the Query Editor,
within the User or Custom menus environments. The scope of the command SET TABLE
TITLES is the worksession. One benefit in Client/Server, is that several 4D Client stations
can simultaneously “see” your database in different ways. You can call SET TABLE TITLES as
many times as you want. Note, however, that it affects only the next appearances of the
standard 4th Dimension dialog boxes.

Use the command SET TABLE TITLES for:
• Dynamically localizing a database.
• Showing tables the way you want, independent from the actual definition of your
database.
• Showing tables in a way that depends on the identity or custom privileges of a user.

4th Dimension Language Reference 1219

WARNING: SET TABLE TITLES does NOT override the Invisible property of a table. If a table
is set to be invisible at the Design level of your database, though it is included in a call to
SET TABLE TITLES, it will not appear.

Example
• You are building a 4D application that you plan to sell internationally. Therefore, you
must carefully consider localization issues. Regarding the standard 4th Dimension dialog
boxes that can appear in the User and Custom Menus environments, you can address
localization needs by using a [Translations] table and a few project methods to create and
use fields localized for any number of countries.

• In your database, add the following table:

• Then, create the TRANSLATE TABLES AND FIELDS project method listed below. This
method browses the actual structure of your database and creates all the necessary
[Translations] records for the localization corresponding to the language passed as
parameter.

 ` TRANSLATE TABLES AND FIELDS project method
 ` TRANSLATE TABLES AND FIELDS (String)
 ` TRANSLATE TABLES AND FIELDS (Language)

C_STRING(31;$1)
C_LONGINT($vlTable;$vlField)

For ($vlTable;1;Count tables) ` Loop through the tables
` Check if there is a translation of the table name for the specified language

QUERY([Translations];[Translations]Actual Name=Table name($vlTable);*)
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in selection([Translations])=0)

` If not, create the record
CREATE RECORD([Translations])
[Translations]Actual Name:=Table name($vlTable)
[Translations]Language:=$1

` The translated table name will have to be entered
SAVE RECORD([Translations])

End if

1220 4th Dimension Language Reference

For ($vlField;1;Count fields($vlTable))
` Check if there is a translation of the field name for the specified language

QUERY([Translations];[Translations]Actual Name=Field name($vlTable;$vlField);*)
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in selection([Translations])=0)

` If not, create the record
CREATE RECORD([Translations])
[Translations]Actual Name:=Field name($vlTable;$vlField)
[Translations]Language:=$1

` The translated field name will have to be entered
SAVE RECORD([Translations])

End if
End for

End for

• At this point, if you execute the following line, you create as many records as needed for
a Spanish localization of the tables and fields titles.

TRANSLATE TABLES AND FIELDS ("Spanish")

• After this call has been executed, you can then enter the [Translations]Translated Name
for each of the newly created records.

• Finally, each time you want to show your database’s standard 4D dialog boxes using the
Spanish localization, you execute the following line:

LOCALIZED TABLES AND FIELDS ("Spanish")

with the project method LOCALIZED TABLES AND FIELDS:

` LOCALIZED TABLES AND FIELDS global method
` LOCALIZED TABLES AND FIELDS (String)
` LOCALIZED TABLES AND FIELDS (Language)

C_STRING(63;$1)
C_LONGINT($vlTable;$vlNbTable;$vlField;$vlNbField)

$vlNbTable:=Count tables ` Get the number of tables present in the database
` Initialize the arrays to be passed to SET TABLE TITLES

ARRAY STRING(31;$asTableName;$vlNbTable)
ARRAY INTEGER($aiTableNumber;$vlNbTable)
For ($vlTable;1;$vlNbTable) ` Loop through the tables

$asTableName{$vlTable}:=Table name($vlTable) ` Get the name of the table
$aiTableNumber{$vlTable}:=$vlTable ` Store the actual table number

` Look for the translation
QUERY([Translations];[Translations]Actual Name=$asTableName{$vlTable};*)
QUERY([Translations]; & ;[Translations]Language=$1)

4th Dimension Language Reference 1221

If (Records in table([Translations])>0)
` If available, use the localized table name

$asTableName{$vlTable}:=[Translations]Translated Name
End if
$vlNbField:=Count fields($vlTable) ` Get the number of fields for that table

` Initialize the arrays to be passed to SET FIELD TITLES
ARRAY STRING(31;$asFieldName;$vlNbTable)
ARRAY INTEGER($aiFieldNumber;$vlNbTable)
For ($vlField;1) ` Loop through the fields

$asFieldName{$vlField}:=Field name($vlTable;$vlField) ` Get the name of the field
$aiFieldNumber{$vlField}:=$vlField ` Store the actual field number
QUERY([Translations];[Translations]Actual Name=$asFieldName{$vlField};*)

` Look for the translation
QUERY([Translations]; & ;[Translations]Language=$1)
If (Records in table([Translations])>0)

` If available, use the localized field name
$asFieldName{$vlField}:=[Translations]Translated Name

End if
End for
SORT ARRAY($asFieldName;$aiFieldNumber;>)
SET FIELD TITLES(Table($vlTable)->;$asFieldName;$aiFieldNumber)

End for
SORT ARRAY($asTableName;$aiTableNumber;>)

Þ SET TABLE TITLES($asTableName;$aiTableNumber)

• Note that new localizations can be added to the database without modifying or
recompiling the code.

See Also
Count tables, SET FIELD TITLES, Table name.

1222 4th Dimension Language Reference

SET FIELD TITLES User Interface

version 6.0
__

SET FIELD TITLES (table | subtable; fieldTitles; fieldNumbers)

Parameter Type Description
table | subtable Table or Subtable ® Table or Subtable for which to set the
field titles
fieldTitles String Array ® Field names as they must appear in dialog
boxes
fieldNumbers Numeric Array ® Actual field numbers

Description
SET FIELD TITLES enables you to mask, rename, and reorder the fields of the table or
subtable passed in table or subtable when they appear in standard 4th Dimension dialog
boxes, such as the Query editor, within the User or Custom Menus environments.

The arrays fieldTitles and fieldNumbers must be synchronized. In the array fieldTitles, you
pass the name of the fields as you would like them to appear. If you do not want to show
a particular field, do not include its name or new title into the array. The fields will appear
in the order you specify in this array. In each element of the array fieldNumbers, you pass
the actual field number corresponding to the field name or new title passed in the same
element number in the array fieldTitles.

For example, you have a table or subtable composed of the fields F, G, and H, created in
that order. You want these fields to appear as M, N, and O. In addition you do not want
to show field N. Finally, you want to show O and M in that order. To do so, pass O and M
in a two-element fieldTitles array and pass 3 and 1 in a two-element fieldNumbers array.

SET FIELD TITLES does NOT change the actual structure of your table. It only affects
posterior uses of the standard 4th Dimension dialog boxes, such as the Query editor,
within the User or Custom menus environments. The scope of the command SET FIELD
TITLES is the worksession. One benefit in Client/Server, is that several 4D Client stations
can simultaneously “see” your table in different manners. You can call SET FIELD TITLES as
many times as you want. Note, however, that it affects only the next appearances of the
standard 4th Dimension dialog boxes.

Use the command SET FIELD TITLES for:
• Dynamically localizing a table.
• Showing fields the way you want, independent of the actual definition of your table.
• Showing fields in a way that depends on the identity or custom privileges of a user.

4th Dimension Language Reference 1223

WARNING: SET FIELD TITLES does NOT override the Invisible property of a field. If a field
is set to be invisible at the Design level of your database, even though it is included in a
call to SET FIELD TITLES, it will not appear.

Example
See example for the command SET TABLE TITLES.

See Also
Count fields, Field name, SET TABLE TITLES.

1224 4th Dimension Language Reference

Shift down User Interface

version 6.0
__

Shift down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Shift key

Description
Shift down returns TRUE if the Shift key is pressed.

Example
The following object method for the button bAnyButton performs different actions,
depending on which modifier keys are pressed when the button is clicked:

` bAnyButton Object Method
Case of

` Other multiple key combinations could be tested here
` ...

: (Shift down & Windows Ctrl down)
` Shift and Windows Ctrl (or Macintosh Command) keys are pressed

DO ACTION1
` ...

: (Shift down)
` Only Shift key is pressed

DO ACTION2
` ...

: (Windows Ctrl down)
` Only Windows Ctrl (or Macintosh Command) key is pressed

DO ACTION3
` ...
` Other individual keys could be tested here
` ...

End case

See Also
Caps lock down, Macintosh command down, Macintosh control down, Macintosh option
down, Windows Alt down, Windows Ctrl down.

4th Dimension Language Reference 1225

Caps lock down User Interface

version 6.0
__

Caps lock down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Caps Lock key

Description
Caps lock down returns TRUE if the Caps Lock key is pressed.

Example
See example for the command Shift down.

See Also
Macintosh command down, Macintosh control down, Macintosh option down, Shift down,
Windows Alt down, Windows Ctrl down.

1226 4th Dimension Language Reference

Windows Ctrl down User Interface

version 6.0
__

Windows Ctrl down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Windows Ctrl key
(Command key on Macintosh)

Description
Windows Ctrl down returns TRUE if the Windows Ctrl key is pressed.

Note: When called on a Macintosh platform, Windows Ctrl down returns TRUE if the
Macintosh Command key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh option down, Shift down, Windows
Alt down, Windows Ctrl down.

4th Dimension Language Reference 1227

Windows Alt down User Interface

version 6.0
__

Windows Alt down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Windows Alt key
(Option key on Macintosh)

Description
Windows Alt down returns TRUE if the Windows Alt key is pressed.

Note: When called on a Macintosh platform, Windows Alt down returns TRUE if the
Macintosh Option key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh control down, Macintosh option
down, Shift down, Windows Ctrl down.

1228 4th Dimension Language Reference

Macintosh command down User Interface

version 6.0
__

Macintosh command down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Macintosh Command key
(Ctrl key on Windows)

Description
Macintosh command down returns TRUE if the Macintosh command key is pressed.

Note: When called on a Windows platform, Macintosh command down returns TRUE if
the Windows Ctrl key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh control down, Macintosh option down, Shift down, Windows Alt
down, Windows Ctrl down.

4th Dimension Language Reference 1229

Macintosh option down User Interface

version 6.0
__

Macintosh option down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Macintosh Option key
(Alt key on Windows)

Description
Macintosh option down returns TRUE if the Macintosh Option key is pressed.

Note: When called on a Windows platform, Macintosh option down returns TRUE if the
Windows Alt key is pressed.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh control down, Shift down, Windows
Alt down, Windows Ctrl down.

1230 4th Dimension Language Reference

Macintosh control down User Interface

version 6.0
__

Macintosh control down ® Boolean

Parameter Type Description
This command does not require any parameters

Function result Boolean ¬ State of the Macintosh Control key

Description
Macintosh control down returns TRUE if the Macintosh Control key is pressed.

Note: When called on a Windows platform, Macintosh control down always return FALSE.
This Macintosh key has no equivalent on Windows.

Example
See example for the command Shift down.

See Also
Caps lock down, Macintosh command down, Macintosh option down, Shift down, Windows
Alt down, Windows Ctrl down.

4th Dimension Language Reference 1231

GET MOUSE User Interface

version 6.0
__

GET MOUSE (mouseX; mouseY; mouseButton{; *})

Parameter Type Description
mouseX Number ¬ Horizontal coordinate of mouse
mouseY Number ¬ Vertical coordinate of mouse
mouseButton Number ¬ Mouse button state:

0 = Button up
1 = Button down
2 = Right button down (Windows only)
3 = Both buttons down (Windows only)

* ® if omitted, local coordinate system is used
if specified, global coordinate system is used

Description
The command GET MOUSE returns the current state of the mouse.

The horizonal and vertical coordinates are returned in mouseX and mouseY. If you omit
the * parameter, they are expressed relative to the screen. If you pass the * parameter,
they are expressed relative to the frontmost window of the current process.

The parameter mouseButton returns the state of the buttons, as listed previously.

Example
See the example for the command Pop up menu.

See Also
Caps lock down, Macintosh command down, Macintosh control down, Macintosh option
down, ON EVENT CALL, Shift down, Windows Alt down, Windows Ctrl down.

1232 4th Dimension Language Reference

Pop up menu User Interface

version 6.0
__

Pop up menu (contents{; default}) ® Number

Parameter Type Description
contents Text ® Text menu definition
default Number ® Default selected menu item number

Function result Number ¬ Selected menu item number

Description
The command Pop up menu displays a pop-up menu at the current location of the mouse.

In other to follow user interface rules, you usually call this command in response to a
mouse click and if the mouse button is still down.

You define the items of the pop-up menu with the parameter contents as follows:
• Separate each item from the next one with a semi-colon (;). For example,
"ItemText1;ItemText2;ItemText3".
• To disable an item, place an opening parenthesis (() in the item text.
• To specify a separation line, pass "(-" as item text.
• To specify a font style for a line, place in the item text a less than sign (<) followed by
one of these characters:

<B Bold
<I Italic
<U Underline
<O Outline (Macintosh only)
<S Shadow (Macintosh only)

• To add a check mark to an item, place in the item text a question mark (?) followed by
the character you want as a check mark. On Macintosh, the character is displayed; on
Windows, a check mark is displayed, no matter what character you passed.
• To add an icon to an item, place in the item text a circumflex accent (^) followed by a
character whose ASCII code minus 48 is the resource ID of a MacOS-based icon resource.
• To add a shortcut to an item, place in the item text a slash (/) followed by the shortcut
character for the item. Note that this last option is purely informative; no shortcut will
activate the pop-up menu. However, you may want to include a shortcut if the pop-up
menu item has an equivalent in the main menu bar of your application.

4th Dimension Language Reference 1233

The optional default parameter allows you to specify the default menu item selected when
the pop-up menu is displayed. Pass a value between 1 and the number of menu items. If
you omit this parameter, the command selects the first menu item as the default.

If you select a menu item, the command returns its number; otherwise, it returns zero
(0).

Note: Use pop-up menus that have a reasonable number of items. If you want to display
more than 50 items, you might think about a using scrollable area in a form instead of a
pop-up menu.

Example
The project method MY SPEED MENU pulls down a navigation speed menu:

` MY SPEED MENU project method
GET MOUSE($vlMouseX;$vlMouseY;$vlButton)
If (Macintosh control down | ($vlButton=2))

$vtItems:="About this database...<I;(-;!-Other Options;(-"
For ($vlTable;1;Count tables)

$vtItems:=$vtItems+";"+Table name($vlTable)
End for

Þ $vlUserChoice:=Pop up menu($vtItems)
Case of

: ($vlUserChoice=1)
` Display Information

: ($vlUserChoice=2)
` Display options

Else
If ($vlUserChoice>0)

` Go to table whose number is $vlUserChoice-4
End if

End case
End if

This project method can be called from:
• The method of a form object that reacts to a mouse click without waiting for the mouse
button to be released (i.e., an invisible button)
• A process that “spies” events and communicate with the other processes
• An event-handling method installed using ON EVENT CALL

In the last two cases, the click does not need to occur in any form object. This is one of
the advantages of the Pop up menu command. Generally, you use form objects to display
pop-up menus. Using Pop up menu, you can display the menu anywhere.

1234 4th Dimension Language Reference

The pop-up menu is displayed on Windows by pressing the right mouse button; it is
displayed on Macintosh by pressing Control-Click. Note, however, that the method does
not actually check whether or not there was a mouse click; the caller method tests that.

The following is the pop-up menu as it appears on Windows (left) and Macintosh (right).
Note the standard check mark for the Windows version.

See Also
GET MOUSE.

4th Dimension Language Reference 1235

POST KEY User Interface

version 6.0
__

POST KEY (code{; modifiers{; process}})

Parameter Type Description
code Number ® ASCII code of character or function key code
modifiers Number ® State of modifier keys
process Number ® Destination process reference number, or

Application event queue, if omitted, or 0

Description
The POST KEY command simulates a keystroke. Its effect is as if the user actually entered a
character on the keyboard.

You pass the ASCII code of the character in code.

If you pass the modifiers parameter, you pass one or a combination of the Events
(modifiers) constants. For example, to simulate the Shift key, pass Shift key mask. If you do
not pass modifiers, no modifiers are simulated.

If you specify the process parameter, the keystroke is sent to the process whose process
number you pass in process. If you pass 0 (zero) or if you omit the parameter, the
keystroke is sent at the application level, and the 4D scheduler will dispatch it to the
appropriate process.

Example
See example for the command Process number.

See Also
POST CLICK, POST EVENT.

1236 4th Dimension Language Reference

POST CLICK User Interface

version 6.0
__

POST CLICK (mouseX; mouseY{; process}{; *})

Parameter Type Description
mouseX Number ® Horizontal coordinate
mouseY Number ® Vertical coordinate
process Number ® Destination process reference number, or

Application event queue, if omitted, or 0
* ® if specified, local coordinate system is used

if omitted, global coordinate system is used

Description
The command POST CLICK simulates a mouse click. Its effect as if the user actually clicked
the mouse button.

You pass the horizontal and vertical coordinates of the click in mouseX and mouseY. If
you pass the * parameter, you express these coordinates relative to the frontmost window
of the process whose process number you pass in process. If you omit the * parameter, you
express these coordinates relative to the screen.

If you specify the process parameter, the click is sent to the process whose process number
you pass in process. If you pass 0 (zero) or if you omit the parameter, the click is sent at
the application level, and the 4D scheduler will dispatch it to the appropriate process.

See Also
POST EVENT, POST KEY.

4th Dimension Language Reference 1237

POST EVENT User Interface

version 6.0
__

POST EVENT (what; message; when; mouseX; mouseY; modifiers{; process})

Parameter Type Description
what Number ® Type of event
message Number ® Event message
when Number ® Event time expressed in ticks
mouseX Number ® Horizontal coordinate of mouse
mouseY Number ® Vertical coordinate of mouse
modifiers Number ® Modifier keys state
process Number ® Destination process reference number, or

Application event queue, if omitted, or 0

Description
The command POST EVENT simulates a keyboard or mouse event. Its effect is as if the user
actually acted on the keyboard or the mouse.

You pass one of the following values in what:
Constant Type Value
Mouse down event Long Integer 1
Mouse up event Long Integer 2
Key down event Long Integer 3
Key up event Long Integer 4
Auto key event Long Integer 5

If the event is a mouse-related event, you pass 0 (zero) in message. If the event is a
keyboard-related event, you pass the ASCII code of the simulated character in message.

Usually, you pass the value returned by Tickcount in when.

If the event is a mouse-related event, you pass the horizontal and vertical coordinates of
the click in mouseX and mouseY. If you omit the * parameter, you express these
coordinates relative to the screen. If pass the * parameter, you express these coordinates
relative to the frontmost window of the process whose process number you pass in
process.

In the parameter modifiers, you pass one or a combination of the Events (modifiers)
constants. For example, to simulate the Shift key, pass Shift key bit.

1238 4th Dimension Language Reference

If you specify the process parameter, the event is sent to the process whose process
number you pass in process. If you pass 0 (zero) or if you omit the parameter, the event is
sent at the application level, and the 4D scheduler will dispatch it to the appropriate
process.

See Also
POST CLICK, POST KEY.

4th Dimension Language Reference 1239

GET HIGHLIGHT User Interface

version 3
__

GET HIGHLIGHT (area; startSel; endSel)

Parameter Type Description
area Field | Variable ® Enterable field or variable
startSel Number ¬ Current text selection starting position
endSel Number ¬ Current text selection ending position

Description
The command GET HIGHLIGHT is used to determine what text is currently highlighted.

Warning: Although you pass a field or variable enterable area name to GET HIGHLIGHT,
this command returns the significant selection position only when it is applied to the
area currently being edited.

Note: This command cannot be used with fields in the List form of a subform.

Text can be highlighted by the user or by the HIGHLIGHT TEXT command.

The parameter startSel returns the position of the first highlighted character.
The parameter endSel returns the position of the last highlighted character plus one.

If startSel and endSel are returned equal, the insertion point is positioned before the
character specified by startSel. The user has not selected any text, and no characters are
highlighted.

Examples
1. The following example gets the highlighted selection from the field called
[Products]Comments:

Þ GET HIGHLIGHT ([Products]Comments;vFirst;vLast)
If (vFirst<vLast)

ALERT("The selected text is: "+Substring([Products]Comments;vFirst;vLast-vFirst))
End if

2. See example for the command FILTER KEYSTROKE.

See Also
FILTER KEYSTROKE, HIGHLIGHT TEXT, Keystroke.

1240 4th Dimension Language Reference

HIGHLIGHT TEXT User Interface

version 3
__

HIGHLIGHT TEXT (area; startSel; endSel)

Parameter Type Description
area Field | Variable ® Enterable field or variable
startSel Number ® New text selection starting position
endSel Number ® New text selection ending position

Description
The command HIGHLIGHT TEXT highlights a section of the text in area.

If area is not the object currently being edited, the focus is then set to this area.

Note: This command cannot be used with fields in the List form of a subform.

startSel is the first character position to be highlighted, and lastSel is the last character plus
one to be highlighted. If startSel and lastSel are equal, the insertion point is positioned
before the character specified by startSel, and no characters are highlighted.

If lastSel is greater than the number of characters in area, then all characters between
startSel and the end of the text are highlighted.

Example
1. The following example selects all the characters of the enterable field
[Products]Comments:

Þ HIGHLIGHT TEXT([Products]Comments;1;Length([Products]Comments)+1)

2. The following example moves the insertion point to the beginning of the enterable
field [Products]Comments:

Þ HIGHLIGHT TEXT([Products]Comments;1;1)

3. The following example moves the insertion point to the end of the enterable field
[Products]Comments:

$vLen:=Length([Products]Comments)+1
Þ HIGHLIGHT TEXT([Products]Comments;$vLen;$vLen)

4. See example for the command FILTER KEYSTROKE.

See Also
GET HIGHLIGHT.

4th Dimension Language Reference 1241

SET CURSOR User Interface

version 6.0
__

SET CURSOR {(cursor)}

Parameter Type Description
cursor Number ® MacOS-based cursor resource number

Description
The command SET CURSOR changes the mouse cursor to the cursor stored in the MacOS-
based ‘CURS’ resource whose ID number you pass in cursor.

If you omit the parameter, the mouse cursor is set to the standard arrow.

Use the command RESOURCE LIST to get the list of available cursors.

See Also
RESOURCE LIST.

1242 4th Dimension Language Reference

Last object User Interface

version 3
__

Last object ® Pointer

Parameter Type Description
This command does not require any parameters

Function result Pointer ¬ Pointer to the last or current enterable area

Description
Last object returns a pointer to the last or current enterable area, in other words, the
object that the cursor is in or has just left. You can use Last object to perform an action on
a form area without having to know which object is currently selected. Be sure to test that
the object is the correct data type, using Type, before performing an action on it. This
command cannot be used with fields in subforms.

Example
The following example is an object method for a button. The object method changes the
data in the current object to uppercase. The object must be a text or string data type (type
0 or 24):

Þ $vp := Last object ` Save the pointer to the last area
 ` If it is a string or text area

If ((Type ($vp->) = Is Alpha field) | (Type($vp->) = Is String var))
` Change the area to uppercase

$vp-> := Uppercase ($vp->)
End if

4th Dimension Language Reference 1243

REDRAW User Interface

version 3
__

REDRAW (object)

Parameter Type Description
object Object ® Subtable for which to redraw the subform, or

Table for which to redraw the subform, or
Field for which to redraw the area, or
Variable for which to redraw the area

Description
When you use a method to change the value of a field or subfield displayed in a subform,
you must execute REDRAW to ensure that the form is updated.

1244 4th Dimension Language Reference

INVERT BACKGROUND User Interface

version 3
__

INVERT BACKGROUND ({*; }textVar | textField)

Parameter Type Description
* ® Allows entry of a variable or object name
textVar | textField Variable | Field ® Text variable or field to invert

Description
INVERT BACKGROUND is used to invert textVar or textField in the form.

The scope of the command is the form being used.

You can use INVERT BACKGROUND when displaying on screen or printing to a dot matrix
printer. A postscript printer will not print an inverted background.

You cannot invert a variable in an output form. Avoid using INVERT BACKGROUND on an
enterable variable. Entering characters will only partially erase the inverted display.

Example
This example is an object method for a variable in an input form. It tests the value of a
field. If the field is positive, the object method does nothing. If the field is negative, the
object method inverts the display of the variable in the form:

vAmount:=[Accounts]Amount ` Put the value of field in the variable
If (vAmount < 0) ` If it is a negative amount…

Þ INVERT BACKGROUND (vAmount) ` Invert the background
End if

Note: This command, originally created for black and white user interfaces, is now rarely
used. You now generally use colors to highlight a field or a variable.

See Also
SET COLOR, SET RGB COLOR.

4th Dimension Language Reference 1245

1246 4th Dimension Language Reference

52 Users and Groups

4th Dimension Language Reference 1247

1248 4th Dimension Language Reference

EDIT ACCESS Users and Groups

version 3
__

EDIT ACCESS

Parameter Type Description
This command does not require any parameters

Description
EDIT ACCESS allows the user to edit the password system. The Passwords window in the
Design environment is used to edit the access.

Groups can be edited by the Designer, the Administrator and group owners. The Designer
and the Administrator can edit any group. Group owners can edit only the groups they
own. Users can be added to and removed from groups. The command has no effect if no
groups are defined.

The Designer and the Administrator can add new users, as well as assign them to groups.

Example
The following example displays the Passwords window to the user:

Þ EDIT ACCESS

See Also
CHANGE ACCESS, CHANGE PASSWORD.

4th Dimension Language Reference 1249

CHANGE ACCESS Users and Groups

version 3
__

CHANGE ACCESS

Parameter Type Description
This command does not require any parameters

Description
CHANGE ACCESS allows the user to change to a different access level without leaving the
database. The same password dialog box that is displayed when the user launches the
database is presented, and the user can gain access as a different user.

The dialog box displayed will depend on the Preferences set in the Database Properties
dialog box in the Design Environment.

Example
The following example displays the password dialog box to the user:

Þ CHANGE ACCESS

See Also
CHANGE PASSWORD.

1250 4th Dimension Language Reference

CHANGE PASSWORD Users and Groups

version 3
__

CHANGE PASSWORD (password)

Parameter Type Description
password String ® New password

Description
CHANGE PASSWORD changes the password of the current user. This command replaces
the current password with the new password you pass in password.

Warning: Password are case-sensitive.

Example
The following example allows the user to change his or her password.

CHANGE ACCESS ` Present user with password dialog
If (OK=1)

$pw1:=Request("Enter new password for "+Current user)
` The password should be at leat five characters long

If (((OK=1) & ($pw1#"")) & (Length($pw1)>5))
` Make sure the password has been entered correctly

$pw2:=Request("Enter password again")
If ((OK=1) & ($pw1=$pw2))

CHANGE PASSWORD($pw2) ` Change the password
End if

End if
End if

See Also
CHANGE ACCESS.

4th Dimension Language Reference 1251

Validate password Users and Groups

version 6.0.2
__

Validate password (userID; password) ® Boolean

Parameter Type Description
userID Number ® Unique user ID
password String ® Unencrypted password

Function result Boolean ¬ True = valid password
False = invalid password

Description
Validate password returns True if the string passed in password is the password for the
user account whose ID number is passed in userID.

Example
This example checks whether the password of the user “Hardy” is “Laurel”:

GET USER LIST(atUserName;alUserID)
$vlElem:=Find in array(atUserName;"Hardy")
If ($vlElem>0)

Þ If (Validate password(alUserID{$vlElem};"Laurel")>0)
ALERT("Yep!")

Else
ALERT("Too bad!")

End if
Else

ALERT("Unknown user name")
End if

See Also
GET USER PROPERTIES (6.0.2), SET USER PROPERTIES (6.0.2).

1252 4th Dimension Language Reference

Current user Users and Groups

version 3
__

Current user ® String

Parameter Type Description
This command does not require any parameters

Function result String ¬ User name of the current user

Description
Current user returns the user name of the current user.

Example
See example for the command User in group.

See Also
CHANGE ACCESS, CHANGE PASSWORD, User in group.

4th Dimension Language Reference 1253

User in group Users and Groups

version 3
__

User in group (user; group) ® Boolean

Parameter Type Description
user String ® User name
group String ® Group name

Function result Boolean ¬ TRUE = user is in group
FALSE = user is not in group

Description
User in group returns TRUE if user is in group.

Example
The following example searches for specific invoices. If the current user is in the
Executive group, he or she is allowed access to forms that display confidential
information. If the user is not in the Executive group, a different form is displayed:

QUERY([Invoices];[Invoices]Retail>100)
Þ If (User in group(Current user;"Executive"))

OUTPUT FORM([Invoices];"Executive Output")
INPUT FORM([Invoices];"Executive Input")

Else
OUTPUT FORM([Invoices];"Standard Output")
INPUT FORM([Invoices];"Standard Input")

End if
MODIFY SELECTION([Invoices];*)

See Also
Current user.

1254 4th Dimension Language Reference

DELETE USER Users and Groups

version 6.0
__

DELETE USER (UserID)

Parameter Type Description
UserID Number ® ID number of user to delete

Description
The command DELETE USER deletes the user whose unique user ID number you pass in
userID. You must pass a valid user ID number returned by the command GET USER LIST.

If the user account does not exist or has already been deleted, the error -9979 is generated.
You can catch this error with an error-handling method installed using ON ERR CALL.

Deleted user names no longer appear in the Password window displayed when the
database is open or when you call CHANGE ACCESS. However, in order to maintain unique
user ID numbers, the user account is kept in the password system. Deleted user names are
displayed in green in the Design environment Passwords window.

See Also
GET USER LIST, GET USER PROPERTIES, Is user deleted, SET USER PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling DELETE USER or if the Password
system is already accessed by another process, an access privilege error is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.

4th Dimension Language Reference 1255

Is user deleted Users and Groups

version 6.0
__

Is user deleted (userNumber) ® Boolean

Parameter Type Description
userNumber Number ® User ID number

Function result Boolean ¬ TRUE = User account is deleted or does not
exist

FALSE = User account is active

Description
The command Is user deleted tests the user account whose unique user ID number you
pass in userID.

If the user account does not exist or has been deleted, Is user deleted returns TRUE.
Otherwise, it returns FALSE.

See Also
DELETE USER, GET USER PROPERTIES, SET USER PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling Is user deleted or if the Password
system is already accessed by another process, an access privilege error is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.

1256 4th Dimension Language Reference

GET USER LIST Users and Groups

version 6.0
__

GET USER LIST (userNames; userNumbers)

Parameter Type Description
userNames String Array ¬ User names as they appear

in the Password editor window
userNumbers Numeric Array ¬ Corresponding unique user ID numbers

Description
GET USER LIST populates the arrays userNames and userNumbers with the names and
unique ID numbers of the users as they appear in the Passwords window.

The array userNames is filled with the user names displayed in the Passwords window,
including users whose accounts are disabled (user names displayed in green in the
Passwords window).

Note: Use the command Is user deleted to detect deleted users.

The array userNumbers, synchronized with userNames, is filled with the corresponding
unique user ID numbers. These numbers can have the following values or ranges:

User ID number User description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

See Also
GET GROUP LIST, GET USER PROPERTIES, SET USER PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling GET USER LIST or if the Password
system is already accessed by another process, an access privilege error is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.

4th Dimension Language Reference 1257

GET USER PROPERTIES Users and Groups

version 6.0
__

GET USER PROPERTIES (userID; name; startup; password; nbLogin; lastLogin{; memberships})

Parameter Type Description
userID Number ® Unique user ID number
name String ¬ Name of the user
startup String ¬ Startup method name
password String ¬ Always an empty string
nbLogin Number ¬ Number of logins to the database
lastLogin Date ¬ Date of last login to the database
memberships Numeric Array ¬ ID numbers of groups to which the user
belongs

Description
GET USER PROPERTIES returns the information about the user whose unique user ID
number you pass in userID. You must pass a valid user ID number returned by the
command GET USER LIST.

If the user account does not exist or has been deleted, the error -9979 is generated.
You can catch this error with an error-handling method installed using ON ERR CALL.
Otherwise, you can call Is user deleted to test the user account before calling
GET USER PROPERTIES.

User ID numbers can have the following values or ranges:

User ID number User description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

After the call, you retrieve the name, startup method, encrypted password, number of
logins and date of last login for the user, in the parameters name, startup, password,
nbLogin and lastLogin.

Note: GET USER PROPERTIES no longer returns the encrypted password in the password
parameter. Starting with version 6.0.2, an empty string is always returned in this
parameter. The 4th Dimension Language Reference Manual delivered with version 6.0.2
does not describe this change.

1258 4th Dimension Language Reference

If you pass the optional memberships parameter, the unique ID numbers of the groups to
which the user belongs are returned. Group ID numbers can have the following ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

See Also
GET GROUP LIST, GET USER LIST, SET USER PROPERTIES, Validate password (6.0.2).

Error Handling
If you do not have the proper access privileges for calling GET USER PROPERTIES or if
the Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using
ON ERR CALL.

4th Dimension Language Reference 1259

Set user properties Users and Groups

version 6.0
__

Set user properties (userID; name; startup; password; nbLogin; lastLogin{; memberships}) ®
Number

Parameter Type Description
userID Number ® Unique ID number of user account, or

-1 for adding a user affiliated with the Designer, or
-2 for adding a user affiliated with the Administrator

name String ® New user name
startup String ® Name of new user startup method
password String ® New (unencrypted) password, or

* to leave the password unchanged
nbLogin Number ® New number of logins to the database
lastLogin Number ® New date of last login to the database
memberships Numeric Array ® ID numbers of groups to which the user belongs

Function result Number ¬ Unique ID number of new user

Description
Set user properties enables you to change and update the properties of an existing user
account whose unique user ID number you pass in userID, or to add a new user affiliated
with the Designer or the Administrator.

If you are changing the properties of an existing user account, you must pass a valid user
ID number returned by the command GET USER LIST.

If the user account does not exist or has been deleted, the error -9979 is generated. You
can catch this error with an error-handling method installed using ON ERR CALL.
Otherwise, you can call Is user deleted to test the user account before calling Set user
properties.

User ID numbers can have the following values or ranges:

User ID number User description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

1260 4th Dimension Language Reference

To add a new user affiliated with the Designer pass -1 in userID. To add a new user
affiliated with the Administrator pass -2 in userID. In both cases, when adding a new user,
4th Dimension tries to reuse the first available disabled user account; it creates a new
account only if no disabled account is available. After the call, if the user is successfully
added, its unique ID number is returned in userID.

If you do not pass -1, -2 or a valid user ID number, Set user properties does nothing.

Before the call, you pass the new name, startup method, password, number of logins and
date of last login for the user, in the parameters name, startup, password, nbLogin and
lastLogin. You pass an unencrypted password in the password parameter. 4D will encrypt it
for you before saving it in the user account. If you do not want to change all the
properties of the user (aside from the memberships, see below), first call GET USER
PROPERTIES and pass the returned values for the properties you want to leave unchanged.

Note: Set user properties now accepts the * symbol as a value for the password parameter.
This allows you to change the other properties of the user account without changing the
password for the account. The 4th Dimension Language Reference manual delivered with
version 6.0.2 does not describe this change.

If you do not pass the optional memberships parameter, the current memberships of the
user are left unchanged. If you do not pass memberships when adding a user, the user will
not belong to any group.

If you pass the optional memberships parameter, you change all the memberships for the
user. Before the call, you must populate the array memberships with the unique ID
numbers of the groups to which the user will belong. Group ID numbers can have the
following ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

To revoke all the memberships of a user, pass an empty memberships array.

See Also
DELETE USER, GET GROUP LIST, GET USER LIST, GET USER PROPERTIES, Is user deleted,
Validate password (6.0.2).

Error Handling
If you do not have the proper access privileges for calling Set user properties or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

4th Dimension Language Reference 1261

GET GROUP LIST Users and Groups

version 6.0
__

GET GROUP LIST (groupNames; groupNumbers)

Parameter Type Description
groupNames String Array ¬ Names of the groups as they appear

in the Password editor window
groupNumbers Numeric Array ¬ Corresponding unique group ID numbers

Description
GET GROUP LIST populates the arrays groupNames and groupNumbers with the names and
unique ID numbers of the groups as they appear in the Password editor window.

The array groupNames is filled with the names of all groups that appear in the Password
editor window, including the disabled groups (group names appearing in red in the
Password editor window).

Note: Use the command GET GROUP PROPERTIES to detect groups for which entry is
disabled.

The array groupNumbers, synchronized with groupNames, is filled with the corresponding
unique group ID numbers. These numbers can have the following ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

See Also
GET GROUP PROPERTIES, GET USER LIST, SET GROUP PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling GET GROUP LIST or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

1262 4th Dimension Language Reference

GET GROUP PROPERTIES Users and Groups

version 6.0
__

GET GROUP PROPERTIES (groupID; name; owner{; members})

Parameter Type Description
groupID Number ® Unique group ID number
name String ¬ Name of the group
owner Number ¬ User ID number of group owner
members Numeric Array ¬ Group members

Description
GET GROUP PROPERTIES returns the properties of the group whose unique group ID
number you pass in groupID. You must pass a valid group ID number returned by the
command GET GROUP LIST. Group ID numbers can have the following values or ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

If you do not pass a valid group ID number, GET GROUP PROPERTIES returns empty
parameters.

After the call, you retrieve the name and owner of the group, in the parameters name and
owner.

4th Dimension Language Reference 1263

If you pass the optional members parameter, the unique ID numbers of the users and
groups belonging to the group are returned. Member ID numbers can have the following
ranges:

Member ID number Member Description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

15001 to 32767 Group created by the Designer or affiliated Group Owner
(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

See Also
GET GROUP LIST, GET USER LIST, SET GROUP PROPERTIES.

Error Handling
If you do not have the proper access privileges for calling GET GROUP PROPERTIES or if
the Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using ON
ERR CALL.

1264 4th Dimension Language Reference

Set group properties Users and Groups

version 6.0
__

Set group properties (groupID; name; owner{; menbers}) ® Number

Parameter Type Description
groupID Number ® Unique ID number of group, or

-1 for adding a Designer group, or
-2 for adding an Administrator group

name String ® New group name
owner Number ® User ID number of new group owner
menbers Numeric Array ® New group members

Function result Number ¬ Unique ID number of new group

Description
Set group properties enables you to change and update the properties of an existing group
whose unique group ID number you pass in groupID, or to add a new group affiliated with
the Designer or the Administrator.

If you are changing the properties of an existing group, you must pass a valid group ID
number returned by the command GET GROUP LIST. Group ID numbers can have the
following values or ranges:

Group ID number Group description
15001 to 32767 Group created by the Designer or affiliated Group Owner

(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

To add a new group affiliated with the Designer, pass -1 in groupID. To add a new group
affiliated with the Administrator, pass -2 in groupID. In both cases, when adding a new
group, 4th Dimension tries to reuse the first available disabled group account; it creates
a new account only if no disabled account is available. After the call, if the group is
successfully added, its unique ID number is returned in groupID.

If you do not pass -1, -2 or a valid group ID number, Set group properties does nothing.

4th Dimension Language Reference 1265

Before the call, you pass the new name and owner of the group in the parameters name
and owner. If you do not want to change all the properties of the group (besides the
members, see below), first call GET GROUP PROPERTIES and pass the returned values for
the properties you want to leave unchanged.

If you do not pass the optional members parameter, the current member list of the group
is left unchanged. If you do not pass members while adding a group, the group will have
no members.

Note: The group owner is not automatically set as a member of the group that he or she
owns. It is up to you to include the group owner in the group, using the members
parameter.

If you pass the optional members parameter, you change the whole member list for the
group. Before the call, you must populate the array members with the unique ID numbers
of the users and groups the group will get as members. Member ID numbers can have the
following ranges:

Member ID number Member Description
1 Designer user
2 Administrator user
3 to 15000 User created by the Designer of the database

(user #3 is the first user created by the Designer,
user #4 the second, and so on).

-11 to -15000 User created by the Administrator of the database
(user #-11 is the first user created by the Designer,
user #-12 is the second, and so on).

15001 to 32767 Group created by the Designer or affiliated Group Owner
(group #15001 is the first group created by the Designer,
group #15002 the second, and so on).

-15001 to -32768 Group created by the Administrator or affiliated Group Owner
(group #-15001 is the first group created by the Administrator,
group #-15002 the second, and so on).

To remove all the members from a group, pass an empty members array.

See Also
GET GROUP LIST, GET GROUP PROPERTIES, GET USER LIST.

Error Handling
If you do not have the proper access privileges for calling Set group properties or if the
Password system is already accessed by another process, an access privilege error is
generated. You can catch this error with an error-handling method installed using
ON ERR CALL.

1266 4th Dimension Language Reference

53 Variables

4th Dimension Language Reference 1267

1268 4th Dimension Language Reference

SAVE VARIABLES Variables

version 3
__

SAVE VARIABLES (document; variable{; variable2; ...; variableN})

Parameter Type Description
document String ® Document in which to save the variables
variable Variable ® Variables to save

Description
The command SAVE VARIABLES saves one or several variables in the document whose
name you pass in document.

The variables do not need to be of the same type, but have to be of type String, Text,
Real, Integer, Long Integer, Date, Time, Boolean, or Picture.

If you supply an empty string for document, the standard Save File dialog box appears; the
user can then choose the document to create. In this case, the 4D system variable
Document is set to the name of the document if one is created.

If the variables are properly saved, the OK variable is set to 1. If not, OK is set to 0.

Note: When you write variables to documents with SAVE VARIABLES, 4th Dimension uses
an internal data format. You can retrieve the variables only with the LOAD VARIABLES
command. Do not use RECEIVE VARIABLE or RECEIVE PACKET to read a document created
by SAVE VARIABLES.

WARNING: This command does not support array variables. Use the new BLOB commands
instead.

Example
The following example saves three variables to a document named UserPrefs:

Þ SAVE VARIABLES ("User Prefs";vsName;vlCode;vgIconPicture)

System Variables or Sets
If the variables are saved properly, the OK system variable is set to 1; otherwise it is set to
0.

See Also
BLOB TO DOCUMENT, BLOB TO VARIABLE, DOCUMENT TO BLOB, LOAD VARIABLES,
VARIABLE TO BLOB.

4th Dimension Language Reference 1269

LOAD VARIABLES Variables

version 3
__

LOAD VARIABLES (document; variable{; variable2; ...; variableN})

Parameter Type Description
document String ® Document containing 4D variables
variable Variable ® Variables to receive the values

Description
The command LOAD VARIABLES loads one or several variables from the document
specified by document. The document must have been created using the command SAVE
VARIABLES.

The variables variable, variable2...variableN are created; if they already exist, they are
overwritten.

If you supply an empty string for document, the standard Open File dialog box appears, so
the user can choose the document to open. If a document is chosen, the 4D system
variable Document is set to the name of the document.

In compiled databases, each variable must be of the same type as those loaded from disk.

WARNING: This command does not support array variables. Use the new BLOB commands
instead.

Example
The following example loads three variables from a document named UserPrefs:

Þ LOAD VARIABLES ("User Prefs";vsName;vlCode;vgIconPicture)

System Variables or Sets
If the variables are loaded properly, the OK system variable is set to 1; otherwise it is set to
0.

See Also
BLOB TO DOCUMENT, BLOB TO VARIABLE, DOCUMENT TO BLOB, RECEIVE VARIABLE,
VARIABLE TO BLOB.

1270 4th Dimension Language Reference

CLEAR VARIABLE Variables

version 3
__

CLEAR VARIABLE (variable)

Parameter Type Description
variable Variable ® Variable to clear

Description
This command acts differently in interpreted mode and in compiled mode.

In interpreted mode
CLEAR VARIABLE erases variable from memory. Consequently, the variable becomes
undefined; trying to read its value will generate a syntax error. Note that if you again
assign a value to the variable, 4D recreates the variable on the fly. After a variable is
cleared, Undefined returns True when applied to that variable.

In compiled mode
CLEAR VARIABLE only resets variable to its default type value (i.e., empty string for String
and Text variables, 0 for numeric variables, no elements for arrays, etc.). The variable still
exists—variables can never be undefined in compiled code.

The variable you pass in variable must be a process or an interprocess variable.

Note: You do not need to clear process variables when a process ends; 4D clears them
automatically.

Local variables, which are variables preceded by a dollar sign ($), cannot be cleared with
CLEAR VARIABLE. They are cleared automatically when the method in which are located
completes execution.

4th Dimension Language Reference 1271

Example
In a form, you are using the drop-down list asMyDropDown whose sole purpose is user
interface. In other words, you use that array during data entry, but once you are done
with the form, you will no longer use that array. Consequently, during the On Unload
event, you just get rid of the array:

` asMyDropDown drop-drop list object method
Case of

: (Form event=On Load)
` Initialize the array one way or another

ARRAY STRING(63;asMyDropDown;...)
` ...

:(Form event=On Unload)
` No longer need the array

Þ CLEAR VARIABLE (asMyDropDown)
` ...

End case

See Also
Undefined.

1272 4th Dimension Language Reference

Undefined Variables

version 3
__

Undefined (variable) ® Boolean

Parameter Type Description
variable Variable ® Variable to test

Function result Boolean ¬ True = Variable is currently undefined
False = Variable is currently defined

Description
Undefined returns True if variable has not been defined, and False if variable has been
defined. A variable is defined if a value is assigned to it. A variable is undefined if it does
not have a value assigned to it, or if it has been cleared with CLEAR VARIABLE.

If the database has been compiled using 4D Compiler, the Undefined function returns
False for all variables.

Examples
1. Up to version 6, a good way to test if you were running in interpreted mode or in
compiled mode was to write:

anyVar:="Hello"
CLEAR VARIABLE(anyVar)

Þ If (Undefined(anyVar))
` You are in interpreted mode

Else
` You are in compiled mode

End if

Starting with version 6, it is more convenient to use the built-in command Compiled
application.

4th Dimension Language Reference 1273

2. The following code manages the creation of processes when a menu item for a
particular module of your application is chosen. If the process already exists, you bring it
to the front; if it does not exist, you start it. To do so, for each module of the application,
you maintain an interprocess variable àPID_... that you initialize in the On Startup
database method.

When developing the database, you add new modules. Instead modifying the On Startup
database method (to add the initialization of the corresponding àPID_...) and then
reopening the database to reinitialize everything each time you add a module, you use the
Undefined command to manage the addition of the new module, on the fly:

` M_ADD_CUSTOMERS global procedure

` This line takes care of intermediate development stages
Þ If (Undefined(àPID_ADD_CUSTOMERS))

C_LONGINT(àPID_ADD_CUSTOMERS)
àPID_ADD_CUSTOMERS:=0

End if

If (àPID_ADD_CUSTOMERS=0)
àPID_ADD_CUSTOMERS:=New process("P_ADD_CUSTOMERS";64*1024;

"P_ADD_CUSTOMERS")
Else

SHOW PROCESS(àPID_ADD_CUSTOMERS)
BRING TO FRONT(àPID_ADD_CUSTOMERS)

End if
` Note: P_ADD_CUSTOMERS, the process master method, sets
` àPID_ADD_CUSTOMERS to zero when it ends.

See Also
CLEAR VARIABLE.

1274 4th Dimension Language Reference

54 Web Server

4th Dimension Language Reference 1275

1276 4th Dimension Language Reference

Web Services, Overview Web Server

version 6.0
__

Both 4th Dimension and 4D Server include a Web Server engine that enables you to
publish 4D databases on the Web. The unique and unmatched features of the 4D Web
Server engine are:

• Direct Web services
Your database is directly published on the Web. You do not need to develop a database
system, a Web site, nor a CGI interface between them. Your database is your Web site.

• On-line, transparent HTML translation
On-line, 4D transparently and dynamically translates your forms and design components
into HTML pages. These new HTML pages become instantaneously available to Web
browsers, even though they are already connected to the database. Today, most Web
database systems are either CGI-based systems or static HTML-based systems.

A CGI system requires you to develop a database, a Web site, and CGI. A static HTML-
based system requires you to run a utility program that re-translates your modifications
into HTML, each time you modify a design component in your database. In both cases,
the Web components are created off-line and require manual intervention from the
database and/or Web developer. However, with 4th Dimension, you can modify your
design components as much as you want, whenever you want. As soon as you save the
changes in the Design environment, your modifications are transparently made available
to the Web browsers. So, while developing and testing your application, you can
immediately test the result in an already connected Web browser.

• Dynamic access to records and data
4D handles Web browsers as standard clients of the 4D database engine. For example, if
you modify some records on the local 4th Dimension database or from a client 4D Server
workstation, those records become instantaneously available to the Web browsers. You do
not need to re-process the records for HTML publishing, as in other systems.

• Session maintenance and database context
Web browsers, as the name indicates, enable you to browse Web pages in a random
way—you can jump from one page to another one, from one Web site to another one,
and so on. In the context of using Web browsers for Client/Server database purposes, you
need to make the browser comply with the logic of the database transactions. For
example, if you are adding a record, you need to enforce the rule that the record data
entry must be validated or canceled. The user must not be able to exit the record via any
browser navigation control, and leave it in an uncertain state. The 4D Web Server engine
includes built-in session and database context maintenance. Throughout the URLs of the
Web pages, it maintains unique context and subcontext ID numbers, which guarantee
complete synchronization between the current Web page displayed in the browser and
the context of the database connection on the 4D side.

4th Dimension Language Reference 1277

• Transparent multi-user maintenance
When they become 4D clients, Web browsers are treated as complete database clients. For
example, if you start modifying a record in a Web browser, 4D automatically locks the
record, preventing any other concurrent client from modifying it. After you validate or
cancel the data entry, 4D automatically unlocks the record. In addition, 4D allows you to
perform data entry under transaction, as you are entitled to do using 4th Dimension or
4D Client.

• Web Process maintenance
4D includes several processes for handling its Web Client/Server architecture. The built-in
main Web Server process handles Web connection attempts. After a Web browser has
been granted access to the database, the Web connection starts running into a separate
process automatically created for that purpose. As a result of the fully integrated multi-
tasking architecture of 4D, regular or Web 4D clients can perform simultaneous database
requests (such as queries) that will be processed in parallel by the database engine. Clients
are also guaranteed that a request posted by a particular Web client will not intervene
with the contexts of the other processes.

• Optimized Web Server archictecture
The 4D Web Server engine has the same capabilities as the 4D database engine. For
example, if you load a series of record values to arrays, the operation is performed locally
on the Web server machine. The result of the request is then sent, as a whole, to the
requesting Web client.
In addition, because a Web connection is a plain and full featured 4D process on the Web
server side, you can run any of your favorite 4D algorithms. They are executed locally on
the Web server side, and only the result, if any, goes to the Web browser. For example,
you can perform a query that involves relations, sets, and the computation of statistical
results, with only the result returning the Web browser. You can build a complex Web
database system without having to become a Web expert, because you can compile your
4D applications.

• HTML and JavaScript encapsulation
Although 4D performs almost everything you need to publish databases on the Web, you
can encapsulate HTML and JavaScript code to customize your 4D development. For
example, you may want to enhance the Home page of your Database/Web site with an
eye-catching HTML page.
You can build an entire custom HTML page and put it on the Web using the SEND HTML
FILE command. You can also encapsulate HTML into a 4D form whose appearance on the
Web browser is a mixed concatenation of the 4D and HTML objects present in the form.
Within the encapsulated HTML, you then can implement JavaScript code that performs
actions and data control on the client Web browser side, without requiring a request to be
sent back to the server.

1278 4th Dimension Language Reference

• Binding between HTML and 4D objects
If you use encapsulated HTML code within your 4D development, you need, on the 4D
side, to be able to retrieve the values and data that have been entered into the HTML
objects. Rather than making you write complicated HTML parsing routines, 4D provides a
simple, built-in system for binding HTML objects to your 4D variables—your objects just
need to have the same name. As a result, analyzing and responding to HTML requests
becomes quite simple to implement. You just need to write 4D code that deals with the
4D variables automatically filled out by the data that came back from the Web browser.

Where to go from here?
• To setup your machine and databases for Web publishing, read Web Services,
Configuration.
• To learn how to publish a database on the Web, read Web Services, Your First Time (Part I)
and Web Services, Your First Time (Part II).
• To learn more about HTML encapsulation, read Web Services, HTML and JavaScript
Encapsulation.
• To learn more about Web and Process interaction, read Web Services, Web Connection
Processes.

See Also
SEND HTML FILE, SET HTML ROOT, SET HTML ROOT, SET WEB DISPLAY LIMITS, SET WEB
TIMEOUT, STOP WEB SERVER.

4th Dimension Language Reference 1279

Web Services, Configuration Web Server

version 6.0
__

4th Dimension and 4D Server 6.0 include Web Services that enable you to serve your
database on the Web, transparently and dynamically.

4th Dimension and the Web
If you publish a 4D database on the Web using 4th Dimension, you can simultaneously:
• Use the database locally with 4D
• Connect to the database using Web browsers

This is summarized in the following diagram:

1280 4th Dimension Language Reference

4D Server and the Web
If you publish a 4D database on the Web using 4D Server, you can simultaneously
connect to and operate the 4D database, using:
• 4D Client workstations
• 4D Open-based applications
• Web browsers

This is summarized in the following diagram:

4th Dimension Language Reference 1281

Serving a 4D database on the Web
To serve a 4D database on the Web using 4th Dimension or 4D Server, you must have the
approriate connection licenses and network components:
• The required Web connection licenses must be installed in your application. For more
information, please refer to your 4D Installation Guide.
• Web connections are made over the network using the TCP/IP protocol. Consequently:
- You must have TCP/IP installed on your machine and correctly configured. Refer to
your computer or Operating System manuals for more information.
- You must have the 4D TCP/IP Network component installed: On Macintosh, the
network component must be installed directly into 4th Dimension, 4D Server or 4D
custom merged application. On Windows, the network component must be installed into
the ACI\NETWORK directory of your active WINDOWS directory.
Note: In both cases, refer to the Network Components manual for more information.
• After the Web connection license and TCP/IP have been installed or checked, you need
to start the Web Services from within 4D. This last point is discussed in the next section.

If you try to start the 4D Web Services while TCP/IP is not running or while the 4D
TCP/IP network component is not present, 4th Dimension displays the following alert:

If this message appears, perform the installations as described, or troubleshoot your
TCP/IP configuration.

Starting the 4D Web Services

The 4D Web Services can be started in three different ways:
• Using the Web Server menu from the main menu bar of 4D Server or the 4th
Dimension User environment. The Web Server menu allows you to start and stop the
Web Services at your convenience:

1282 4th Dimension Language Reference

• Automatically publishing the database each time it is opened. To automatically publish a
database on the Web, choose the File menu’s Database Properties... option from the
main menu bar of 4D Server or the 4th Dimension Design environment. The Database
Properties window appears:

In the Web Server Startup Options section, select the Publish Database at Startup check
box, then click OK. Once this is done, the database will be automatically published on the
Web each time you open it with 4th Dimension or 4D Server.

• Programmatically, by calling the command START WEB SERVER.

Tip: You do not need to quit 4D and reopen your database to start or stop publishing a
database on the Web. You can interrupt and restart the Web services as many times as
you want, using the Web Server menu or calling the commands START WEB SERVER and
STOP WEB SERVER.

Connecting to a 4D database published on the Web
After you have started publishing a 4D database on the Web, you can connect to it using
a Web browser. To do so:
• If your Web site has a registered name (i.e., “Flowers International”), indicate that name
in the Open, Address, or Location area of your browser. Then type Enter to connect.
• If your Web Site does not have a registered name, indicate the IP address of your
machine (i.e., 123.4.567.89) in the Open, Address, or Location area of your browser.
Then type Enter.

4th Dimension Language Reference 1283

At this point, you can connect if everything is fine. If you cannot connect, you may
encounter one of the following situations:

1. You get a message such as “...the server may not be accepting connections or may be
busy...”.
In this case, check the following:
• Verify that the name or the IP address you entered is correct.
• Verify that 4th Dimension or 4D Server is up running and has started its Web Services.
• Check if the database is configured for being served on a TCP Port other than the
default Web TCP Port (see situation 3).
• Check whether TCP/IP is correctly configured on both the server and browser
machines. Both machines must be on the same net and subnet, or your routers must be
correctly configured.
• Check your hardware connections.
• If you are not locally testing your own site, but rather attempting to connect to a Web
database served on Internet or Intranet by someone else, ultimately, the message might
be true: the server may be off or busy. So, retry later until you can log on, or contact the
Web provider.

2. You connect, but you get a Web page with the message “This database has not been
setup for the Web yet”. This means that the 4D Web Services are up running and you
correctly connected to the database. However, the database needs to include some
minimal components in order to be operable over the Web. For more information, see
the section Web Services, Your First Time (Part I). Note: This could also mean that the
database is currently out of available Web Licenses.

3. You connect, but you do NOT obtain the Web page you were expecting! This can occur
when you have several Web servers running simultaneously on the same machine.
Examples:
• You are running only one 4D Web database on a Windows NT 4.0 system that is already
running its own Web services.
• You are running several 4D Web databases on the same machine.
In this kind of situation, you need to change the TCP port number on which your
4D Web database is published. To do so, read the next section.

1284 4th Dimension Language Reference

Setting the TCP port number to a specific value

By default, 4D publishes a Web database on the regular Web TCP Port, which is port 80. If
that port is already used by another Web service, you need to change the TCP Port used
by 4D for this database. To do so, choose the File menu's Database Properties... menu
item from the main menu bar of 4D Server or the 4th Dimension Design environment
(see the screen shot above). Go to the TCP Port enterable area and indicate an appropriate
value (a TCP port not already used by another TCP/IP service running on the same
machine).

Note: If you specify 0, 4D will use the default TCP port number 80.

From a Web browser, you need to include that non-default TCP port number into the
address you enter for connecting to the Web database. The address must have a suffix
consisting of a colon followed by the port number. For example, if you are using the TCP
port number 700, you will specify “123.4.567.89:700”.

WARNING: If you use TCP port numbers other than the default 80, be careful not to use
port numbers that are defaults for other services that you might want to use
simultaneously. For example, if you also plan to use the FTP protocol on your Web server
machine, do not use the TCP port 20 and 21, which are the default ports for that protocol
(unless you know what you are doing). For more information about default TCP port
numbers and protocols, buy any book about the TCP/IP protocol and look for a table of
RFC 1700 standard assigned numbers. Ports numbers below 256 are reserved for well
known services and ports numbers from 256 to 1024 are reserved for specific services
originated on the UNIX platforms. If you use a port number in the few thousands, you
will be OK.

See Also
SEND HTML FILE, SET HTML ROOT, SET WEB DISPLAY LIMITS, SET WEB TIMEOUT, STOP
WEB SERVER.

4th Dimension Language Reference 1285

Web Services, Your First Time (Part I) Web Server

version 6.0
__

Example
Among the examples provided with 4th Dimension, you will find a database named
WebDemo1. When you open this database on Windows or Macintosh, it should
automatically publish itself on your network as a Web Server. If error messages appear
while opening the database, please refer to the section Web Services, Configuration for
troubleshooting.

1. Connect to the Web server database
Connect to the Web Server you just started by opening the database on a Web browser
running on a second machine. You should get a Web page similar to the one shown here,
which was obtained with Netscape running on Macintosh:

1286 4th Dimension Language Reference

2. Display and browse the records
Click on the linked text List Existing Records. This presents the Web equivalent of a 4D
Display Selection screen:

At this point, you can browse the records at your convenience. After you click the Done
button (the one with the red X), you go back to the Web site Home page.

3. Add records
In the Web site Home page, click on the Linked text Add Some Records to display the
Web equivalent of a 4D Add Record screen:

4th Dimension Language Reference 1287

You can add as many as records as you wish. When you are done, click the Cancel button
(the one with the red cross) to return to the Web site Home page.

4. List or add records in the Main menu
In the Home page, click the Go to Main Menu Bar button. This exits the Home page and
presents the Web equivalent of the 4D Custom menu bar:

At this point, clicking on each menu item allows you to List or Add records: the same 4D
methods that were used from the Home page are associated to the menu items.

5. Terminate the connection
When you are done, just quit your browser. 4D will terminate the Web connection
process once the timeout delay has elapsed.

Initiating a Web connection
Each time a Web browser connects to a 4D database published as a Web Server, 4D
performs the following actions:
• It executes the On Web Connection database method, if it exists.
• If there is no such database method or if the method has been achieved, 4D then
displays the menu bar #1, if it exists.
• If there is no menu bar, 4th Dimension displays a default Web page that states: "This
database has not been setup for the Web yet".

1288 4th Dimension Language Reference

The following diagram summarizes these actions:

The On Web connection database method can call any of the project methods or forms
defined in the database as well as HTML pages. The database method can actually handle
the whole session.

A Web connection to 4D or 4D Server is not the same as a Client/Server connection. The
HTTP protocol, which supports HTML and the Web, is not a “session-based” protocol; it is
rather a “request-based” protocol. In Client/Server, you connect, work in a session, and
then disconnect from the server. With HTTP, each time you perform an action that
requires the attention of or an action from the Web Server, a request is sent to the server.
In short, an HTTP request can be understood as the sequence “Connect+Request+Wait for
reply+Disconnect.”

4th Dimension Language Reference 1289

In order to run a Client/Server session above HTTP, 4D maintains, through a transparent
encoding of the URLs, a context that uniquely identifies your Web connection and at the
same time associates the connection to the 4D process handling the connection.

However, 4D has no way to provide an equivalent of the Client/Server disconnect action
that terminates a session. That is the reason why the termination of a Client/Server
session is handled through a timeout scheme. The 4D process handling the Web
connection terminates after no activity has been detected for a delay time equal to the
database Web timeout settings.

Database and Web Server in one
You can completely manage a 4D Web Server session using 4D Menus Bars, Forms and
Methods. In the preceding example, listing and adding records was performed by simple
4D methods and forms. If we had not included an HTML home page, a Web browser
would have obtained, upon connection, the menu bar #1 shown.

If we eliminate the HTML home page, building a Web Server supporting database
Client/Server transactions consists of building a 4D database on Windows or Macintosh,
for one or multiple users. The following steps explain the process of creating the example
database in this way.

1. Here is the Structure of the example database:

1290 4th Dimension Language Reference

2. Input and Output forms are added to enable you to work with records.

3. Menu bar #1 is added to enable you to work with Custom menus and to support Web
connections.

4. Two project methods are written.

That is it! In less than five minutes, you have created a 4D database that is both a locally
operable database and a Web Server that you can publish on your Intranet network or on
the Internet.

Go to Web Services, Your First Time (Part II).

See Also
SEND HTML FILE, SET WEB DISPLAY LIMITS, SET WEB DISPLAY LIMITS, SET WEB TIMEOUT,
START WEB SERVER, STOP WEB SERVER.

4th Dimension Language Reference 1291

Web Services, Your First Time (Part II) Web Server

version 6.0
__

Adding an HTML touch to a database
If you want Web users to interact with more than just the menu bar #1 of your database,
you can add an On Web connection database method that will display either a 4D form or
an HTML page. You can reuse HTML pages from existing sites created with any HTML
tool.

Your 4D-based Web Site can be a completely 4D-based system or a combination of 4D
forms and HTML pages. The interesting point in using HTML pages from within your 4D
database is that you benefit from both the 4D and HTML development environments.
Remember, you do not have to use HTML pages if you do not want to!

Example
In this example, we add an existing HTML page to the database. The following graphic
shows directory of the database:

We will use the HTML document HomePage.HTM as the home page for the database. The
document 4DV6Logo.GIF is a picture used within the HTML document. The HTML
document is added to the 4D database by the On Web Connection database method shown
here:

1292 4th Dimension Language Reference

The command SET HTML ROOT tells 4th Dimension where to look (by default) for the
HTML documents. The command SEND HTML FILE sends the HTML document as current
Web page to the connected Web Browser.

The following is the HomePage.HTM document viewed with Microsoft Front Page:

The following is the same HTML document viewed with Claris Home Page:

Linking URLs
The two linked text items, “Add Some Records” and “List Existing Records,” trigger the
execution of the 4D project methods M_ADD_RECORDS and M_LIST_RECORDS through
their URLs. The convention is quite simple: any HTML object can link to a project
method of your database with the URL "/4DMETHOD/Name_of_your_Method".

4th Dimension Language Reference 1293

Here is the URL for the text “Add Some Records,” in Claris Home Page:

Here is the same URL, in Microsoft Front Page:

After these links have been defined, when the Web browser sends back the URL, 4D
executes the project method specified after the /4DMETHOD/ keyword. Then, after the
project method has been completed, you back to the HTML page that triggered its
execution. Note that the project method can itself display 4D forms, other HTML pages,
and so on.

Buttons
The HTML document in this example includes a button used to submit a record. There are
three types of HTML buttons: normal, submit, and reset.
• Normal - Normal buttons can be attributed an URL that refers to a 4D method using the
/4DMETHOD/ keyword. Normal buttons are used for navigation purposes.
• Submit - Submit buttons submit the form with the values entered by the user (if any) to
the Web server. They are useful for handling data entry that you prefer to perform via an
HTML page rather than a plain 4D form
• Reset - Reset buttons are not very useful within a 4D development: they clear the form
of the values entered by the user (if any) and does not send any request to the server.

1294 4th Dimension Language Reference

While integrating HTML pages into 4D, you will typically use normal or submit type
buttons.

Specifying the 4D method to be executed
To submit the HTML form on the 4D side, you need to specify the POST action 4D
method that will be executed by 4D after the form is submitted.

Specifying the POST action 4D method, using Microsoft Front Page:

1. Examine the properties of the submit button. The following dialog box appears:

2. Click the Form... button. The Form Properties dialog box appears:

3. Click on the Settings button. The following dialog box appears:

4th Dimension Language Reference 1295

4. As for a linked URL, specify "/4DMETHOD/Name_of_your_Method" as the Action.
Here, we enter GO_MAIN_MENU_BAR as 4D method to be executed when the Go Main
Menu Bar submit button is clicked.

5. Select POST from the Method drop-down list.

Specifying the POST action 4D method, using Claris Home Page:

1. Select Document Options... from the Edit menu. The following dialog box appears:

2. Select POST from the pop-up menu.

3. Enter "/4DMETHOD/Name_of_your_Method" as Form Action.

The project method
The GO_MAIN_MENU_BAR 4D project method is shown here:

In this example, this method has only one purpose: getting out of the current HTML
page displayed on the Web browser. To do so, it simply calls SEND HTML FILE, passing an
empty string. This tells 4D to exit the current HTML page and go back to the line of code
of the 4D project method that issued the SEND HTML FILE, which started the “HTML
mode.”

1296 4th Dimension Language Reference

In this example, that means that we go back to executing the On Web connection
database method:

The SEND HTML FILE call was the last line of that method, therefore the On Web
connection database method consequently ends, and 4D switches to the menu bar #1 of
the database.

That is it! In five minutes, by designing the Web page and adding the
GO_MAIN_MENU_BAR 4D project method, you have a database and a Web server that
combines Client/Server capabilities with HTML development.

Where to go from here?
• For a complete description about integrating HTML forms and code into 4D see the
section, Web Services, HTML and Javascript Encapsulation.
• If you have trouble while setting up your first 4D Web Server, see the section Web
Services, Configuration.

See Also
SEND HTML FILE, SET HTML ROOT, SET WEB TIMEOUT, START WEB SERVER, STOP WEB
SERVER.

4th Dimension Language Reference 1297

Web Services, Web Connection Processes Web Server

version 6.0
__

Web Server Process
The Web Server process runs and executes when the database is being published as a Web
site.
In the Design Process List window shown here, the Web Server process is the third process
that is running and executing:

This is a 4D kernel process; you cannot abort this process using the Abort menu item of
the Design Process menu. Also, you cannot attempt interprocess communication using
commands such as CALL PROCESS. Note that the Web Server process does not have any
user interface components (windows, menus, and so on).

You can start the Web Server process in the following ways:
• Choose Start Web Server from the User environment Web Server menu.
• Call the 4D command START WEB SERVER.
• Open a database whose Publish Database at Startup Database Properties is checked.

You can stop running the Web Server process in the following ways:
• Choose Stop Web Server from the User environment Web Server menu.
• Call the 4D command STOP WEB SERVER.
• Quit the database being currently published.

The purpose of the Web Server process is only to handle Web connection attempts.
Starting the Web Server process does not mean that you open an actual Web connection,
it just means that you allow Web users to initiate Web connections. Stopping the Web
Server process does not mean that you close currently running Web connection processes
(if any), it just means that you no longer allow Web users to initiate new Web
connections.

If there are open Web connection processes when you stop the Web Server process, each
of these processes continues executing until the Web user stops querying the database for
a delay time greater or equal to the Web Server Connections Timeout (set in the Database
Properties window or set programmatically using the SET WEB TIMEOUT command).

1298 4th Dimension Language Reference

Web Connection Processes
Each time a Web browser attempts to connect to the database, the request is handled by
the Web Server process, which performs the following steps:

• First, it checks to verify that there is an available Web License for the new connection.
If all licenses are already being used, it sends the following message to the Web browser:
“This database has not been setup for the Web yet.”

• If there is a license available, the Web Server process creates a temporary local 4D process
to initiate the connection with the Web browser. This temporary process executes very
quickly and then aborts.

• If the Web connection is initiated successfully, then a Web Connection process is
started. This is the process that will handle the entire Web session for that connection.
The Design Process List window shown here displays the Web connection process “Web
Connection# 1066993139,” started after a Web browser connection has been initiated:

Also note the aborted fifth process, which was started and stopped by the Web Server
process; this process handled the initialization of the Web connection.

Web Connection Context ID
The number present in the name of the Web connection process is called the context ID,
which is randomly generated and uniquely identifies each Web connection. The context
ID is maintained on both the 4D and the browser sides during the entire Web
connection. In this example, the context ID is 1066993139. In the Web browser window
shown here, you can see this number in the URL displayed in the Location area of the
browser:

4th Dimension Language Reference 1299

The URLs are automatically maintained by 4D during the whole Web session. Each time
an HTTP request is received by the 4D TCP/IP Network component, 4D extracts the
context ID from the URL, and thereby can redirect the request to the right Web
Connection process.

Context IDs:
• Enable 4D to maintain both a Web and Database session over each Web connection.
• Transparently handle multiple concurrent Web connections.
• Prevent future undesirable connections when using bookmarks, because a different
context ID is generated at each connection.

Synchronizing Web and Database sessions: Web Connection Subcontext ID
In the window shown above, note that the context ID is followed by a dot and a second
number, called the subcontext ID. 4D automatically manages and increments this
number each time a new 4D-based HTML page is sent to the browser. The subcontext ID is
essential to the maintenance of the database session.

Usually, a Web browser includes navigation controls, such as the Back and Forward
buttons, History windows, and so on. These controls are useful when you are browsing
documents, news, bulletin boards, etc. They are less appealing when you perform a
database transaction.

For example, if a Web user is adding a record to a table, you need to know whether or not
the data entry is validated, that is, whether or not the Web user clicked the Accept or
Cancel buttons of your 4D form. If, at this point, the Web user navigates to other pages,
the data entry is left in an uncertain state. To prevent this, 4D uses the subcontext ID to
synchronize the Web session on the browser side with the database session on the 4D
side.

Each time a form is submitted or an HTTP request is sent to 4D by the browser, if a
desynchronization of the Web and database sessions is detected, 4D sends the message
“Using browser navigation controls, you left a form requiring data validation. 4th Dimension
will now return to that form so you can accept or cancel it.” 4D then goes back to the Web
data entry page using the subcontext ID.

This synchronization is also essential for the Web Connection process. You need to
correctly get out of, for example, an ADD RECORD ([...]) to pursue the execution of your
4D code.

The synchronization is selective. If the current Web page displayed on the browser side is
a 4D form (ADD RECORD, DISPLAY SELECTION, DIALOG, etc.), the synchronization will
eventuallly occur.
If the current Web page is an HTML page accessed by link from another Web page (sent
using the command SEND HTML FILE), then you can navigate freely through the pages.

1300 4th Dimension Language Reference

Given the following piece of 4D code:

ADD RECORD ([Customers])
SEND HTML FILE ("anyPage.HTM")
DISPLAY SELECTION ([Products])

The following figure details what happens both on 4D and the Web browser during
execution.
• Lines in red denote 4D form translations and submissions.
• Lines in blue denote switching back and forth between 4D-based and non 4D-based
HTML pages.
• Areas in green denote non 4D-based HTML pages.

4th Dimension Language Reference 1301

Description of the steps

(1) An ADD RECORD is issued. 4D translates the current input form of the table into an
HTML page and sends it to the Web browser. If the form is a multi-page form, the
standard 4D page navigation buttons allow you to navigate through the pages of the
form. This 4D-based navigation is implemented and performed transparently by 4D (via
Web form submission).

(2) During data entry (therefore within the ADD RECORD call), a button is clicked and its
object method issues a SEND HTML FILE call.

(3) Within the SEND HTML FILE call, if the HTML page includes links, it is possible to
navigate through several pages. Eventually, when a SEND HTML FILE("") is issued, the
HTML mode is exited.

(4) The object method of the button that was clicked and the data entry initiated by ADD
RECORD are executed. Note that steps (2) and (3) can be repeated several times within the
data entry.

(5) Finally, the data entry is accepted or canceled, and the Web Connection process is
executed.

(6) The next call is a SEND HTML FILE.

(7) This step is analogous to step 3. If the HTML page includes links, it is possible to
navigate through several pages. Eventually, when a SEND HTML FILE("") is issued, the
HTML mode is exited.

(8) The Web Connection process is executed.

(9) A DISPLAY SELECTION is issued. 4D translates the current output form of the table into
an HTML page and sends to the Web browser. During the DISPLAY SELECTION, 4D
transparently navigates between the selection page and the display of individual records.
4D also uses MODIFY SELECTION to manage data entry and record locking, via Web form
submissions.

(10) During navigation through the selection, a button in the footer area of the form is
clicked and its object method issues a SEND HTML FILE call.

(11) This step is analogous to steps 7 and 3. If the HTML page includes links, it is possible
to navigate through several pages. Eventually, when a SEND HTML FILE("") is issued, the
HTML mode is exited.

(12) The object method of the button that was clicked and the selection display initiated
by DISPLAY SELECTION are executed. Note that steps (10) and (11) can be repeated several
times during navigation of the selection.

(13) Finally, the selection display is exited and the Web Connection process is executed.

And so on...

1302 4th Dimension Language Reference

Free Web navigation (clicking on the Back or Forward buttons for instance) is possible
within any SEND HTML FILE (green areas in the figure above). On the other hand, any
4D-based HTML page (data entry, selection display... including standard dialog boxes such
those displayed by CONFIRM or Request) is exited through the use of one of the browser
navigation controls, 4D will eventually synchronize the Web sessions and the Database
sessions by going back to the Web page whose subcontext ID corresponds to that of the
issued 4D command currently being executed on the Web Connection process side.

Web Connection process and Web session
From the user viewpoint, the user's actions on the Web browser side pilot a Web session.
From the programmatic viewpoint, the Web Connection process pilots the Web session,
not the reverse. The Web browser displays the pages sent by the Web Connection process,
which either:
• Executes 4D code, or
• Waits for the submission from the browser of the current Web page.

From a Design viewpoint, the Web Connection process should be seen as a 4D process
whose domain of execution is 4th Dimension or 4D Server, but whose user interface is
remotely echoed on the connected Web browser.

With this in mind, always take into account this duality of the Web Connection process
when designing Web database applications. For example:

• During data entry of any kind, the main menu bar is that of the browser, not that of
4D. Within a form, do not rely on the 4D menu bar; it is on the Web server machine, not
on the Web browser machine,

• When you design forms to be used on the Web browser, remember that the 4D form set
of features is limited to that of HTML (but sometimes with some 4D additions). Do not
rely on the whole 4D forms feature set (i.e., object types and form events). For detailed
information, see the section Web Services, HTML and Javascript Encapsulation.

• In terms of interprocess communication, CALL PROCESS, when applied to a Web
Connection process, has no effects because its current active form is displayed on the
Web browser. On the other hand, a Web Connection process can issue a CALL PROCESS
toward another 4D process.
In addition, interprocess communication can be indifferently performed in both
directions using the GET PROCESS VARIABLE and SET PROCESS VARIABLE commands, which
do not require a process to have a user interface.

4th Dimension Language Reference 1303

Web Connection Timeout
As explained previously, a Web Connection process is either executing 4D code or waiting
for the submission of the Web page currently displayed on the browser side. In the latter
case, a Web Connection process will wait for a delay greater than or equal to the Web
Server Connections Timeout, set in the Database Properties window (shown below) or set
programmatically using the SET WEB TIMEOUT command.

The scope of the Web Server Connections Timeout setting is the database session. All Web
Connection processes are subjected to that value; they are immediately affected if that
setting is changed. The default value is 5 minutes. You can increase or decrease this
timeout at your convenience. For example, you can increase the timeout if your
application allows Web users to surf to other Web sites via HTML links in the pages served
by your database. By increasing the timeout, you enable users to navigate longer within
the other Web sites without closing their connections to your databases.

WARNING: In Version 6.0, there is no way to programmatically stop a Web Connection
process. If you specify a long timeout, the process will wait for that delay, even though
the Web user may have stopped working with the Web Connection for quite some time.
If you specify No Timeout, the Web Connection processes will stop only when the
database is exited.

Tip: When developing and testing a Web database, you may reach the maximum number
of Web Connections allowed by the Web Licenses present in your 4th Dimension or 4D
Server. For example, this can happen while debugging the On Web Connection Database
Method, in which you reconnect several times. Turning off the Web Server will not abort
the Web Connection processes still waiting for the completion of the timeout delay.
However, unlike Web Server process, Web Connection processes can be aborted using the
Abort command from the Process menu (available in the Design environment when the
Process List window is the frontmost window).

1304 4th Dimension Language Reference

On Web Connection Database Method Web Server

version 6.0
__

The On Web Connection database method is automatically called by 4th Dimension or 4D
Server each time a Web browser initiates a connection to the database. This happens only
if the database is published as a Web server.

The On Web Connection database method receives two text parameters that are passed by
4D. You can declare these two parameters as follows:

` On Web Connection Database Method

C_TEXT($1;$2)

` Code for the method

URL extra data
The first parameter ($1) is the URL entered by the user in the location area of his or her
Web browser, from which the host address has been removed.

Let’s take the example of an Intranet connection. Suppose that the IP address of your 4D
Web Server machine is 123.4.567.89. The following table shows the values of $1
depending on the URL entered in the Web browser:

URL entered in Web browser Location area Value of parameter $1
123.4.567.89 /
http://123.4.567.89 /
123.4.567.89/Customers /Customers
http://123.4.567.89/Customers /Customers
http://123.4.567.89/Customers/Add /Customers/Add
123.4.567.89/Do_This/If_OK/Do_That /Do_This/If_OK/Do_That

Note that you are free to use this parameter at your convenience. 4D simply ignores the
value passed beyond the host part of the URL.

For example, you can establish a convention where the value "/Customers/Add" means “go
directly to add a new record in the [Customers] table.” By supplying the Web users of your
database with a list of possible values and/or default bookmarks, you can provide shortcuts
to the different parts of your application. This way, Web users can quickly access resources
of your Web site without going through the whole navigation path each time they make
a new connection to your database.

4th Dimension Language Reference 1305

WARNING: In order to prevent a user from reentering a database with a bookmark
created during a previous session, 4D intercepts any URL that corresponds to one of the
standard 4D URLs.

Header of the HTTP request
The second parameter ($2) is the header of the HTTP request sent by the Web browser.
Note that this header is passed to your On Web Connection database method as it is. Its
contents will vary depending on the nature of the Web browser which is attempting the
connection.

With Netscape 3.0 running on Windows NT, you may receive a header similar to this:

GET HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.01 (WinNT; I)
Host: 192.9.200.11
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

With Microsoft Internet Explorer running on Windows NT, you may receive a header
similar to this:

GET / HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0d; Windows NT)
Connection: Keep-Alive
If-Modified-Since: Sunday, 10-Dec-96 01:51:37 GMT

If your application deals with this information, it is up to you to parse the header.

Example: Implementing Client Local Home Pages
In the following example, the parameter $1, sent to the On Web Connection database
method, is used to implement Client Home Pages within an organization.

The database has two tables: [Customers] and [Tables]. The On Startup database method
shown here initializes interprocess arrays used later by the On Web Connection database
method.

` On Startup Database Method

` Table List
ARRAY STRING(31;<>asTables;Count tables)
For ($vlTable;1;Size of array(<>asTables))

<>asTables{$vlTable}:=Table name($vlTable)
End for

1306 4th Dimension Language Reference

` Standard Web Actions at Login
ARRAY STRING(31;<>asActions;2)
<>asActions{1}:="Add"
<>asActions{2}:="List"

The main job of the On Web Connection database method is to decipher the extra data
passed in the URL after the host part of the address and to act accordingly. The method is
as follows:

` On Web Connection Database Method

C_TEXT($1;$2)
C_TEXT($vtURL)

` Just in case, check that $1 is equal to "/" or "/..."
If ($1="/@")

` Copy the URL into a local variable minus the first "/"
$vtURL:=Substring($1;2)

` Parse the URL and populate a local array with the tokens of the URL
` For example, if the URL extra data is "aaa/bbb/ccc", the resulting array
` will be of the three elements "aaa", "bbb" and "ccc" in that order

$vlElem:=0
ARRAY TEXT($atTokens;$vlElem)
While ($vtURL # "")

$vlElem:=$vlElem+1
INSERT ELEMENT($atTokens;$vlElem)
$vlPos:=Position("/";$vtURL)
If ($vlPos>0)

$atTokens{$vlElem}:=Substring($vtURL;1;$vlPos-1)
$vtURL:=Substring($vtURL;$vlPos+1)

Else
$atTokens{$vlElem}:=$vtURL
$vtURL:=""

End if
 End while

` If extra data was passed after the HOST part of the URL
If ($vlElem>0)

` Using the interprocess array initialized in the On Startup DB method
` Check whether the 1st token is a name of a table

$vlTableNumber:=Find in array(<>asTables;$atTokens{1})
If ($vlTableNumber>0)

` If so, get pointer to this table
$vpTable:=Table($vlTableNumber)

` Set the Input and Output forms
INPUT FORM($vpTable->;"Input Web")
OUTPUT FORM($vpTable->;"Output Web")

4th Dimension Language Reference 1307

` Using an interprocess array initialized in the On Startup DB Method
` Check whether the 2nd token is a known standard action

$vlAction:=Find in array(<>asActions;$atTokens{2})
Case of

` Adding records
: ($vlAction=1)

Repeat
ADD RECORD($vpTable->;*)

Until (OK=0)
` Listing records

: ($vlAction=2)
READ ONLY($vpTable->)
ALL RECORDS($vpTable->)
DISPLAY SELECTION($vpTable->;*)
READ WRITE($vpTable->)

Else
` Here could additional standard table actions be implemented

End case
Else

` Here could other standard actions be implemented
End if

End if
End if

` Whatever happened above, pursue with the normal Log On process
WWW NORMAL LOG ON

At this point, people within the organization can connect to the database and enter a URL
according to the convention set by the methods listed. Users can also create bookmarks if
they do not want to re-enter the URL each time. In fact, the ultimate solution is to
provide each member of the organization with an HTML page that they will use locally to
access the database.

1308 4th Dimension Language Reference

This HTML page is shown here:

In other words, the HTML page ACME_IS.HTM is the Client Local Home Page for the 4D-
based information system of the organization. If a user clicks on the Add New Products
link, the Web browser will connect to the host having the URL
http://123.4.567.89/Products/Add. Provided that the IP address of the database computer
is 123.4.567.89, the On Web Connection database method receives the extra URL data
"/Products/Add" in $1, and therefore proceeds to add records in the [Products] table.

Finally, users can drag and drop links from that page onto the desktop to create Internet
Shortcut icons, such as the Add New Customers icon shown here. Simply double-clicking
these icons will bring them directly into any part of your 4D Web database.

4th Dimension Language Reference 1309

The source code of this HTML page is listed here:

See Also
Database Methods.

1310 4th Dimension Language Reference

Web Services, HTML Support Web Server

version 6.0
__

Before implementing HTML and JavaScript code into your 4D application, it is a good idea
to review what 4th Dimension already does for you.

Menu Bars
• Each menu bar is translated into one HTML page. Each menu title appears as text only
and menu items appear as links to 4D methods.
• Clicking a menu item on the Web Browser side starts the execution of the associated 4D
method on the Web Connection process side.

Forms
• Objects are translated from top to bottom and from left to right. Note, however, that
HTML is a word processing oriented application; horizontal objects positions will be
different and wrap-around may occur.
• Multi-page forms are supported transparently. Note, however, that a page zero is not
supported; consequently, page navigation buttons must be present on each page.
• Automatic actions, when appropriate, are supported transparently.
• Form events (On Load, On Unload, On Clicked) are supported. Other events are not
supported.
• The Header, Detail, Break and Footer tags are taken into account during calls to DISPLAY
SELECTION and MODIFY SELECTION. The Header of the form appears once at the
beginning of the HTML page, the detail area is repeated as many times as necessary, and
variables (such as buttons) placed in the Footer area appear at the end of the HTML page,
just under the automatic selection page navigation links.

Fields Objects
When a 4D form is translated to an HTML page, field objects are translated as follows:

4D Field Type HTML Object HTML Markup
Alphanumeric Text field (*) <INPUT Type="text" ...>
Text Text field (*) <TEXTAREA ...> (**)

<INPUT Type="text" ...> (***)
Real Text field (*) <INPUT Type="text" ...>
Integer Text field (*) <INPUT Type="text" ...>
Long Integer Text field (*) <INPUT Type="text" ...>
Date Text field (*) <INPUT Type="text" ...>
Time Text field (*) <INPUT Type="text" ...>
Boolean Radio or Check box (*) <INPUT Type="radio" ...>

<INPUT Type="checkbox" ...>
Picture Image (always non-enterable)
Subtable No HTML support None
BLOB No HTML support None

4th Dimension Language Reference 1311

(*) or text only if non enterable
(**) If the text value is composed of several lines
(***) If the text value is composed of only one line or is empty

Note: Enterable variables behave like fields of the same type.

Form Objects
When a 4D form is translated to an HTML page, form objects are translated as follows:

4D Form Object Equivalent HTML Object HTML Markup
Line Horizontal Line (1) <HR>
Rectangle No HTML support None
Oval No HTML support None
Rounded Rectangle No HTML support None
Static Picture Image or Image Map (2)

<INPUT Type="image" ...>
Group Box Text Text with font markups if any
Static Text Text Text with font markups if any
Button Submit button <INPUT Type="submit" ...>
Default Button Submit button <INPUT Type="submit" ...>
Radio Button Radio button (3) <INPUT Type="radio" ...>
Check Box Check Box <INPUT Type="checkbox" ...>
Popup menu Drop-down List <SELECT ...>...</SELECT>
Drop-down List Drop-down List <SELECT ...>...</SELECT>
Menu/Drop-down List Drop-down List

<SELECT ...>...</SELECT>
Combo Box Drop-down List <SELECT ...>...</SELECT>
Scrollable Area Scrollable List (4) <SELECT ...>...</SELECT>
Invisible Button See note 2
Highlight Button See note 2
3D Button See note 2
Button Grid See note 2
Graph Image (non-enterable)
Plug-in Image (non-enterable)

The following objects are not supported by HTML and therefore are ignored during the
translation:
Hierarchical Popup menu, Hierarchical List, Subform, Tab Control, Radio Picture,
Thermometer, Ruler, Dial, Picture Menu, Picture Button, 3D Check Box, 3D Radio Button.

1312 4th Dimension Language Reference

Notes
1. Non-horizontal lines are not supported in HTML; they are therefore ignored.

2. Invisible-like buttons are objects of type Invisible Button, Highlight Button, 3D Button,
and Button Grid. If a static picture is not overlapped by an invisible-like button, the
picture is translated as a static image. If it is overlapped by at least one invisible-like
button, it is translated as a Server-Side Image Map. On the Web browser side, the image is
treated as a Server-Side Image Map. On the 4D side, when the submission is received, 4D
recalculates the position of the click in order to generate an On Clicked event for the
appropriate button, as if the button was actually clicked. Managing invisible-like buttons
is therefore quite simple, provided that they overlap with static pictures. You manage
these buttons through the Form method or their object methods, as you would do in the
regular 4D interface. This also provides you with a very simple way to handle Web Image
Mapping. If an invisible-like button does not overlap with any static picture objects, it is
ignored during the translation.

3. Radio button grouping is maintained though the translation.

4. Grouped scrollable areas are not supported in HTML. 4D translates them as independent
scrollable lists located on the same line.

Display Selection / Modify Selection
• The UserSet mechanism is not supported
• An automatic selection paging mechanism is provided by 4D. For more information, see
the description of the SET WEB DISPLAY LIMITS command.

4D Commands
While developing a 4D Web database, you may ask what happens when this or that
command is called. Will the command take effect on the Web Server machine or on the
Web Browser machine? The Web Connection Process is executing on the Web Server
machine, but its user interface is remotely echoed on the connected Web Browser.
Consequently, for Web database development, the 4D commands can be classified as
follows:

Commands that are not affected by execution from within a Web Connection process
A command such as CREATE RECORD works within the executing process; in this case, it
creates a record within the Web Connection process. The same applies to commands such
as Screen width, which returns the width of the screen on the Web Server machine (the
machine on which the process is executing).

4th Dimension Language Reference 1313

Commands that include extra built-in capabilities for transparent Web support
Command Name Comments
ADD RECORD Automatic translation of the form, multi-page forms supported
ALERT Automatic translation of the dialog box
CONFIRM Automatic translation of the dialog box
DIALOG Automatic translation of the form, multi-page forms supported
DISPLAY SELECTION Automatic translation of the form

Built-in Web paging mechanism
UserSet mechanism is not supported

MODIFY RECORD Automatic translation of the form, multi-page forms supported
MODIFY SELECTION Automatic translation of the form

Built-in Web paging mechanism
UserSet mechanism is not supported

QUERY Standard Query dialog box supported
QUERY BY EXAMPLE Automatic translation of the form, multi-page forms supported
Request Automatic translation of the dialog box

Command to use when you know what you want to do
The following commands execute locally on the Web Server machine.

For example, you can invoke the printing of a selection from a Web Browser. However,
the printing will be performed on the Web Server machine.

In addition, when a user interface component is involved, it appears on the Web Server
machine, i.e., Open document("") vs Open Document("This document"). You should avoid
such calls, because the Web Browser will wait for a reply until the dialog box is closed on
the Web Server machine. On the other hand, it is perfectly OK to call these routines
when no dialog boxes are involved.

Command Name Comments
Append document OK, if no file dialog box is invoked
BEEP Beeps on Web Server machine
Create document OK, if no file dialog box is invoked
DISPLAY RECORD Does nothing
EXPORT DIF OK, if no file dialog box is invoked
EXPORT SYLK OK, if no file dialog box is invoked
EXPORT TEXT OK, if no file dialog box is invoked
IMPORT DIF OK, if no file dialog box is invoked
IMPORT SYLK OK, if no file dialog box is invoked
IMPORT TEXT OK, if no file dialog box is invoked

1314 4th Dimension Language Reference

LOAD SET OK, if no file dialog box is invoked
LOAD VARIABLES OK, if no file dialog box is invoked
MESSAGE Messages will appear on Web Server machine
Open document OK, if no file dialog box is invoked
Open external window Window opens on Web Server machine
Open resource file OK, if no file dialog box is invoked
Open window Window opens on Web Server machine
PLAY Sound is played on 4D machine
PRINT FORM OK, if no Printing dialog box is invoked
PRINT LABELS OK, if no Printing dialog box is invoked
PRINT RECORD OK, if no Printing dialog box is invoked
PRINT SELECTION OK, if no Printing dialog box is invoked
QUIT 4D Supported, you can shutdown the Web server remotely
SAVE SET OK, if no file dialog box is invoked
SAVE VARIABLES OK, if no file dialog box is invoked
SELECT LOG FILE OK, if no file dialog box is invoked
SET CHANNEL OK, if no file dialog box is invoked (documents)
TRACE Debugger window appears on Web Server machine

Command Not Supported by Web Connection Processes

Command Name Comments
ADD DATA SEGMENT Do NOT call this command from within a Web Connection process

This command has not yet been designed to be used on the Web
ADD SUBRECORD Do NOT call this command from within a Web Connection process

This command has not yet been designed to be used on the Web
CHANGE ACCESS Do NOT call this command from within a Web Connection process

This command has not yet been designed to be used on the Web
EDIT ACCESS Do NOT call this command from within a Web Connection process

The Passwords window appears on the 4D machine
The Browser will wait until the window is closed

GRAPH TABLE Do NOT call this command from within a Web Connection process
This command has not yet been designed to be used on the Web

MODIFY SUBRECORD Do NOT call this command from within a Web Connection process
This command has not yet been designed to be used on the Web

ORDER BY Programmatical support only
Standard Order By dialog box not supported on the Web yet

4th Dimension Language Reference 1315

PRINT SETTINGS Do NOT call this command from within a Web Connection process
The Printing dialog boxes will appear on the 4D machine
The Browser will wait until the dialog boxes are closed

REPORT Do NOT call this command from within a Web Connection process
The Quick Report window appears on the 4D machine
The Browser will wait until the window is closed

1316 4th Dimension Language Reference

Web Services, HTML and Javascript Encapsulation Web Server

version 6.0
__

Preliminary Note
Before working with this section, read the following sections on Web Services:
• Web Services, Overview
• Web Services, Configuration
• Web Services, Your First time (Part 1)
• Web Services, Your First time (Part 2)
• Web Services, Web Connection Processes
• Web Services, HTML Support

There are three ways in which you can encapsulate HTML code into your 4D application:

1. Using the command SEND HTML FILE, you can send a Web page stored on disk.
2. A 4D form static text object, such as "{anyPage.HTM}", inserts the HTML document
"anyPage.HTM" into the 4D form at the location of the static text object.
3. Any 4D text variable in a form can encapsulate HTML code into a 4D form, provided its
first character is ASCII code 1 (i.e., vtHTML:=Char(1)+"...HTML code...").

In the last two cases, the resulting form on the Web brower side is the combination of
the 4D and HTML objects. Note that when using a static text object, you insert a
document in its entirety. When using a text variable, you insert pieces of code.

Using SEND HTML FILE or form static text object, you can either use an existing HTML
document or refer to a document that you have programmatically built and then saved
on disk. You can build the HTML code in memory, using a text variable located in a form.

Binding HTML Objects with 4D Methods
__

No matter how you encapsulate HTML in your 4D application, you can link an HTML
object to a 4D Method by creating a link for that object. The URL of the object must be
/4DMETHOD/Method_Name, where Method_Name is the name of the 4D project method
to be executed when the HTML object is clicked. Examples of 4D methods bound to
HTML objects are provided in the section Web Services, Your First time (Part 2).

4th Dimension Language Reference 1317

Important
• If you send an HTML file, you can bind 4D methods with any type of linkable HTML
object. Remember, in order to have a POST action 4D Method that will issue a SEND
HTML FILE("") call that stops the HTML mode, you must have a Submit button in your
HTML page to execute the POST action of the HTML page (the page being submitted to
4D Web Server).
• On the other hand, if you encapsulate HTML code into a 4D form as static text or as a
text variable, you cannot use Submit buttons. You can have links referring to 4D
methods, but you do not have the opportunity to specify the POST action because 4D
builds the page for you.

Binding HTML Objects with 4D Variables - Part 1
__

You can bind HTML objects with 4D variables.

Note: You work with process variables.

First, an HTML object can have its value initialized using the value of a 4D variable.

Second, after a Web page is submitted back, the value of an HTML object can be returned
into a 4D variable. To do so, within the HTML source of the page, you create an HTML
object whose name is the same as the name of the 4D process variable you want to bind.
That point is studied further in the section “Binding HTML Objects with 4D Variables -
Part 2” in this document.

Since an HTML object value can be initialized with the value of a 4D variable, you can
programmatically provide default values to HTML objects by including [VarName] in the
value field of the HTML object, where VarName is the name of the 4D process variable as
defined in the Web Connection process. This is the name that you surround with the
square brackets [].

In fact, the syntax [VarName] allows you to insert 4D data anywhere in the HTML page.
For example, if you write:

The value of the 4D variable vtSiteName will be inserted in the HTML page.

Tip: The bounding using the syntax [VarName] is treated recursively. If the text value in
the variable VarName includes other valid [...] references, 4D will replace them with the
values of the variables until no reference is found.

1318 4th Dimension Language Reference

Here is an example:

` The following piece of 4D code assigns "4D4D" to the process variable vs4D
vs4D:="4D4D"

` Then it send the HTML page "AnyPage.HTM"
SEND HTML FILE("AnyPage.HTM")

The source of the HTML page AnyPage.HTM is listed here:

Before sending an HTML page (HTML document or translated 4D form), 4D always parses
the HTML source code in order to look for objects referring to 4D variables and to remap
the URLs of the links (as we will see later).

4th Dimension Language Reference 1319

In the HTML source code shown, note the hidden input object named vs4D. The value of
this object is set to the text value "[vs4D]". Since the project method sending the HTML
file has previously defined the 4D process variable vs4D, 4D replaces the value of the
HTML object and sets it to "4D4D", the value of the 4D variable.

The embedded JavaScript function Is4DWebServer tests the value of the vs4D HTML
object. Here is the trick: if the HTML page is served by 4D, the object’s value is changed to
"4D4D". However, if the HTML page is served by another application (i.e., Web Star on
Macintosh), the object stays with its value as defined in the page, "[vs4D]". Bingo! By
using JavaScript to test the value of that object, from within the page on the Web
Browser side, you can detect whether or not the page is being served by 4D.

This first example shows how you can build “intelligent” HTML pages that provide
additional features when being served by 4D, while staying compatible with other Web
servers.

Important: You bind process variables only. In addition, the initial version 6.0 release
doesnot allow you to bind a 4D array to an HTML SELECT object. On the other hand,
each element of a SELECT object can refer to separate 4D variables (i.e., the first element
to V1, the second to V2, and so on).

The binding in the direction 4D toward Web Browser works with any encapsulation
method (SEND HTML FILE, static text or text variable in a 4D form).

JavaScript Encapsulation
__

4D supports JavaScript source code embedded into HTML documents. However, the initial
6.0 release does not support the insertion of JavaScript .js files into HTML documents (i.e.,
<SCRIPT SRC="...").

Using SEND HTML FILE, you send a page that you have prepared in an HTML source editor
or built programmatically using 4D and saved as a document on disk. In both cases, you
have full control of the page. You can insert JavaScript scripts in the HEAD section of the
document as well as use scripts with the FORM markup. In the previous example, the
script refers to the form "frm" because you were able to name the form. You can also
trigger, accept, or reject the submission of the form at the FORM markup level.

If you you encapsulate HTML in a 4D form, you do not have control over the HEAD
section or the FORM declaration. The scope of the scripts is therefore different. For
example, you cannot access the HTML form by its name.

1320 4th Dimension Language Reference

However, compare the Is4DWebServer JavaScript function of the previous example with
this one:

Both functions do the same thing, but the second example uses the forms property of the
HTML document object to access the object through the element forms[0]. As a result, it
operates even if you do not know the name that 4D may or may have not given to the
translated HTML page (form).

Note: The initial 6.0 release does not provide built-in support for Java applets. However,
while this documentation is being written, we learned that ACI Partners are currently
developing 4D Plug-ins that integrate Java applets with the 4D environment.

Binding HTML Objects with 4D Variables - Part 2
__

When you send an HTML page using SEND HTML FILE, you can also bind 4D variables
with HTML objects in the “Web Browser toward 4D” direction. The binding works both
ways: once the HTML page is submitted, 4D copies back the values of the HTML objects
into the 4D process variables.

Warning: Getting the values back into the 4D process variables is only possible with
HTML pages sent using SEND HTML FILE. With HTML encapsulated in a 4D form, getting
back values is restricted to the actual 4D objects located in the form.

Consider the following HTML page source code:

4th Dimension Language Reference 1321

1322 4th Dimension Language Reference

When 4D sends the page to a Web Browser, it looks like this:

The main features of this page are:
• It includes three Submit buttons: vsbLogOn, vsbRegister and vsbInformation.
• When you click Log On, the submission of the form is first processed by the JavaScript
function LogOn. If no name is entered, the form is not even submitted to 4D, and a
JavaScript alert is displayed.
• The form has a POST 4D Method as well as a Submit script (GetBrowserInformation) that
copies the Navigator properties to the four hidden objects whose names starts with
vtNav_App.
• Theinitial value of the object vtUserName is [vtUserName].

Let’s examine the 4D method WWW Welcome that sends this HTML page using the SEND
HTML FILE command. This method is called by the On Web Connection Database Method.

` WWW Welcome Project Method
` WWW Welcome -> Boolean
` WWW Welcome -> Yes = Can start a session

C_BOOLEAN($0)
$0:=False

` Hidden INPUT HTML objects returning Browser information
C_TEXT(vtNav_appName;vtNav_appVersion;vtNav_appCodeName;vtNav_userAgent)
vtNav_appName:=""
vtNav_appVersion:=""
vtNav_appCodeName:=""
vtNav_userAgent:=""

4th Dimension Language Reference 1323

` Text INPUT HTML object where the user name is entered
C_TEXT(vtUserName)
vtUserName:=""

` HTML submit button values
C_STRING(31;vsbLogOn;vsbRegister;vsbInformation)

Repeat
` Do not forget to reset the values of the submit buttons!

vsbLogOn:=""
vsbRegister:=""
vsbInformation:=""

` Send the Web page
SEND HTML FILE("Welcome.HTM")

` Test the values of the submit buttons in order to detect which one was clicked
Case of

` The Log On button was clicked
: (vsbLogOn # "")

QUERY([WWW Users];[WWW Users]User Name=vtUserName)
$0:=(Records in selection([WWW Users])>0)
If ($0)

WWW POST EVENT ("Log On";WWW Log information)
` The method WWW POST EVENT saves information
` to a table of the database

Else
CONFIRM("This User Name is unknown, would you like to register?")
$0:=(OK=1)
If ($0)

$0:=WWW Register
` The method WWW Register allow a new Web User to register

End if
End if

` The Register button was clicked
: (vsbRegister # "")

$0:=WWW Register

` The Information button was clicked
: (vsbInformation # "")

DIALOG([User Interface];"WWW Information")
End case

Until (Not(<>vbWebServicesOn) | $0)

1324 4th Dimension Language Reference

The features of this method are:

• The 4D variables vtNav_appName, vtNav_appVersion, vtNav_appCodeName, and
vtNav_userAgent (bound to the HTML objects having the same names) use the
GetBrowserInformation JavaScript script to get back the values assigned to the HTML
objects. Simple and direct, the method initializes the variables as strings, then gets back
the values after the Web page has been submitted.

• The 4D variables vsbLogOn, vsbRegister and vsbInformation are bound to the three
Submit buttons. Note that these variables are reset each time the page is sent to the
browser. When the submit is performed by one of these buttons, the browser returns the
value of the clicked button to 4D. The 4D variables are reset each time, so the variable
that is no longer equal to the empty string tells you which button was clicked. The two
other variables are empty strings, not because the browser returned empty strings, but
because the browser “said” nothing about them; consequently, 4D left the variables
unchanged. That is why it is necessary to reset those variables to the empty string each
time the page is sent to the browser.

This the way to distinguish which Submit button was clicked when several Submit
buttons exist on the Web page. Note that 4D buttons in a 4D form are numeric variables.
However, with HTML, all objects are text objects. Upon return to 4D, testing if a button
was clicked consists of testing the text value of the 4D variable bound to the button.

If you bind a 4D variable with a SELECT object, you also bind a text variable. In 4D, to
test which element of a drop-down list was chosen, you test the numeric value of the 4D
array. With HTML, this is the value of the selected item that is returned in the 4D variable
bound to the HTML object.

No matter which object you bind with a 4D variable, the returned value is of type Text, so
you bind String or Text 4D process variables.

An interesting point of this example is that after you have obtained information about
the Browser, you can store these values in a 4D table, again combining Web and database
capabilities. This is what the (unlisted) WWW POST EVENT project method does. It does
not “post an event”; it saves the web session information into the tables shown here:

4th Dimension Language Reference 1325

After you have saved the information in a table, you can use other project methods to
send the information back to the Web user. To do so, simply use QUERY to find the right
information and then use DISPLAY SELECTION to show the [WWW Log] records. The
following figure shows the log information available to the registered user of the Web
site:

Using the binding features shown in this example, combined with all the information
you can give to or gather from users via HTML dialogs or 4D forms, you can add some
very interesting administrative capabilities to your database Web site.

Binding HTML Objects with 4D Variables - Part 3
__

As seen in the section Web Services, HTML Support, when a 4D form is used as a Web page,
4D provides Server-side Image Mapping by means of invisible-like buttons that overlap a
static picture.

If you send an HTML document using SEND HTML FILE, you can bind 4D variables with
Image Map HTML objects (INPUT TYPE="IMAGE") to retrieve information. For example,
you can create an Image Map HTML object named bImageMap. Each time you click on
the image on the browser side, a submit with the click position is sent back to the 4D
Web Server. To retrieve the coordinates of the click (expressed relative to the top left
corner of the image), you just need to bind the 4D process variable bImageMap and the
variables bImageMap_X and bImageMap_Y, which return (as text) the horizontal and
vertical coordinates of the click.

1326 4th Dimension Language Reference

In the HTML page, you write something like:

In the 4D method that sends the HTML page, you write:

bImageMap:=""
bImageMap_X:=""
bImageMap_Y:=""
SEND HTML FILE("ThisPage.HTM")

Then, in the POST action 4D method or in the current method, after the POST action
method issued a SEND HMTL FILE("") call, you retrieve the coordinates of the click in this
way:

$vlX:=Num(bImageMap_X) ` Get horizontal coordinates in numeric form
$vlY:=Num(bImageMap_Y) ` Get vertical coordinates in numeric form
If (($vlX#0)&($vlY#0))

` Do something accordingly to the coordinates
End if

File References and URLs
__

To insure the maintenance of the database context and subcontext IDs, 4D automatically
remaps file references and URLs. For example, 4D remaps all IMG and HREF references to
local files.

If you insert your own HTML code into a 4D form using a text variable, you must follow
the 4D remapping syntax.

Local GIF files are remapped as "/4DPict/_/GIF_file_pathname/$-2", where GIF_file_pathname
is the full HTML path name of the GIF file relative to the root of the volume where the
file is located.

Example
The following 4D method returns the remapped reference for the pathname received as
parameter:

` WWW Local GIF URL Project Method
` WWW Local GIF URL Project (Text)
` WWW Local GIF URL (Native pathname) -> URL to local GIF file

C_TEXT($0;$1)
$0:="/4DPict/_/"+HTML Pathname ($1)+"/$-2"

Note: For details about the method HTML Pathname, see the examples of the command
Mac to ISO.

4th Dimension Language Reference 1327

Then, when inserting HTML code into a 4D form using a text variable, you can write:

vtHTML:=Char(1)+"<P><IMG SRC="+Char(34)+WWW Local GIF
URL("F:\ThisImage.HTM"+Char(34)

+" ALIGN=MIDDLE></P>"+Char(13)

This will insert the GIF document in the 4D form at the location of the 4D variable
vtHTML.

Important: You only need to write this kind of code to insert custom HTML code into a
4D form. If you just send an HTML page using SEND HTML FILE or if you use a command
such as ADD RECORD, remember that 4D transparently translates and remaps the HTML.

The remapping does not change links that have the following protocols:
• http:
• ftp:
• mailto:
• news:
• gopher:
• javascript:
• telnet:

Important: The initial version 6.0 of 4th Dimenson does not support Frames. The FRAME
markups have recursive HTML file references that 4D does not yet support.

See Also
SEND HTML FILE.

1328 4th Dimension Language Reference

The Text Parameter Passed to 4D Methods Called via URLs Web Server

version 6.0.2
__

4th Dimension sends a text parameter to any 4D method called via a URL. Regarding this
text parameter:
• Although you do not use this parameter, you must explicitly declare it with the line
C_TEXT($1), otherwise runtime errors will occur while using the Web to access a database
that runs in compiled mode.
• This parameter returns the extra data placed at the end of the URL, and can be used as a
placeholder for passing values from the HTML environment to the 4D environment.

Runtime Errors in Compiled Mode
__

Let’s consider the following example. You execute a method bound to an HTML object
using a link and obtain the following screen on your Web browser:

This runtime error is related to the missing declaration of the text $1 parameter in the 4D
method that is called when you click on the HTML link referring to that method. As the
context of the execution is the current HTML page, the error refers to the “line 0” of the
method that has actually sent the page to the Web browser.

4th Dimension Language Reference 1329

Following the example from the section Web Services, Your First Time (Part I), you
eliminate the problem by explicitly declaring the text $1 parameter within the
M_ADD_RECORDS and M_LIST_RECORDS methods:

` M_ADD_RECORDS project method
Þ C_TEXT($1) ` This parameter MUST be declared explicitely

Repeat
ADD RECORD([Customers])

Until(OK=0)

` M_LIST_RECORDS project method
Þ C_TEXT($1) ` This parameter MUST be declared explicitely

ALL RECORDS([Customers])
MODIFY SELECTION([Customers])

After these changes have been made, the compiled runtime errors no longer occur.

1330 4th Dimension Language Reference

Working with the URL Extra Data
__

The text $1 parameter passed to the 4D method returns the extra data appended to the
URL.

Again following the example in the 4th Dimension Language Reference manual, the change
(shown in the following figure) is made to the URL of the link that refers to the
M_ADD_RECORDS method:

Note: The figure depicts the change as made using Claris Home Page on MacOS.

4th Dimension Language Reference 1331

The data added to the URL is therefore the string “/extraData”. After this change has been
made, you can use the Debugger window, on the 4D side, to quickly check that the $1
parameter actually returns the string “/extraData”:

By using conventions and algorithms similar to those described in the section On Web
Connection Database Method of the 4th Dimension Language Reference manual, you
therefore have the means to exchange additional data between the HTML and the 4D
environments when a 4D method is called by an HTML link.

How to Dynamically Set the URL Extra Data
__

If you create and write your own HTML files “on the fly” (using, for example, Create
document and SEND PACKET), you simply write the URLs accordingly to your needs.

If you work with existing HTML files, you can use JavaScript to dynamically set the link
properties of your objects.

See Also
Web Services, Your First Time (Part II).

1332 4th Dimension Language Reference

START WEB SERVER Web Server

version 6.0
__

START WEB SERVER

Parameter Type Description
This command does not require any parameters

Description
The START WEB SERVER command starts serving your database on your Intranet network
or on the Internet using the built-in 4th Dimension Web Server.

If the Web Server is successfully started, OK is set to 1, otherwise OK is set to 0 (zero). For
example,
if the TCP/IP network component is missing, OK is set to 0.

See Also
STOP WEB SERVER.

System Variables and Sets
If the Web Services are successfully started, OK is set to 1, otherwise OK is set to 0.

4th Dimension Language Reference 1333

STOP WEB SERVER Web Server

version 6.0
__

STOP WEB SERVER

Parameter Type Description
This command does not require any parameters

Description
The command STOP WEB SERVER stops serving your database as a Web Server. If the
database was being served as a Web site, all Web connections are stopped, and all Web
processes terminated.
If the database was not being served as a Web site, the command does not nothing.

See Also
START WEB SERVER.

1334 4th Dimension Language Reference

SET WEB TIMEOUT Web Server

version 6.0
__

SET WEB TIMEOUT (timeout)

Parameter Type Description
timeout Number ® Web connections timeout expressed in seconds

Description
The SET WEB TIMEOUT command sets the timeout for the Web Connection processes.
The default timeout is 5 minutes.

You reduce or increase this delay by passing, in the timeout parameter, the new timeout
expressed in seconds.

The command takes effect immediately, and its scope is the working session; all the Web
Connection processes are affected.

See Also
Web Services, Web Connection Processes.

4th Dimension Language Reference 1335

SET WEB DISPLAY LIMITS Web Server

version 6.0
__

SET WEB DISPLAY LIMITS (numberRecords{; numberPages{; picRef}})

Parameter Type Description
numberRecords Number ® Maximum number of records to display

in each HTML page
numberPages Number ® Maximum number of page references

at bottom of each HTML page
picRef Number ® Picture reference number for full page record
button

Description
The command SET WEB DISPLAY LIMITS modifies the way 4th Dimension displays a
selection of records on the Web browser side when you call DISPLAY SELECTION or
MODIFY SELECTION.

When you display a selection of records using 4th Dimension or 4D Client, the program
does not load all the records of the selection; it only loads (from the disk) the records that
are visible in the window at one time. In doing so, although you create a selection of
thousands of records, displaying them is quite fast. Then, if you scroll or resize the
window, 4D loads the records appropriately.

On the Web, 4D divides the selection of records to be displayed in pages. Without a
paging scheme, a selection of thousands of records would result in thousands of records
going over the Internet or your Intranet to be displayed in only one Web page. It also
would take quite some time to download these records, and your Web browser would
more than likely run out of memory.

By default, 4th Dimension displays the first 20 records of the selection and includes, at
the end of each HTML page, 20 links to the first 20 pages of the selection. This means
that, by default, you can browse the first 400 records of the selection by clicking on the
page links located at the end of each selection page. Note that this paging system is
transparent to your coding; everything happens within the call to DISPLAY SELECTION or
MODIFY SELECTION.

SET WEB DISPLAY LIMITS enables you to change these settings. In the numberRecords
parameter, you indicate the maximum number of records you want to display per
selection page. In numberPages, you indicate the maximum number of selection page
links you want at the end of each selection page.

1336 4th Dimension Language Reference

For example, if you have a selection of 10,000 records and want to browse all of them in
one display selection, you can pass numberRecords=100 and numberPages=100. However,
remember that the data is going over the network or Internet; with the Internet, you
must take the speed factor into account when changing the display selection settings.

In addition, SET WEB DISPLAY LIMITS optionally allows you to change the default icon of
the full page record button. In the picRef parameter, specify the picture reference number
of the picture stored in the database Picture library you want to use as new icon.

SET WEB DISPLAY LIMITS only affects subsequent calls to DISPLAY SELECTION or MODIFY
SELECTION, and its scope is local to the current process.

Example
In the following example, a DISPLAY SELECTION or a MODIFY SELECTION is issued for a
[Zip Codes] table. By default, 4D displays the records on the Web browser side as shown
here:

Note that the first 400 records can be browsed.

If the following picture is added to the database Picture Library:

4th Dimension Language Reference 1337

And, if the project method that displays the selection performs the SET WEB DISPLAY
LIMITS call shown here, prior to the call to DISPLAY SELECTION or MODIFY SELECTION:

SET WEB DISPLAY LIMITS (50;100;17877)

Then the selection on the Web browser side ends up looking like this:

You can now browse the first 50,000 records of the selection.

See Also
DISPLAY SELECTION, MODIFY SELECTION.

1338 4th Dimension Language Reference

SET HTML ROOT Web Server

version 6.0
__

SET HTML ROOT (pathnameHTML)

Parameter Type Description
pathnameHTML String ® HTML Pathname to default directory for HTML
files

Description
The command SET HTML ROOT changes the default directory or folder where 4D looks for
the HTML file you pass as a parameter to the commande SEND HTML FILE.

By default, 4D looks for the HTML documents in the directory containing the structure
file of the database.

The pathname you specify must be an HTML pathname, where the directory or folder
names are separated by a slash (“/”) character, no matter what the platform. For more
information about HTML pathnames, please refer to the Language Reference part of any
HTML manual you can find in bookstores.

If you specify an invalid pathname, an OS File manager error is generated. You can
intercept the error with an ON ERR CALL method. If you display an alert or a message
from within the error method, it will appear on the browser side.

Example
See example for the command SEND HTML FILE.

See Also
ON ERR CALL.

Error Handling
If you specify an invalid pathname, an OS File manager error is generated. You can
intercept the error with an ON ERR CALL method.

4th Dimension Language Reference 1339

SEND HTML FILE Web Server

version 6.0
__

SEND HTML FILE (htmlFile)

Parameter Type Description
htmlFile String ® HTML Pathname to HTML file

or empty string for terminating SEND HTML
FILE

Description
The SEND HTML FILE command sends, to the Web browser, the Web page stored in the
HTML document whose pathname you pass in htmlFile.

IMPORTANT: 4th Dimension expects HTML document encoded in ISO Latin-1.

By default, 4th Dimension looks for the HTML document within the directory or folder
where the structure file of the database is located, unless you set the default location of
the HTML documents to another directory or folder, using the command SET HTML
ROOT.

If you specify an invalid HTML pathname, 4D sends the message “The requested HTML
page could not be found” to the Web browser.

The alternate syntax SEND HTML FILE(""), in which you pass an empty string in hmtlFile,
allows you to terminate the call to SEND HTML FILE, which initiated the HTML mode. This
is illustrated in the following diagram:

1340 4th Dimension Language Reference

1. A 4D Method (Project, Object or Database) issues a call to SEND HTML FILE, sending an
HTML document to the browser.

2. The initial Web page sent to the browser may have HTML links to other Web pages or
can itself refer to 4D Methods that call SEND HTML FILE to send other Web pages. These
other pages may have links or refer to 4D Methods for accessing other pages, and so on.
While navigating through the Web pages, you can also use browser’s navigation controls,
such as the Back button.

3. Any of the Web pages can include references to a 4D method that issues a SEND HTML
FILE("") call. This call terminates the SEND HTML FILE call that initiated the whole thing,
and you go back, pursuing the execution 4D Method that originally started the free Web
navigation.

Note: If you call SEND HTML FILE from within a process that is not a Web connection
process, the command does nothing and returns no error; the call is simply ignored.

Examples
1. In the directory containing the database structure file, there is an HTML document
called "HomePage.HTM". This is the Web page you want Web users to see when they
connect to the database, instead of seeing the default menu bar #1 of your database. To
present this Web page, in the On Web Connection database method of your application,
you write:

` On Web Connection Database Method
Þ SEND HTML FILE ("HomePage.HTM")

2. Your folder database folder is organized as follows:

..\Documents\CurrentWork\Databases\MyDB.4DB

..\Documents\CurrentWork\Databases\MyDB.RSR

..\Documents\CurrentWork\Databases\MyDB.4DD

..\Documents\CurrentWork\Databases\WebStuff\HTM\HomePage.HTM

You can send the Web page "HomePage.HTM" in this way:

Þ SEND HTML FILE ("WebStuff/HTM/HomePage.HTM")

or this way:

SET HTML ROOT ("WebStuff/HTM/")
Þ SEND HTML FILE ("HomePage.HTM")

4th Dimension Language Reference 1341

3. During a 4D Web session, you are adding records using a 4D form. In this form, there
is a bHelp button, whose object method is as follows:

` bHelp button Object Method
Þ SEND HTML FILE ("Help.HTM")

Starting from the Help.HTM document, you can freely navigate between numerous
HTML pages which implement the database Help system for your Web site. In each page,
you have a submit button titled Done, which allows you to go back to data entry.
To do so, each of the HTML documents must contain the definition of this submit
button:

<!-- bDone submit button ®
<P><INPUT TYPE="submit" NAME="bDone" VALUE="Done"></P>

 as well as the definition of the form post action:

<!-- Execute the 4D htm_Help_Done when a submit button is hit ®
<FORM action="/4DMETHOD/htm_Help_Done" method="POST">

On the 4D side, the project method htm_Help_Done terminates the SEND HTML FILE
initiated by the bHelp button:

` htm_Help_Done Project Method
Þ SEND HTML FILE ("")

The call to SEND HTML FILE in the object Method of the bHelp button is the last line of
the method. When the method is completed, you return to data entry.

See Also
Web Services, HTML and JavaScript Encapsulation, Web Services, Your First Time (Part II), Web
Services, Your First Time (Part II).

1342 4th Dimension Language Reference

CHANGE WEB LICENSE Web Server

version 6.0.2
__

CHANGE WEB LICENSE

Parameter Type Description
This command does not require any parameters

Description
The command CHANGE WEB LICENSE displays the Web License dialog box, which enables
the user to add and remove licenses to and from the built-in 4th Dimension Web Server.

Web License dialog box on Windows:

Web License dialog box on Macintosh:

4th Dimension Language Reference 1343

This dialog box was originally available only in the Design environment. Using the
CHANGE WEB LICENSE command, you can display the Web License dialog box in the
User and Custom menus environment.

Note: In the Design environment, you display this dialog box by clicking the
Licenses button in the Database Properties dialog box.

Tip: CHANGE WEB LICENSE is a convenient way to allow Web licensing expansion in
a compiled and merged 4D application distributed to customers. 4D developers or IS
managers can use this command to distribute a 4D application and let users expand
their Web License without sending an update of the application each time.

Example
In a custom configuration or preferences dialog box, you include a button whose
method is:

` bWebLicense button object method
Þ CHANGE WEB LICENSE

In doing so, you enable the user to increase the number of users who can connect
simultaneously to the 4D Web Server, without modifying the database itself.

1344 4th Dimension Language Reference

55 Windows

4th Dimension Language Reference 1345

1346 4th Dimension Language Reference

Managing Windows Windows

version 6.0
__

Windows are used to display information to the user. They have three main uses: to enter
data, to display data, and to inform the user in messages and dialogs.

There is always at least one window open. Scroll bars are added, when needed, to let the
user scroll in a form that is larger than the window. In the User environment, this
window displays either the record list (output form) or the data entry screen (input form).
In the Custom Menus environment, this window displays a splash screen (a custom
graphic).

When you execute a menu command within the Custom Menus process, the splash
screen can be replaced with data by commands that display forms. When the commands
finish executing, the splash screen is displayed again.

You can open various types of custom windows with the Open Window command. When
you no longer need a custom window, you should close it using the CLOSE WINDOW
command or by clicking the Control-menu box (Windows) or Close Box (Macintosh), if
it exists.

Some commands open their own windows. Commands such as GRAPH TABLE, REPORT,
and PRINT LABEL open a window that becomes the frontmost window.

If you start a new process and do not open a window at the beginning of the process
method, 4D will automatically open a default one as soon as a form is to be displayed.

See Also
Open window, Window Types.

4th Dimension Language Reference 1347

Open window Windows

version 6.0 (Modified)
__

Open window (left; top; right; bottom{; type{; title{; controlMenuBox}}}){ ® WinRef }

Parameter Type Description
left Number ® Global left coordinate of window contents area
top Number ® Global top coordinate of window contents area
right Number ® Global right coordinate of

window contents area,
or -1 for using form default size

bottom Number ® Global bottom coordinate of
window contents area,
or -1 for using form default size

type Number ® Window type
title String ® Title of window

or "" for using default form title
controlMenuBox String ® Method to call when the Control-menu box is

double-clicked or the Close box is clicked

Function result WinRef ¬ Window reference number

Description
Open window opens a new window with the dimensions given by the first four
parameters:
• left is the distance in pixels from the left edge of the application window to the left
internal edge of the window.
• top is the distance in pixels from the top of the application window to the top internal
edge of the window.
• right is the distance in pixels from the left edge of the application window to the right
internal edge of the window.
• bottom is the distance in pixels from the top of the application window to the bottom
internal edge of the window.

If you pass -1 in both right and bottom, you instruct 4D to automatically size the window
under the following conditions:
• You have designed a form and set its Sizing Options in the Design environment Form
properties window
• Before calling Open window, you selected the form using the command INPUT FORM, to
which you passed the optional * parameter.

Important: This automatic sizing of the window will occur only if you made a prior call to
INPUT FORM for the form to be displayed, and if you passed the * optional parameter to
INPUT FORM.

1348 4th Dimension Language Reference

• The type parameter is optional. It represents the type of window you want to display,
and corresponds to the different windows shown in the section Window Types. If the
window type is negative, the window created is a floating window. If the type is not
specified, type 1 is used by default.

• The title parameter is the optional title for the window

If you pass an empty string ("") in title, you instruct 4D to use the Window Title set in the
Design environment Form Properties window for the form to be displayed.

Important: The default form title will be set to the window only if you made a prior call to
INPUT FORM for the form to be displayed, and if you passed the * optional parameter to
INPUT FORM.

• The controlMenuBox parameter is the optional Control-menu box method for the
window. If this parameter is specified, a Control-menu box (Windows) or a Close Box
(Macintosh) is added to the window. When the user double-clicks the Control-menu box
(Windows) or clicks on the Close Box (Macintosh), the method passed in controlMenuBox
is called.

Version 6 Note: You can also manage the closing of the window from within the form
method of the form displayed in the window when an On Close Box event occurs. For
more information, see the command Form event.

If more than one window is open for a process, the last window opened is the active
(frontmost) window for that process. Only information within the active window can be
modified. Any other windows can be viewed. When the user types, the active window will
always come to the front, if it is not already there.

Forms are displayed inside an open window. Text from the MESSAGE command also
appears in the window.

4th Dimension Language Reference 1349

Examples
1. The following project method opens a window centered in the main window
(Windows) or in the main screen (Macintosh). Note that it can accept two, three, or four
parameters:

` OPEN CENTERED WINDOW project method
` $1 – Window width
` $2 – Window height
` $3 – Window type (optional)
` $4 – Window title (optional)

$SW:=Screen width\2
$SH:=(Screen height\2)
$WW:=$1\2
$WH:=$2\2
Case of

: (Count parameters=2)
Þ Open window($SW-$WW;$SH-$WH;$SW+$WW;$SH+$WH)

: (Count parameters=3)
Þ Open window($SW-$WW;$SH-$WH;$SW+$WW;$SH+$WH;$3)

: (Count parameters=4)
Þ Open window($SW-$WW;$SH-$WH;$SW+$WW;$SH+$WH;$3;$4)

End case

After the project method is written, you can use it this way:

OPEN CENTERED WINDOW (400;250;Movable dialog box;"Update Archives")
DIALOG([Utility Table];"UPDATE OPTIONS")
CLOSE WINDOW
If (OK=1)

` ...
End if

2. The following example opens a floating window that has a Control-menu box
(Windows) or Close Box (Macintosh) method. The window is opened in the upper right
hand corner of the application window.

Þ Open window(Screen width-149;33;Screen width-4;178;- Palette
window;"";"CloseColorPalette")

DIALOG([Dialogs];"Color Palette")

The CloseColorPalette method calls the CANCEL command:
CANCEL

1350 4th Dimension Language Reference

3. The following example opens a window whose size and title come from the properties
of the form displayed in the window:

INPUT FORM([Customers];"Add Records";*)
Þ Open window(10;80;-1;-1;Plain window;"")

Repeat
ADD RECORD([Customers])

Until (OK=0)

Reminder: In order to have Open window automatically use the properties of the form,
you must call INPUT FORM with the optional * parameter, and the properties of the form
must have been set accordingly in the Design environment.

See Also
CLOSE WINDOW, Open external window.

4th Dimension Language Reference 1351

Window Types Windows

version 6.0
__

You can use one of the following predefined constants to specify the type of window that
you open with Open window:

Constant Type Value Can be a floating window
Plain window Long Integer 8 No
Plain no zoom box window Long Integer 0 No
Plain fixed size window Long Integer 4 No
Modal dialog box Long Integer 1 No
Alternate dialog box Long Integer 3 Yes
Movable dialog box Long Integer 5 Yes
Plain dialog box Long Integer 2 Yes
Palette window Long Integer 720 Yes
Round corner window Long Integer 16 No

Floating Windows: If you pass one of these constants to Open window, you open a regular
windows. To open a floating windows, pass a negative window type value to Open
window.

The following table shows each window type, on Windows (left) and on Macintosh
(right).

Plain window (8)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: Yes
• Can be minimized/maximized or zoomed: Yes
• Suitable for scroll bars: Yes
• Usage: data entry with scrollbars, DISPLAY SELECTION, MODIFY SELECTION, etc.

1352 4th Dimension Language Reference

Plain no zoom box window (0)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: Yes
• Can be minimized/maximized or zoomed: No on Macintosh
• Suitable for scroll bars: Yes
• Usage: data entry with scrollbars, DISPLAY SELECTION, MODIFY SELECTION, etc.

Plain fixed size window (4)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: No on Macintosh
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: Yes and No
• Usage: data entry with ADD RECORD(...;...*) or equivalent

4th Dimension Language Reference 1353

Modal dialog box (1)
__

• Can have a title: No
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent
• Windows of this type are modal

Alternate dialog box (3)
__

• Can have a title: No
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent
• Windows of this type are modal, unless used as floating windows

1354 4th Dimension Language Reference

Movable dialog box (5)
__

• Can have a title: Yes
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent
• Windows of this type are modal, but can be moved and can be used as floating windows

Plain dialog box (2)
__

• Can have a title: No
• Can have a close box or equivalent: No
• Can be resized: No
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No
• Usage: DIALOG, ADD RECORD(...;...;*) or equivalent, splashscreens
• Windows of this type are modal, unless used as floating windows

4th Dimension Language Reference 1355

Palette window (720 {+ 1} {+ 2} {+ 4} {+ 8})
__

When you call Open window, you can add one or several of the following constants to
Palette window in order to obtain variations in the behavior of the window:

Constant Type Value
Has zoom box Long Integer 8
Has grow box Long Integer 4
Has window title Long Integer 2
Has highlight Long Integer 1

• Can have a title: Yes, if Has window title variation is specified
• Can have a close box or equivalent: Yes
• Can be resized: Yes, if Has grow box variation is specified
• Can be minimized/maximized or zoomed: Yes, if Has zoom box variation is specified
• Suitable for scroll bars: Yes, if Has grow box variation is specified
• Usage: Floating windows with DIALOG or DISPLAY SELECTION (no data entry)

Round corner window (16)
__

• Can have a title: Yes
• Can have a close box or equivalent: Yes
• Can be resized: No on Macintosh
• Can be minimized/maximized or zoomed: No
• Suitable for scroll bars: No on Macintosh
• Usage: Rare

See Also
Open external window, Open window.

1356 4th Dimension Language Reference

Open external window Windows

version 6.0 (Modified)
__

Open external window (left; top; right; bottom; type; title; plugInArea) ® Number

Parameter Type Description
left Number ® Global left coordinate of window contents area
top Number ® Global top coordinate of window contents area
right Number ® Global right coordinate of window contents
area
bottom Number ® Global bottom coordinate of window contents
area
type Number ® Window type
title String ® Title of window
plugInArea String ® External area command

Function result Number ¬ Window reference number

Description
Open external window opens a new window and displays the external area supported by
the command plugInArea provided by a 4D plug-in.

Open external window returns a Long Integer value that can be used both as a window
reference number (that can be used with other Windows commands) and as a reference
to the external area displayed in the window (that can be used with other routines
provided by the 4D plug-in).

The first six arguments are the same as those of the the Open window command.
However, none of the parameters are optional.

Open external window creates modeless windows. The command does not wait for user
input, so you can have several active windows open at once. You can click between each
window and edit the one in front. If the window type has a title bar, a Control-menu box
(Windows) or a Close Box (Macintosh) will be added to enable the user to close the
window.

4th Dimension Language Reference 1357

Examples
The following example opens an external window and displays the 4D Write external
area:

Þ wrWind:=Open external window (50; 50; 350; 450; 8; "Letter Writing"; "_4D WRITE")

The following example closes the external window opened in the previous example:

CLOSE WINDOW (wrWind)

See Also
CLOSE WINDOW, Open window.

1358 4th Dimension Language Reference

SHOW WINDOW Windows

version 6.0.5
__

SHOW WINDOW {(window)}

Parameter Type Description
window WinRef ® Window reference number or

Current process frontmost window, if omitted

Description
The SHOW WINDOW command allows you to display the window whose number was
passed in window. If this parameter is omitted, the frontmost window of the current
process will be displayed.

In order to use the SHOW WINDOW command, the window must have been hidden by
using the HIDE WINDOW command. If the window is already displayed, the command
does nothing.

Example
Refer to the example of the HIDE WINDOW command.

See also
HIDE WINDOW.

4th Dimension Language Reference 1359

HIDE WINDOW Windows

version 6.0.5
__

HIDE WINDOW {(window)}

Parameter Type Description
window WinRef ® Window reference number or

Current process frontmost window, if omitted

Description
The HIDE WINDOW command allows you to hide the window whose number was passed
in window or, if this parameter is omitted, the current process frontmost window. For
example, this command allows you to display only the active window in a process that
consists of several processes.

The window disappears from the screen but remains open. You can still programmatically
apply any changes supported by 4D windows.

To display a window that was previously hidden by the HIDE WINDOW command:
• Use the SHOW WINDOW command and pass the window reference ID.
• Use the process list in the Design mode. Select the process in which the window is
handled, then select Show in the Process menu.

To hide all the windows of a process, use the HIDE PROCESS command.

1360 4th Dimension Language Reference

Example
This example corresponds to a method of a button located in an input form. This button
opens a dialog box in a new window that belongs to the same process. In this example,
the user wants to hide the other windows of the process (an entry form and a tool
palette) while displaying the dialog box. Once the dialog box is validated, other process
windows are displayed again.

` Object method for the "Information" button

Þ HIDE WINDOW(Entry) ` Hide the entry window
Þ HIDE WINDOW(Palette) ` Hide the palette

$Infos:=Open window(20;100;500;400;8) ` Create the information window
... ` Place here instructions that are dedicated to the dialog management
If(OK=1) ` When the user validates the dialog

CLOSE WINDOW($Infos) ` Close the dialog
Þ SHOW WINDOW(Entry)
Þ SHOW WINDOW(Palette) ` Display the other windows

End if

See also
SHOW WINDOW.

4th Dimension Language Reference 1361

CLOSE WINDOW Windows

version 3
__

CLOSE WINDOW {(extWindowRef)}

Parameter Type Description
extWindowRef WinRef ® Window reference number, or

Frontmost window of current process, if
omitted

Description
CLOSE WINDOW closes the active window opened by an Open window command in the
current process. CLOSE WINDOW has no effect if a custom window is not open; it does
not close standard windows. CLOSE WINDOW also has no effect if called while a form is
active in the window. You must call CLOSE WINDOW when you are done using a window
opened by Open window.

If you pass an external window reference number in the extWindowRef parameter, CLOSE
WINDOW closes the specified external window. For more information about external
windows, refer to the Open external window function.

Example
The following example opens a window and adds new records with the ADD RECORD
command. When the records have been added, the window is closed with CLOSE
WINDOW:

Open window (5; 40; 250; 300; 0; "New Employee")
Repeat

ADD RECORD ([Employees]) ` Add a new employee record
Until (OK = 0) ` Loop until the user cancels
CLOSE WINDOW ` Close the window

See Also
Open external window, Open window.

1362 4th Dimension Language Reference

ERASE WINDOW Windows

version 6.0 (Modified)
__

ERASE WINDOW {(window)}

Parameter Type Description
window WinRef ® Window reference number, or

Frontmost window of current process, if
omitted

Description
The command ERASE WINDOW clears the contents of the window whose reference
number is passed in window.

If you omit the window parameter, ERASE WINDOW clears the contents of the frontmost
window for the current process.

Usually, you will use ERASE WINDOW in combination with MESSAGE and GOTO XY. In
this case, ERASE WINDOW clears the contents of the window and moves the cursor to the
upper-left corner of the window, the GOTO XY (0; 0) position.

Do not confuse ERASE WINDOW, which clears the contents of a window, with CLOSE
WINDOW, which removes the window from the screen.

See Also
GOTO XY, MESSAGE.

4th Dimension Language Reference 1363

REDRAW WINDOW Windows

version 6.0
__

REDRAW WINDOW {(window)}

Parameter Type Description
window WinRef ® Window reference number, or

Frontmost window of current process, if
omitted

Description
The command REDRAW WINDOW provokes a graphical update of the window whose
reference number you pass in window.

If you omit the window parameter, REDRAW WINDOW applies to the frontmost window
for the current process.

Note: 4th Dimension handles the graphical updates of the windows each time you move
a window, resize it, or bring it to the front, as well as when you change the form and/or
the values displayed in the window. You will rarely use this command.

See Also
ERASE WINDOW.

1364 4th Dimension Language Reference

DRAG WINDOW Windows

version 6.0
__

DRAG WINDOW

Parameter Type Description
This command does not require any parameters

Description
The command DRAG WINDOW drags the current frontmost window following the
movements of the mouse. Usually you call this command from within an object method
of an object that can respond instantaneously to mouse clicks (i.e., invisible buttons).

Example
The following form, shown here in the Design Environment, contains a frame created
with a static picture, above which are four invisible buttons for each side:

Each button has the following method:

DRAG WINDOW ` Start dragging window when clicked

4th Dimension Language Reference 1365

In the User or Custom Menus environment, after executing the following project
method:

Open window(50;50;50+400;50+300;2)
DIALOG([Table1];"Custom Drag")
CLOSE WINDOW

You obtain a window similar to this:

Then you can drag the window by clicking anywhere on the borders.

See Also
GET WINDOW RECT, SET WINDOW RECT.

1366 4th Dimension Language Reference

Get window title Windows

version 6.0
__

Get window title {(window)} ® String

Parameter Type Description
window WinRef ® Window reference number, or

Frontmost window of
current process, if omitted

Function result String ¬ Window title

Description
The command Get window title returns the title of the window whose reference number is
passed in window. If the window does not exist, an empty string is returned.

If you omit the window parameter, Get window title returns the title of the frontmost
window for the current process.

Example
See example for the command SET WINDOW TITLE.

See Also
SET WINDOW TITLE.

4th Dimension Language Reference 1367

SET WINDOW TITLE Windows

version 6.0 (Modified)
__

SET WINDOW TITLE (title{; window})

Parameter Type Description
title String ® Window title
window WinRef ® Window reference number, or

Frontmost window of current process, if
omitted

Description
The command SET WINDOW TITLE changes the title of the window whose reference
number is passed in window to the text passed in title (max. length 80 characters). If the
window does not exist, SET WINDOW TITLE does nothing. If you omit the window
parameter, SET WINDOW TITLE changes the title of the frontmost window for the current
process.

Note: In the User environment, 4th Dimension changes the window titles automatically
—i.e., “Entry for Table” when you perform data entry. If you change a window title, 4D
will probably override it. On the other hand, in the Custom Menus environment, 4th
Dimension does not change the titles of the windows.

Example
While performing data entry in a form, you click on a button that executes a lengthy
operation (i.e., browsing programmatically related records shown in a subform). You keep
informed about the progress of the operation using the title of the current window:

` bAnalysis button Object Method
Case of

: (Form event=On Clicked)
$vsCurTitle:=Get window title ` Save current window title in a local variable
FIRST RECORD([Invoice Line Items]) ` Start the lengthy operation
For($vlRecord;1;Records in selection([Invoice Line Items]))

DO SOMETHING
` Show progress information

SET WINDOW TITLE("Processing Line Item #"+String($vlRecord))
End for

` Restore original window title
SET WINDOW TITLE($vsCurTitle)

End case

See Also
Get window title.

1368 4th Dimension Language Reference

HIDE TOOL BAR Windows

version 6.0
__

HIDE TOOL BAR

Parameter Type Description
This command does not require any parameters

Description
The command HIDE TOOL BAR makes the toolbar invisible.

If the toolbar was already hidden, HIDE TOOL BAR does nothing.

See Also
HIDE MENU BAR, SHOW MENU BAR, SHOW TOOL BAR.

4th Dimension Language Reference 1369

SHOW TOOL BAR Windows

version 6.0
__

SHOW TOOL BAR

Parameter Type Description
This command does not require any parameters

Description
The command SHOW TOOL BAR makes the toolbar visible.

If the toolbar was already visible, SHOW TOOL BAR does nothing.

See Also
HIDE MENU BAR, HIDE TOOL BAR, SHOW MENU BAR.

1370 4th Dimension Language Reference

WINDOW LIST Windows

version 6.0
__

WINDOW LIST (windows{; *})

Parameter Type Description
windows Array ¬ Array of window reference numbers
* * ® If specified, take floating windows into account

If omitted, ignore floating windows

Description
The command WINDOW LIST populates the array windows with the window reference
numbers of the windows currently open in all running processes (kernel or user
processes).

If you do not pass the optional * parameter, floating windows are ignored.

Example
The following project method tiles all the current open window, except floating windows
and dialog boxes:

` TILE WINDOWS project method

Þ WINDOW LIST($alWnd)
$vlLeft:=10
$vlTop:=80 ` Leave enough room for the Tool bar
For ($vlWnd;1;Size of array($alWnd))

If (Window kind($alWnd{$vlWnd}) # Modal Dialog)
GET WINDOW RECT($vlWL;$vlWT;$vlWR;$vlWB;$alWnd{$vlWnd})
$vlWR:=$vlLeft+($vlWR-$vlWL)
$vlWB:=$vlTop+($vlWB-$vlWT)
$vlWL:=$vlLeft
$vlWT:=$vlTop
SET WINDOW RECT($vlWL;$vlWT;$vlWR;$vlWB;$alWnd{$vlWnd})
$vlLeft:=$vlLeft+10
$vlTop:=$vlTop+25

End if
End for

Note: This method could be improved by adding tests on the size of the main window
(on Windows) or the size and location of the screens (on Macintosh).

See Also
Window kind, Window process.

4th Dimension Language Reference 1371

Window kind Windows

version 6.0
__

Window kind {(window)}

Parameter Type Description
window WinRef ® Window reference number, or

Frontmost window of current process, if
omitted

Description
The command Window kind returns the 4th Dimension type of the window whose
reference number is passed in window. If the window does not exist, Window kind returns
0 (zero).

Otherwise, Window kind may return one of the following values:

Constant Type Value
Regular window Long Integer 8
Modal dialog Long Integer 9
External window Long Integer 5
Floating window Long Integer 14

If you omit the window parameter, Window kind returns the type of the frontmost
window for the current process.

Example
Set example for the command WINDOW LIST.

See Also
GET WINDOW RECT, Get window title, Window process.

1372 4th Dimension Language Reference

Window process Windows

version 6.0
__

Window process {(window)} ® Number

Parameter Type Description
window WinRef ® Window reference number

Function result Number ¬ Process reference number

Description
The command Window process returns the process number that runs the window whose
reference number is passed in window. If the window does not exist, 0 (zero) is returned.

If you omit the window parameter, Window process returns the process of the current
frontmost window.

See Also
Current process.

4th Dimension Language Reference 1373

GET WINDOW RECT Windows

version 6.0
__

GET WINDOW RECT (left; top; right; bottom{; window})

Parameter Type Description
left Number ¬ Global left coordinate of

window's contents area
top Number ¬ Global top coordinate of

window's contents area
right Number ¬ Global right coordinate of

window's contents area
bottom Number ¬ Global bottom coordinate of

window's contents area
window WinRef ® Window reference number, or

Frontmost window of
current process, if omitted

Description
The command GET WINDOW RECT returns the global coordinates of the window whose
reference number is passed in window. If the window does not exist, the variable
parameters are left unchanged.

If you omit the window parameter, GET WINDOW RECT applies to the frontmost window
for the current process.

The coordinates are expressed relative to the top left corner of the contents area of the
application window (on Windows) or of the main screen (on Macintosh). The coordinates
return the rectangle corresponding to the contents area of the window (excluding title
bars and borders).

Example
See example for the command WINDOW LIST.

See Also
SET WINDOW RECT.

1374 4th Dimension Language Reference

SET WINDOW RECT Windows

version 6.0
__

SET WINDOW RECT (left; top; right; bottom{; window})

Parameter Type Description
left Number ® Global left coordinate of

window's contents area
top Number ® Global top coordinate of

window's contents area
right Number ® Global right coordinate of

window's contents area
bottom Number ® Global bottom coordinate of

window's contents area
window WinRef ® Window reference number, or

Frontmost window of
current process, if omitted

Description
The command SET WINDOW RECT changes the global coordinates of the the window
whose reference number is passed in window. If the window does not exist, the command
does nothing.

If you omit the window parameter, SET WINDOW RECT applies to the frontmost window
for the current process.

This command can resize and move the window, depending on the new coordinates
passed.

The coordinates must be expressed relative to the top left corner of the contents area of
the application window (on Windows) or to the main screen (on Macintosh). The
coordinates indicate the rectangle corresponding to the contents area of the window
(excluding title bars and borders).

Warning: Be aware that by using this command, you may move a window beyond the
limits of the main window (on Windows) or of the screens (on Macintosh). To prevent
this, use commands such as Screen width and Screen height to double-check the new
coordinates of the window.

Example
See example for the command WINDOW LIST.

See Also
DRAG WINDOW, GET WINDOW RECT.

4th Dimension Language Reference 1375

Frontmost window Windows

version 6.0
__

Frontmost window {(*)} ® WinRef

Parameter Type Description
* * ® If specified, take floating windows into account

If omitted, ignore floating windows

Function result WinRef ¬ Window reference number

Description
The command Frontmost window returns the window reference number of the frontmost
window.

See Also
Frontmost process, Next window.

1376 4th Dimension Language Reference

Next window Windows

version 6.0
__

Next window (window) ® Number

Parameter Type Description
window WinRef ® Window reference number, or

Frontmost window of
current process, if omitted

Function result Number ¬ Window reference number

Description
The command Next window returns the window reference number of the window
“behind” the window you pass in window (based on the front-to-back order of the
windows).

See Also
Frontmost window.

4th Dimension Language Reference 1377

Find window Windows

version 6.0
__

Find window (left; top{; windowPart}) ® WinRef

Parameter Type Description
left Number ® Global left coordinate
top Number ® Global top coordinate
windowPart Number ¬ Window part ID number

Function result WinRef ¬ Window reference number

Description
The command Find window returns (if any) the reference number of the first window
“touched” by the point whose coordinates passed in left and top.

The coordinates must be expressed relative to the top left corner of the contents area of
the application window (Windows) or to the main screen (Macintosh).

If you specify the windowPart parameter, whether or not a window has been found, the
parameter returns one of the following values:

Constants Type Value Platform
In menu bar Long Integer 1 Macintosh only
In system window Long Integer 2 Macintosh only
In contents Long Integer 3 Windows or Macintosh
In drag Long Integer 4 Macintosh only
In grow Long Integer 5 Macintosh only
In go away Long Integer 6 Macintosh only
In zoom box Long Integer 7 Macintosh only

See Also
Frontmost window, Next window.

1378 4th Dimension Language Reference

MAXIMIZE WINDOW Windows

version 6.0.5
__

MAXIMIZE WINDOW {(window)}

Parameter Type Description
window WinRef ® Window reference number or if omitted,

all current process frontmost
windows (Windows) or current
process frontmost window (Mac OS)

Description
The MAXIMIZE WINDOW command triggers the expansion of the window whose
reference number was passed in window. If this parameter is omitted, the effect is the
same but is applied to all the frontmost windows of the current process (Windows) or
to the frontmost window of the current process (Mac OS).

This command has the same effect as a click on the zoom box of a 4D application
window:

On Windows
The size of the window is increased to match the current size of the application window.
The maximized window is set to be the frontmost window. If you do not pass the window
parameter, the command is applied to all the application windows.

Windows zoom box

On Mac OS
The size of the window is increased to match the size of the main screen. If you do not
pass the window parameter, the command is applied to the frontmost window of the
current process.

Zoom box on Mac OS

This command only applies to windows that contain a zoom box. If the window type does
not include it, the command does nothing. For more information, please refer to the
Window Types section.

MAXIMIZE WINDOW sets a window to its "maximum" size. If the window is actually a
form whose size was defined in the form properties, the window size is set to those values.
If the window is already maximized, the command does nothing.

4th Dimension Language Reference 1379

Example
This example sets the window size of your database application to full screen when it is
opened. To achieve this, the following code is placed in the On Startup Database Method :

` On Startup Database Method

Þ MAXIMIZE WINDOW

See also
MINIMIZE WINDOW.

1380 4th Dimension Language Reference

MINIMIZE WINDOW Windows

version 6.0.5
__

MINIMIZE WINDOW {(window)}

Parameter Type Description
window WinRef ® Window reference number or if omitted,

all the current process frontmost
windows (Windows) or current
process frontmost window (Mac OS)

Description
The MINIMIZE WINDOW command sets the size of the window whose number is passed
as window to the size it was before being maximized. If window is omitted, the command
applies to each window of the application (Windows) or to the frontmost window of the
process (on Mac OS).

This command has the same effect as one click on the reduction box of the 4D
application:

On Windows
The size of the window is set to its initial size, i.e., its size before being maximized. If the
window parameter is omitted, all the application windows are set to their initial sizes.

Reduction box on Windows

On Mac OS
The size of the window is set to its initial size (i.e. its size before being maximized). If the
window parameter is omitted, the frontmost window of the current process is set to its
initial size.

Reduction/zoom box on Mac OS

If the windows to which the command is applied were not previously maximized
(manually or using MAXIMIZE WINDOW), or if the window type does not include a zoom
box, the command has no effect. For more information on window types, refer to the
Window Types section.

Note: On Windows, this function is not to be confused with minimizing a window to a
button, which is triggered by a click on the button shown:

4th Dimension Language Reference 1381

1382 4th Dimension Language Reference

56 Error Codes

4th Dimension Language Reference 1383

1384 4th Dimension Language Reference

Syntax Errors Error Codes

version 6.0
__

The following table lists the syntax error codes for errors that may occur during code
execution in the User or Custom Menus environment. Some of these errors may occur in
interpreted mode only, some in compiled mode only, some in both modes. You can
intercept these errors using an error interruption method installed using ON ERR CALL.

Code Description
1 A “(” was expected.
2 A field was expected.
3 The command may be executed only on a field in a subtable.
4 Parameters in the list must all be of the same type.
5 There is no table to which to apply the command.
6 The command may only be executed on a Subtable type field.
7 A Numeric argument was expected.
8 An Alphanumeric argument was expected.
9 The result of a conditional test was expected.
10 The command cannot be applied to this field type.
11 The command cannot be applied between two conditional tests.
12 The command cannot be applied between two Numeric arguments.
13 The command cannot be applied between two Alphanumeric arguments.
14 The command cannot be applied between two Date arguments.
15 The operation is not compatible with the two arguments.
16 The field has no relation.
17 A table was expected.
18 Field types are incompatible.
19 The field is not indexed.
20 An “=” was expected.
21 The method does not exist.
22 The fields must belong to the same table or subtable for a sort or graph.
23 A “<” or “>” was expected.
24 A “;” was expected.
25 There are too many fields for a sort.
26 The field type cannot be Text, Picture or Subtable.
27 The field must be prefixed by the name of its table.
28 The field type must be Numeric.
29 The value must be 1 or 0.
30 A variable was expected.
31 There is no menu bar with this number.
32 A date was expected.
33 Unimplemented command or function.
34
35 The sets are from different tables.

4th Dimension Language Reference 1385

36 Invalid table name.
37 A “:=” was expected.
38
39 The set does not exist.
40 This is a procedure, not a function.
41 A variable or field belonging to a subtable was expected.
42 The record cannot be pushed onto the stack.
43 The function cannot be found.
44 The method cannot be found.
45 Field or variable expected.
46 A Numeric or Alphanumeric argument was expected.
47 The field type must be Alphanumeric.
48 Syntax error.
49 This operator cannot be used here.
50 These operators cannot be used together.
51 Module not implemented.
52 An array was expected.
53 Indice out of range.
54 Argument types are incompatible.
55 A Boolean argument was expected.
56 Field, variable, or table expected.
57 An operator was expected.
58 A “)” was expected.
59 This kind of argument was not expected here.
60 A parameter or a local variable cannot be used in an EXECUTE statement

in a compiled database.
61 The type of an array cannot be modified in a compiled database.
62 The command cannot be applied to a subtable.
63 The field is not indexed.
64 A picture field or variable was expected.
65
66
67 This command cannot be executed on 4D Server.
68 A list was expected.
__

Tips
Some of these error codes denote plain syntax errors due to mistyping. For example, you
get an error #37 if you execute the statement v=0 when you actually meant v:=0. You
can eliminate the error by fixing your code in the Design Method Editor.

Some of these error codes are due to simple programming errors. For example, you get an
error #5 if you execute an ADD RECORD command, when you have not first set the
default table (using the DEFAULT TABLE command), and do not pass the table parameter.
In this case, there is no table to which to apply the command. You eliminate the error by
checking to see if you forgot to set the default table or if you forgot to pass the table
parameter to the command for this occurrence.

1386 4th Dimension Language Reference

Some of these error codes denote errors due to a flaw in the design. For example, you get
an error #16 if you apply RELATE ONE to a field that is not related to any other field. You
eliminate the error by checking to see if your code is actually wrong or if you simply
forgot to create the relation starting from the field.

Some errors, when they occur, are not always located exactly where your code breaks. For
example, if in a subroutine you get an error #53 (indice out of range) on the line
vpFld:=Field($1;$2), the error is due to a wrong table and/or field number that has been
passed to the subroutine as a parameter. Therefore, the error is located in the caller
method and not where the error actually occurs. In this case, trace your code in the
Debugger window to determine which line of code is the real culprit, then fix it in the
Design Method Editor.

See Also
ON ERR CALL.

4th Dimension Language Reference 1387

Database Engine Errors Error Codes

version 6.0
__

This table lists the error codes generated by the 4th Dimension Database Engine. These
codes cover errors that occur at a low level of the database engine, such as user
interruption, privilege errors, and damaged objects.

Code Description
1006 Program interrupted by user—user pressed Alt-click (Windows)

or Option-click (MacOS)

-9937 Password System is locked by another user.
-9938 The current record has been changed from within the trigger.
-9939 External routine not found.
-9940 4D Extension initialization failed.
-9941 Unknown EX_GESTALT selector.
-9942 4D Client licensing scheme is incompatible with this version of 4D Server.
-9943 4D Passport version error.
-9944 The user does not belong to the 4D Open access group.
-9945 CD-ROM 4D Runtime error, writing operations are not allowed.
-9946 Unable to clear the named selection because it does not exist.
-9947 The “Allow 4D Client connections only” check box has been selected.
-9950 Invalid data segment number.
-9951 This field has no relation.
-9952 Invalid data segment header.
-9953 There is no Log file.
-9954 There is no current record.
-9955 QuickTime is not installed.
-9956 Versions of 4D Client and 4D Server are different.
-9957 The choice list is locked.
-9958 The process could not be started.
-9959 The backup process has already been started by another user or process.
-9960 4D Backup is not installed on the server.
-9961 The backup process is not currently running.
-9962 The backup cannot be run because the server is shutting down.
-9963 Invalid record number requested by a workstation.
-9964 Bad sort definition table sent by a workstation.
-9965 Bad search definition table sent by a workstation.
-9966 Invalid type requested by a workstation.
-9967 The record could not be modified because it could not be loaded.
-9968 Invalid selected record number requested by workstation.
-9969 Invalid field type requested by workstation.
-9970 Field is not indexed.
-9971 Field number is out of range requested by workstation.
-9972 File number is out of range requested by workstation.

1388 4th Dimension Language Reference

-9973 The TRIC resources are not the same.
-9974 Record has already been deleted.
-9975 Transaction index page could not be loaded.
-9976 Backup in progress, no modification allowed.
-9977 The selection does not exist.
-9978 Bad user password.
-9979 Unknown user.
-9980 The file cannot be created because the structure is locked.
-9981 Invalid field name/field number definition table sent by the workstation.
-9982 The record was not loaded because it is not in the selection on the workstation.
-9983 The same external package is installed twice.
-9984 Transaction has been cancelled because of a duplicated index key error.
-9985 Recursive integrity.
-9986 Record locked during an automatic deletion action.
-9987 Some other records are already related to this record.
-9989 Invalid structure (database needs to be repaired).
-9990 Time-out error.
-9991 Privileges error.
-9992 Wrong password.
-9993 Menu bar is damaged (database needs to be repaired).
-9994 Serial communication interrupted by the user,

user pressed Ctrl-Alt-Shift (Windows) or Command-Option-Shift (MacOS).
-9995 Demo limit has been reached.
-9996 Stack is full (too much recursion or nested calls).
-9997 Maximum number of records has been reached.
-9998 Duplicated key.
-9999 No more room to save the record. (see note 4)
-10500 Invalid record address (database needs to be repaired) .
-10501 Invalid index page (index needs to be repaired).
-10502 Invalid record structure (data file needs to be repaired).
-10503 Record # is out of range.

(during GOTO RECORD, or data file needs to be repaired) (see note 3)
-10504 Index page # is out of range (index needs to be repaired).

-1 Unkown entry point requested by a Plug-In
4001 Invalid table number requested by a Plug-In
4002 Invalid record number requested by a Plug-In
4003 Invalid field number requested by a Plug-In
4004 Access to a table's current record requested by a Plug-in

while there is no current record

4th Dimension Language Reference 1389

Notes
1. While some of the errors listed reflect serious problems, i.e., -10502 Invalid record
structure (data file needs to be repaired), other errors may occur on a regular basis and can
be managed using an ON ERR CALL project method. For example, it is common to handle
the error –9998 Duplicated key if your application offers opportunities to create duplicated
values for a table that includes an indexed field whose Unique property is set.

2. Some of the errors listed never occur at the 4D language level. They can occur and be
handled at a low level by database engine routines or when using 4D Backup or 4D Open.

3. The error -10503 Record # is out of range does NOT always mean that the database
needs to be repaired. This error may occur if you attempt to use the record number (i.e.,
the command GOTO RECORD) for a newly created record in transaction. The reason is
that newly created records, while in a transaction, are assigned temporary record numbers
until the transaction is validated. If this error occurs in that context, your database is fine,
but your algorithm is not.

4. The error -9999 No more room to save the record occurs when all the segments of your
database are full or located on full volumes. This error can also be generated if the data file
is locked or located on a locked volume. This allows you, for example, to detect locked
data files from within the On Startup Database Method of your application. For more
information on this subject, see Testing the locked status of the data file.

See Also
ON ERR CALL.

1390 4th Dimension Language Reference

Network Components Errors Error Codes

version 6.0
__

The following table describes the errors that can occur with a network component.

Code Description
-10001 The actual connection to the database has been disrupted.
-10002 The connection for this process has been disrupted.
-10003 Bad connection parameters.
-10020 No server was selected while using OP Select 4D server.
-10021 No server was found while using OP Find 4D server.
-10050 Unknown option in Get/SetOption.
-10051 Incorrect value in Get/SetOption.
-10130 The state of the connection does not allow you to continue this session.
-10131 The connection has been aborted.
-10132 Some connection parameters are invalid.
2 The user clicked the Other button while using OP Select 4D Server.

4th Dimension Language Reference 1391

OS File Manager Errors Error Codes

version 6.0
__

The following table lists codes returned by the Operating System File Manager. These
codes can be returned when you are using, for example, the System Documents
commands. In this list, the word “file” indicates a document on disk and not a file in
your database structure.

Code Description
-33 File directory full. You cannot create new files on disk.
-34 Disk is full. There is no more room available on the disk.
-35 Specified volume doesn’t exist.
-36 I/O error. There is probably a bad block on the disk.
-37 Bad filename or volume name.
-38 Tried to read or write to a file that is not open.
-39 Logical end-of-file reached during read operation.
-40 Attempt to position before start of file.
-41 Not enough memory to open a new file on the disk.
-42 Too many files open at the same time.
-43 File not found.
-44 Volume is locked by a hardware setting.
-45 File is locked.
-46 Volume is locked by an application.
-47 Tried to access a file that has been deleted.
-48 Tried to rename a file with the name of an already deleted file.
-49 Tried to open a file already open with write permission.
-51 Tried to access a document with an invalid document reference number.
-52 Internal file manager error (position of file marker is lost).
-53 Volume not on line.
-54 Attempt to open locked file for writing.
-57 Tried to work with a non-Windows disk.
-58 Tried to work with a non-Windows disk.
-60 Bad master directory block. Your disk is damaged.
-61 Read/write permission doesn’t allow writing.
-64 There is a hardware problem with the disk

(bad installation, incorrect formatting,...).
-84 There is a hardware problem with the disk

(bad installation, incorrect formatting,...).
-120 Tried to access a file by using a pathname that specifies a non existing directory.
-121 An access path could not be created.
-124 Tried to access a disconnected shared volume.

See Also
ON ERR CALL.

1392 4th Dimension Language Reference

OS Memory Manager Errors Error Codes

version 6.0
__

The following table lists the error codes returned by the Operating System Memory
Manager.

Code Description
-108 Not enough memory to perform an operation.

Give more memory to your 4D application.
-109 Internal Memory problem. Memory is probably logically corrupted.

Exit as soon as possible. Restart your machine and reopen the database.
-111 Internal Memory problem. Memory is probably logically corrupted.

Exit as soon as possible. Restart your machine and reopen the database. (*)
-117 Internal Memory problem. Memory is probably logically corrupted.

Exit as soon as possible. Restart your machine and reopen the database.

Tip: When allocating and working with large arrays, BLOBs, pictures, as well as sets
(objects that can hold large amount of data), use an ON ERR CALL project method to test
the error -108.

(*) Error -111 can also occur when you attempt to read a value from a BLOB with an offset
out of range. In this case, the error is minor and you do not need to terminate the
working session. Just fix the offset you pass to the BLOB command.

See Also
ON ERR CALL.

4th Dimension Language Reference 1393

OS Printing Manager Errors Error Codes

version 6.0
__

The following table lists the error codes returned by the Operating System Printing
Manager. These codes can be returned during printing.

Code Description
-1 Problem saving file to be printed
-27 Problem opening or closing connection with printer
-128 Printing interrupted by the user
-193 Resource file not found
-4100 Printer connection has been interrupted
-4101 Printer busy or not connected
-8150 A LaserWriter is not selected
-8151 The printer has been initialized with a different driver version
-8192 LaserWriter time-out

See Also
ON ERR CALL.

1394 4th Dimension Language Reference

OS Resource Manager Errors Error Codes

version 6.0
__

The following table lists the error codes returned by the Operating System Resource
Manager.

Code Description
-1 Resource file could not be opened
-192 Resource not found
-193 Resource map is damaged (file needs to be repaired)
-194 Resource could not be added
-196 Resource could not be deleted

See Also
ON ERR CALL.

4th Dimension Language Reference 1395

SANE NaN Errors Error Codes

version 6.0
__

The following table lists the NaN codes returned by the Operating System. NaN is a
Standard Apple Numeric Environment (SANE) representation which means “Not a
Number.” NaN appears when an operation produces a result that is beyond SANE’s scope.

Code Description
1 Invalid square root
2 Invalid addition
4 Invalid division
8 Invalid multiplication
9 Invalid remainder
17 Converting an invalid ASCII string
20 Converting a Comp type number to floating-point
21 Creating a NaN with a zero code
33 Invalid argument to a trig function
34 Invalid argument to an inverse trig function
36 Invalid argument to a log function
37 Invalid argument to an xi or xy function
38 Invalid argument to a financial function
255 Uninitialized storage

1396 4th Dimension Language Reference

OS Sound Manager Errors Error Codes

version 6.0
__

The following table lists the codes returned by the Operating System Sound Manager.

Code Description
-203 Too many sound commands
-204 The sound resource cannot be loaded
-205 The sound channel is logically corrupted
-206 The format of the sound resource is wrong
-207 Not enough memory to perform the sound
-209 The sound channel is busy

See Also
ON ERR CALL.

4th Dimension Language Reference 1397

OS Serial Ports Manager Errors Error Codes

version 6.0
__

The following table lists error codes returned by the Operating System Serial Ports
Manager.

Code Description
-28 There is no open serial port

See Also
ON ERR CALL.

1398 4th Dimension Language Reference

MacOS System Errors Error Codes

version 6.0
__

The following table lists some of the MacOS system errors. It is usually not possible to
recover from these errors.

Code Description
4 Zero divide
15 Segment Loader Error:

4th Dimension failed in loading one of its own code segments.
You must allocate more memory to 4th Dimension.

17 to 24 A system package is missing.
Check if your system directory has been correctly installed

25 Out of memory
You must allocate more memory to 4th Dimension

28 Stack has moved into the application heap.
You must allocate more memory to 4th Dimension

4th Dimension Language Reference 1399

Testing the locked status of the data file Error Codes

version 3.2.5
__

Testing the locked status of the data file and the volume on which it is located requires
calls to the Operating System File Manager. Doing so for each database operation that
modifies the data file would significantly affect the performance of the database engine.

It is your responsibility to test this status at the beginning of a working session. Usually,
you do so in the On Startup Database Method of your database. In versions up to 3.2.5 of
4D and 1.2.5 of 4D Server, testing the locked status of the data file required the use of
external routines that returned the File Manager attributes of the data file and the volume
where it is located. Now, 4D and 4D Server simplify this test by signalling a locked data
file each time you try to create a new record. If the data file or its volume are locked, the
database engine generates the error -9999 No more space available to save the record.

The following code is an example of how to test the locked status of the data file:

` Is data locked project method
` Is data locked -> Boolean
` Is data locked -> True if locked or full

gError:=0
ON ERR CALL("ERROR HANDLING")
CREATE RECORD([Any File])
SAVE RECORD([Any File])
ON ERR CALL("")
If (gError=0)

DELETE RECORD([Any File])
End if
$0:=(gError=-9999)

The ON ERR CALL method, named ERROR HANDLING, is listed here:

` ERROR HANDLING project method
gError:=Error

Then, in the On Startup Database Method of your database, you can write:

` STARTUP global procedure
` ...

If (Is data locked)
` Displays a dialog box explaining that:
` - the data file is locked,
` - or the volume on which the data file is locked or full,
` Whatever the case, you may want to use the database in read only:
` the data file may be located on a CD-ROM volume.
` So the dialog box may have a “Use in read only” button and a “Quit” button.

1400 4th Dimension Language Reference

If (bQuit=1)
QUIT 4D ` Leave the database and check what's going on at the Finder level

Else
` Set an interprocess flag to signal that the data file is locked

<>gREADONLY:=True
` ... Continue Startup execution

End if
End if

If you authorize use of the database with a locked data file, be sure to restrict access to the
operations that might modify the database contents. To do so, you can call your test
function again or maintain an interprocess flag as in the previous example. For example,
if you have a project method M_ADD_CUST that starts a process in which you add
Customer records, you know in advance if this will be possible. If it is not, it is worthless
to start the process. For example:

` M_ADD_CUST project method
If (Can write data)

` Go ahead
<>vlPID_CUST:=New process(...;...;...)

` ...
End if

The method Can write data is listed here:

` Can write data project method
` Can write data -> Boolean
` Can write data -> True if data file is not locked

$0:=True
If (<>gREADONLY) ` or If (Is data locked)

ALERT("This operation cannot be performed with a read only data file.")
$0:=False

End if

Important note: In order to preserve the database engine performance in 4D 3.2.5 and 4D
Server 1.2.5 (and earlier versions), DO NOT check the locked status of the data file during
each database operation that might modify data file contents. For example, if you are
adding records in a transaction, remember that the data file is left untouched until you
try to validate the transaction. Testing the locked status of the data while making
modifications in a transaction would add needless testing overhead. Consequently, the
locked status of the data file is tested only when you try to create a new record when not
in a transaction. This includes adding or importing new records in the User environment.
This also includes the commands ADD RECORD, SAVE RECORD (applied to a new record),
and ARRAY TO SELECTION (that creates new records). This does not include the creation of
new records in a transaction, or modification or deletion of existing records.

Note: Testing the locked status of the data file does not prevent you from continuing to
test the other I/O errors that may occur while writing to the data file.

4th Dimension Language Reference 1401

1402 4th Dimension Language Reference

57 ASCII Codes

4th Dimension Language Reference 1403

1404 4th Dimension Language Reference

ASCII Codes ASCII Codes

version 6.0
__

ASCII Code Tables

• The standard ASCII codes, 0 through 127, are common to Windows and Macintosh.
These standard ASCII codes are listed in ASCII Codes 0..63 and ASCII Codes 64..127.

• The ASCII codes 128 through 255 are different on Windows and Macintosh. In order to
maintain platform independence, the Windows version of 4th Dimension automatically
converts ASCII codes from Windows to Macintosh ASCII maps when characters are
entering the 4D environment (Data entry, Edit/Paste, Import, etc.) and from Macintosh
to Windows ASCII maps when characters are leaving the 4D environment (Edit/Cut or
Copy, Export, etc.).

The ASCII codes 128 through 255 are listed in ASCII Codes 128..191 and ASCII Codes
192..255.

Understanding ASCII Codes and 4th Dimension
On both Macintosh and Windows, the internal database engine and the 4D language
work with the Macintosh extended ASCII set. When you enter data using the keyboard
(adding records, editing procedures, etc.), 4th Dimension uses the internal Altura ASCII
conversion scheme to convert what comes from the keyboard (expressed using the
Windows set) to the Macintosh set. For example, to enter an “é”, you type ALT+0233, and
4th Dimension stores ASCII code 142 in the record. This is transparent to the end user,
because when you create a search, you actually type (in the Search editor) the value for
which you are looking. Therefore, the value that you typed (ALT+0233) is also translated
into ASCII code 142, and you find the value.

The codes work the same when you type ALT+0233 in the Procedure editor. However, to
look for a character using its ASCII code, you use the Macintosh ASCII code of the
character.

For example:

QUERY (...; [MyFile]MyField="é") ` é is Alt+0233

is the same as:

QUERY (...;[MyFile]MyField=Char(142)) ` é is ASCII 142

See Also
Ascii, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

4th Dimension Language Reference 1405

ASCII Codes 0..63 ASCII Codes

version 6.0
__

The standard ASCII codes (0 through 127) are common to Windows and Macintosh.

1406 4th Dimension Language Reference

ASCII Codes 64..127 ASCII Codes

version 6.0
__

The standard ASCII codes (0 through 127) are common to Windows and Macintosh.

4th Dimension Language Reference 1407

ASCII Codes 128..191 ASCII Codes

version 6.0
__

The following tables list the characters displayed by 4th Dimension for each ASCII code,
on Macintosh and Windows. In addition, the tables present the key combination required
to produce each character, using a US keyboard.

1408 4th Dimension Language Reference

4th Dimension Language Reference 1409

1410 4th Dimension Language Reference

Note: The cells in the Windows column that are greyed out denote characters that are not
available on Windows or that are different from the Macintosh characters.

See Also
Char, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

4th Dimension Language Reference 1411

ASCII Codes 192..255 ASCII Codes

version 6.0
__

The following tables list the characters displayed by 4th Dimension for each ASCII code,
on Macintosh and Windows. In addition, the tables present the key combination required
to produce each character, using a US keyboard.

1412 4th Dimension Language Reference

4th Dimension Language Reference 1413

1414 4th Dimension Language Reference

Note: The cells in the Windows column that are greyed out denote characters that are not
available on Windows or that are different from the Macintosh characters.

See Also
Ascii, ISO to Mac, Mac to ISO, Mac to Win, ON EVENT CALL, Win to Mac.

4th Dimension Language Reference 1415

Function Key Codes ASCII Codes

version 6.0
__

4th Dimension returns values for Function keys in the KeyCode system variable, which is
used within project methods installed by the ON EVENT CALL command. These project
methods are used to catch events. The values for Function keys are not based on ASCII
codes. They are:

Reminder: The KeyCode system variable is to be used in a project method installed using
ON EVENT CALL.

In addition to the function keys, the following table lists the values returned in KeyCode
when you press one of the common keys, such as Return or Enter.

1416 4th Dimension Language Reference

58 Command Syntax

4th Dimension Language Reference 1417

1418 4th Dimension Language Reference

Command Syntax by Name Command Syntax

version 6.0.2
__

A

ABORT
Abs (number) ® Number
ACCEPT
ACCUMULATE (data{; data2; ...; dataN})
ACI folder ® String
Activated ® Boolean
ADD DATA SEGMENT
ADD RECORD ({table}{; }{*})
ADD SUBRECORD (subtable; form{; *})
Add to date (date; years; months; days) ® Date
ADD TO SET ({table; }set)
After ® Boolean
ALERT (message{; ok button title})
ALL RECORDS {(table)}
ALL SUBRECORDS (subtable)
Append document (document{; type}) ® DocRef
APPEND MENU ITEM (menu; itemText{; process})
APPEND TO CLIPBOARD (dataType; data)
APPEND TO LIST (list; itemText; itemRef{; sublist{; expanded}})
Application file ® String
Application type ® Long Integer
Application version {(*)} ® String
APPLY TO SELECTION ({table; }statement)
APPLY TO SUBSELECTION (subtable; statement)
Arctan (number) ® Number
ARRAY BOOLEAN (arrayName; size{; size2})
ARRAY DATE (arrayName; size{; size2})
ARRAY INTEGER (arrayName; size{; size2})
ARRAY LONGINT (arrayName; size{; size2})
ARRAY PICTURE (arrayName; size{; size2})

4th Dimension Language Reference 1419

ARRAY POINTER (arrayName; size{; size2})
ARRAY REAL (arrayName; size{; size2})
ARRAY STRING (strLen; arrayName; size{; size2})
ARRAY TEXT (arrayName; size{; size2})
ARRAY TO LIST (array; list{; itemRefs})
ARRAY TO SELECTION (array; field{; array2; field2; ...; arrayN; fieldN})
ARRAY TO STRING LIST (strings; resID{; resFile})
Ascii (character) ® Number
AUTOMATIC RELATIONS (one; many)
Average (series) ® Number

B

BEEP
Before ® Boolean
Before selection {(table)} ® Boolean
Before subselection (subtable) ® Boolean
BLOB PROPERTIES (blob; compressed{; expandedSize{; currentSize}})
BLOB size (blob) ® Number
BLOB TO DOCUMENT (document; blob{; *})
BLOB to integer (blob; ordreOctet{; offset}) ® Number
BLOB to list (blob{; offset}) ® ListRef
BLOB to longint (blob; byteOrder{; offset}) ® Number
BLOB to real (blob; realFormat{; offset})
BLOB to text (blob; formatTexte{; offset{; longueurTexte}})
BLOB TO VARIABLE (blob; variable{; offset})
BREAK LEVEL (level{; pageBreak})
BRING TO FRONT (process)
BUTTON TEXT ({*; }object; buttonText)

C

CALL PROCESS (process)
CANCEL
CANCEL TRANSACTION
Caps lock down ® Boolean
CHANGE ACCESS

1420 4th Dimension Language Reference

CHANGE PASSWORD (password)
Change string (source; newChars; where) ® String
Char (asciiCode) ® String
CLEAR CLIPBOARD
CLEAR LIST (list{; *})
CLEAR NAMED SELECTION (name)
CLEAR SEMAPHORE (semaphore)
CLEAR SET (set)
CLEAR VARIABLE (variable)
CLOSE DOCUMENT (docRef)
CLOSE RESOURCE FILE (resFile)
CLOSE WINDOW {(extWindowRef)}
Command name (command) ® String
Compiled application ® Boolean
COMPRESS BLOB (blob{; compression})
COMPRESS PICTURE (picture; method; quality)
COMPRESS PICTURE FILE (document; method; quality)
CONFIRM (message{; OK button title{; cancel button title}})
COPY ARRAY (source; destination)
COPY BLOB (srcBLOB; dstBLOB; srcOffset; dstOffset; len)
COPY DOCUMENT (sourceName; destinationName{; *})
Copy list (list) ® ListRef
COPY NAMED SELECTION ({table; }name)
COPY SET (srcSet; dstSet)
Cos (number) ® Number
Count fields (tableNum | tablePtr) ® Number
Count list items (List) ® Long
Count menu items (menu{; process}) ® Number
Count menus {(process)} ® Number
Count parameters ® Number
Count screens ® Number
Count tables ® Number
Count tasks ® Integer
Count user processes ® Integer
Count users ® Integer
Create document (document{; type}) ® DocRef
CREATE EMPTY SET ({table; }set)
CREATE FOLDER (folderPath)

4th Dimension Language Reference 1421

CREATE RECORD {(table)}
CREATE RELATED ONE (field)
Create resource file (resFilename{; fileType}) ® DocRef
CREATE SET ({table; }set)
CREATE SUBRECORD (subtable)
Current date {(*)} ® Date
Current default table ® Pointer
Current form page ® Number
Current form table ® Pointer
Current machine ® String
Current machine owner ® String
Current process ® Number
Current time {(*)} ® Time
Current user ® String
CUT NAMED SELECTION ({table; }name)
C_BLOB ({method; }variable{; variable2; ...; variableN})
C_BOOLEAN ({method; }variable{; variable2; ...; variableN})
C_DATE ({method; }variable{; variable2; ...; variableN})
C_GRAPH ({method; }variable{; variable2; ...; variableN})
C_INTEGER ({method; }variable{; variable2; ...; variableN})
C_LONGINT ({method; }variable{; variable2; ...; variableN})
C_PICTURE ({method; }variable{; variable2; ...; variableN})
C_POINTER ({method; }variable{; variable2; ...; variableN})
C_REAL ({method; }variable{; variable2; ...; variableN})
C_STRING ({method; }size; variable{; variable2; ...; variableN})
C_TEXT ({method; }variable{; variable2; ...; variableN})
C_TIME ({method; }variable{; variable2; ...; variableN})

D

Data file {(segment)} ® String
DATA SEGMENT LIST (Segments)
Database event ® Number
Date (dateString) ® Date
Day number (date) ® Number
Day of (date) ® Number
Deactivated ® Boolean

1422 4th Dimension Language Reference

Dec (number) ® Number
DEFAULT TABLE (table)
DELAY PROCESS (process; duration)
DELETE DOCUMENT (document)
DELETE ELEMENT (array; where{; howMany})
DELETE FROM BLOB (blob; offset; len)
DELETE LIST ITEM (list; itemRef | *{; *})
DELETE MENU ITEM (menu; menuItem{; process})
DELETE RECORD {(table)}
DELETE RESOURCE (resType; resID{; resFile})
DELETE SELECTION {(table)}
Delete string (source; where; numChars) ® String
DELETE SUBRECORD (subtable)
DELETE USER (UserID)
DIALOG ({table; }form)
DIFFERENCE (set; subtractSet; resultSet)
DISABLE BUTTON ({*; }object)
DISABLE MENU ITEM (menu; menuItem{; process})
DISPLAY RECORD {(table)}
DISPLAY SELECTION ({table}{; *}{; *})
DISTINCT VALUES (field; array)
Document creator (document) ® String
DOCUMENT LIST (pathname; documents)
DOCUMENT TO BLOB (document; blob{; *})
Document type (document) ® String
DRAG AND DROP PROPERTIES (srcObject; srcElement; srcProcess)
DRAG WINDOW
Drop position ® Number
DUPLICATE RECORD {(table)}
During ® Boolean

E

EDIT ACCESS
ENABLE BUTTON ({*; }object)
ENABLE MENU ITEM (menu; menuItem{; process})
End selection {(table)} ® Boolean

4th Dimension Language Reference 1423

End subselection (subtable) ® Boolean
ERASE WINDOW {(window)}
EXECUTE (statement)
Execute on server (procedure; stack{; name{; param{; param2; ...; paramN}{; *}}}) ® Number
Exp (number) ® Number
EXPAND BLOB (blob)
EXPORT DIF ({table; }document)
EXPORT SYLK ({table; }document)
EXPORT TEXT ({table;} document)

F

False ® Boolean
Field (tableNum | fieldPtr{; fieldNum}) ® Number | Pointer
Field name ({tableNum; }fieldNum | fieldPtr) ® String
FILTER EVENT
FILTER KEYSTROKE (filteredChar)
Find in array (array; value{; start}) ® Number
Find window (left; top{; windowPart}) ® WinRef
FIRST PAGE
FIRST RECORD {(table)}
FIRST SUBRECORD (subtable)
FLUSH BUFFERS
FOLDER LIST (pathname; directories)
FONT ({*; }object; font)
FONT LIST (fonts)
Font name (fontNumber) ® String
Font number (fontName) ® Number
FONT SIZE ({*; }object; size)
FONT STYLE ({*; }object; styles)
Form event ® Number
Frontmost process {(*)} ® Integer
Frontmost window {(*)} ® WinRef

1424 4th Dimension Language Reference

G

Gestalt (selector; value) ® Number
GET CLIPBOARD (dataType; data)
Get document position (docRef) ® Number
GET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;
modified on; modified at)
Get document size (document{; *}) ® Number
GET FIELD PROPERTIES ({tableNum; }fieldNum | fieldPtr; fieldType{; fieldLen{; indexed}})
GET GROUP LIST (groupNames; groupNumbers)
GET GROUP PROPERTIES (groupID; name; owner{; members})
GET HIGHLIGHT (area; startSel; endSel)
GET ICON RESOURCE (resID; resData{; fileRef})
Get indexed string (resID; strID{; resFile}) ® String
GET LIST ITEM (list; itemPos; itemRef; itemText{; sublist{; expanded}})
GET LIST ITEM PROPERTIES (list; itemRef; enterable{; styles{; icon}})
GET LIST PROPERTIES (list; appearance{; icon{; lineHeight}})
Get menu item (menu; menuItem{; process}) ® String
Get menu item key (menu; menuItem{; process}) ® Number
Get menu item mark (menu; menuItem{; process}) ® String
Get menu item style (menu; menuItem{; process}) ® Number
Get menu title (menu{; process}) ® String
GET MOUSE (mouseX; mouseY; mouseButton{; *})
GET PICTURE FROM CLIPBOARD (picture)
GET PICTURE FROM LIBRARY (picRef; picture)
GET PICTURE RESOURCE (resID; resData{; resFile})
Get platform interface ® Number
Get pointer (varName) ® Pointer
GET PROCESS VARIABLE (process; srcVar; dstVar{; srcVar2; dstVar2; ...; srcVarN; dstVarN})
GET RESOURCE (resType; resID; resData{; resFile})
Get resource name (resType; resID{; resFile}) ® String
Get resource properties (resType; resID{; resFile}) ® Number
Get string resource (resID{; resFile}) ® String
Get text from clipboard ® String
Get text resource (resID{; resFile}) ® Text
GET USER LIST (userNames; userNumbers)
GET USER PROPERTIES (userID; name; startup; password; nbLogin; lastLogin{; memberships})

4th Dimension Language Reference 1425

GET WINDOW RECT (left; top; right; bottom{; window})
Get window title {(window)} ® String
GOTO AREA (area)
GOTO PAGE (pageNumber)
GOTO RECORD ({table; }record)
GOTO SELECTED RECORD ({table; }record)
GOTO XY (x; y)
GRAPH (graphArea; graphNumber; xLabels; yElements{; yElements2; ...; yElementsN})
GRAPH SETTINGS (graph; xmin; xmax; ymin; ymax; xprop; xgrid; ygrid; title{; title2; ...;
titleN})
GRAPH TABLE ({table; }graphType; x field; y field{; y field2; ...; y fieldN})

H

HIDE MENU BAR
HIDE PROCESS (process)
HIDE TOOL BAR
HIGHLIGHT TEXT (area; startSel; endSel)

I

IDLE
IMPORT DIF ({table; }document)
IMPORT SYLK ({table; }document)
IMPORT TEXT ({table; }document)
In break ® Boolean
In footer ® Boolean
In header ® Boolean
In transaction ® Boolean
INPUT FORM ({table; }form{; *})
INSERT ELEMENT (array; where{; howMany})
INSERT IN BLOB (blob; offset; len{; filler})
INSERT LIST ITEM (list; beforeItemRef | *; itemText; itemRef{; sublist{; expanded}})
INSERT MENU ITEM (menu; afterItem; itemText{; process})
Insert string (source; what; where) ® String
Int (number) ® Number
INTEGER TO BLOB (integer; blob; byteOrder{; offset | *})

1426 4th Dimension Language Reference

INTERSECTION (set1; set2; resultSet)
INVERT BACKGROUND (textVar | textField)
Is a list (list) ® Boolean
Is a variable (aPointer) ® Boolean
Is in set (set) ® Boolean
Is user deleted (userNumber) ® Boolean
ISO to Mac (text) ® String

K

Keystroke ® string

L

Last object ® Pointer
LAST PAGE
LAST RECORD {(table)}
LAST SUBRECORD (subtable)
Length (string) ® Number
Level ® Number
List item parent (list; itemRef) ® Number
List item position (list; itemRef) ® Number
LIST TO ARRAY (list; array{; itemRefs})
LIST TO BLOB (list; blob{; *})
LOAD COMPRESS PICTURE FROM FILE (document; method; quality; picture)
Load list (listName) ® ListRef
LOAD RECORD {(table)}
LOAD SET ({table; }set; document)
LOAD VARIABLES (document; variable{; variable2; ...; variableN})
Locked {(table)} ® Boolean
LOCKED ATTRIBUTES ({table; }process; user; machine; processName)
Log (number) ® Number
LONGINT TO BLOB (longInt; blob; byteOrder{; offset | *})
Lowercase (string) ® String

4th Dimension Language Reference 1427

M

Mac to ISO (text) ® String
Mac to Win (text) ® String
Macintosh command down ® Boolean
Macintosh control down ® Boolean
Macintosh option down ® Boolean
MAP FILE TYPES (macOS; windows; context)
Max (series) ® Number
MENU BAR (menuBar{; process}{; *})
Menu bar height ® Number
Menu bar screen ® Number
Menu selected ® Number
MESSAGE (message)
MESSAGES OFF
MESSAGES ON
Milliseconds ® Number
Min (series) ® Number
Mod (number1; number2) ® Number
Modified (field) ® Boolean
Modified record {(table)} ® Boolean
MODIFY RECORD ({table}{; }{*})
MODIFY SELECTION ({table}{; *}{; *})
MODIFY SUBRECORD (subtable; form{; *})
Month of (date) ® Number
MOVE DOCUMENT (srcPathname; dstPathname)

N

New list ® ListRef
New process (method; stack{; name{; param{; param2; ...; paramN}{; *}}}) ® Number
NEXT PAGE
NEXT RECORD {(table)}
NEXT SUBRECORD (subtable)
Next window (window) ® Number
Nil (aPointer) ® Boolean
NO TRACE

1428 4th Dimension Language Reference

Not (boolean) ® Boolean
Num (expression) ® Number

O

Old (field) ® Expression
OLD RELATED MANY (field)
OLD RELATED ONE (field)
ON ERR CALL (errorMethod)
ON EVENT CALL (eventMethod{; processName})
ON SERIAL PORT CALL (serialMethod{; process})
ONE RECORD SELECT {(table)}
Open document (document{; fileType}) ® DocRef
Open external window (left; top; right; bottom; type; title; plugInArea) ® Number
Open resource file (resFilename{; fileType}) ® DocRef
Open window (left; top; right; bottom{; type{; title{; controlMenuBox}}}){ ® WinRef }
ORDER BY ({table}{; field}{; > or <}{; field2; > or <2; ...; fieldN; > or <N})
ORDER BY FORMULA (table{; expression}{; > or <}{; expression2; > or <2; ...; expressionN;
> or <N})
ORDER SUBRECORDS BY (subtable; subfield{; > or <}{; subfield2; > or <2; ...; subfieldN;
> or <N})
OUTPUT FORM ({table; }form)
Outside call ® Boolean

P

PAGE BREAK {(* | >)}
PAGE SETUP ({table; }form)
PAUSE PROCESS (process)
PICTURE LIBRARY LIST (picRefs; picNames)
PICTURE PROPERTIES (picture; width; height{; hOffset{; vOffset{; mode}}})
Picture size (picture) ® Number
PLATFORM PROPERTIES (platform; system; machine)
PLAY (objectName{; channel})
POP RECORD {(table)}
Pop up menu (contents{; default}) ® Number
Position (find; string) ® Number

4th Dimension Language Reference 1429

POST CLICK (mouseX; mouseY{; process}{; *})
POST EVENT (what; message; when; mouseX; mouseY; modifiers{; process})
POST KEY (code{; modifiers{; process}})
PREVIOUS PAGE
PREVIOUS RECORD {(table)}
PREVIOUS SUBRECORD (subtable)
PRINT FORM ({table; }form)
PRINT LABEL ({table}{; document}{; *})
PRINT RECORD ({table}{; }{*})
PRINT SELECTION ({table}{; }{*})
PRINT SETTINGS
Printing page ® Number
Process number (name{; *}) ® Number
PROCESS PROPERTIES (process; procName; procState; procTime{; procVisible})
Process state (process) ® Number
PUSH RECORD {(table)}

Q

QUERY ({table}{; queryArgument}{; *})
QUERY BY EXAMPLE {(table)}
QUERY BY FORMULA ({table}{; }{queryFormula})
QUERY SELECTION ({table}{; queryArgument}{; *})
QUERY SELECTION BY FORMULA ({table}{; }{queryFormula})
QUERY SUBRECORDS (subtable; queryFormula)
QUIT 4D

R

Random ® Number
READ ONLY {(table | *)}
Read only state {(table)} ® Boolean
READ WRITE {(table | *)}
REAL TO BLOB (real; blob; realFormat{; offset | *})
RECEIVE BUFFER (receiveVar)
RECEIVE PACKET ({docRef; }receiveVar; stopChar | numChars)
RECEIVE RECORD {(table)}

1430 4th Dimension Language Reference

RECEIVE VARIABLE (variable)
Record number {(table)} ® Number
Records in selection {(table)} ® Number
Records in set (set) ® Number
Records in subselection (subtable) ® Number
Records in table {(table)} ® Number
REDRAW (object)
REDRAW LIST (list)
REDRAW WINDOW {(window)}
REDUCE SELECTION ({table; }number)
REJECT {(field)}
RELATE MANY (oneTable | Field)
RELATE MANY SELECTION (field)
RELATE ONE (manyTable | Field{; choiceField})
RELATE ONE SELECTION (manyTable; oneTable)
REMOVE FROM SET ({table; }set)
REMOVE PICTURE FROM LIBRARY (picRef)
Replace string (source; oldString; newString{; howMany}) ® String
REPORT ({table; }document{; *})
Request (message{; default response{; OK button title{; Cancel button title}}}) ® String
RESOLVE POINTER (pointer; varName; tableNum; fieldNum)
RESOURCE LIST (resType; resIDs; resNames{; resFile})
RESOURCE TYPE LIST (resTypes{; resFile})
RESUME PROCESS (process)
Round (round; places) ® Number

S

SAVE LIST (list; listName)
SAVE OLD RELATED ONE (field)
SAVE PICTURE TO FILE (document; picture)
SAVE RECORD {(table)}
SAVE RELATED ONE (field)
SAVE SET (set; document)
SAVE VARIABLES (document; variable{; variable2; ...; variableN})
SCAN INDEX (field; number; > or <)
SCREEN COORDINATES (left; top; right; bottom{; screen})

4th Dimension Language Reference 1431

SCREEN DEPTH (depth; color{; screen})
Screen height {(*)} ® Number
Screen width {(*)} ® Number
SEARCH BY INDEX
SELECT LIST ITEM (list; itemPos)
SELECT LIST ITEM BY REFERENCE (list; itemRef)
SELECT LOG FILE (logFile)
Selected list item (list) ® Long
Selected record number {(table)} ® Number
SELECTION TO ARRAY (field | table; array{; field2 | table2; array2; ...; fieldN | tableN; arrayN})
Self ® Pointer
Semaphore (semaphore) ® Boolean
SEND HTML FILE (htmlFile)
SEND PACKET ({docRef; }packet)
SEND RECORD {(table)}
SEND VARIABLE (variable)
Sequence number {(table)} ® Number
SET ABOUT (itemText; method)
SET BLOB SIZE (blob; size{; filler})
SET CHANNEL (port | operation{; settings | document})
SET CHOICE LIST ({*; }object; list)
SET COLOR ({*; }object; color)
SET CURSOR {(cursor)}
SET DEFAULT CENTURY (century{; pivotYear})
SET DOCUMENT CREATOR (document; fileCreator)
SET DOCUMENT POSITION (docRef; offset{; anchor})
SET DOCUMENT PROPERTIES (document; locked; invisible; created on; created at;
modified on; modified at)
SET DOCUMENT SIZE (document; size)
SET DOCUMENT TYPE (document; fileType)
SET ENTERABLE ({*; }entryArea; enterable)
SET FIELD TITLES (table | subtable; fieldTitles; fieldNumbers)
SET FILTER ({*; }object; entryFilter)
SET FORMAT ({*; }object; displayFormat)
Set group properties (groupID; name; owner{; menbers}) ® Number
SET HTML ROOT (pathnameHTML)
SET INDEX (field; index{; *})

1432 4th Dimension Language Reference

SET LIST ITEM (list; itemRef; newItemText; newItemRef{; sublist{; expanded}})
SET LIST ITEM PROPERTIES (list; itemRef; enterable; styles; icon)
SET LIST PROPERTIES (list; appearance{; icon{; lineHeight}})
SET MENU ITEM (menu; menuItem; itemText{; process})
SET MENU ITEM KEY (menu; menuItem; itemKey{; process})
SET MENU ITEM MARK (menu; item; mark{; process})
SET MENU ITEM STYLE (menu; menuItem; itemStyle{; process})
SET PICTURE RESOURCE (resID; resData{; resFile})
SET PICTURE TO CLIPBOARD (picture)
SET PICTURE TO LIBRARY (picture; picRef; picName)
SET PLATFORM INTERFACE (interface)
SET PRINT PREVIEW (preview)
SET PROCESS VARIABLE (process; dstVar; expr{; dstVar2; expr2; ...; dstVarN; exprN})
SET QUERY DESTINATION (destinationType{; destinationObject})
SET QUERY LIMIT (limit)
SET REAL COMPARISON LEVEL (epsilon)
SET RESOURCE (resType; resID; resData{; resFile})
SET RESOURCE NAME (resType; resID; resName{; resFile})
SET RESOURCE PROPERTIES (resType; resID; resAttr{; resFile})
SET RGB COLOR ({*; }object; foregroundColor; backgroundColor)
SET SCREEN DEPTH (depth; color{; screen})
SET STRING RESOURCE (resID; resData{; resFile})
SET TABLE TITLES (tableTitles; tableNumbers)
SET TEXT RESOURCE (resID; resData{; resFile})
SET TEXT TO CLIPBOARD (text)
SET TIMEOUT (seconds)
Set user properties (userID; name; startup; password; nbLogin; lastLogin{; memberships})
® Number
SET VISIBLE ({*; }object; visible)
SET WEB DISPLAY LIMITS (numberRecords{; numberPages{; picRef}})
SET WEB TIMEOUT (timeout)
SET WINDOW RECT (left; top; right; bottom{; window})
SET WINDOW TITLE (title{; window})
Shift down ® Boolean
SHOW MENU BAR
SHOW PROCESS (process)
SHOW TOOL BAR
Sin (number) ® Number

4th Dimension Language Reference 1433

Size of array (array) ® Number
SORT ARRAY (array{; array2; ...; arrayN}{; > or <})
SORT BY INDEX
SORT LIST (list{; > or <})
Square root (number) ® Number
START TRANSACTION
START WEB SERVER
Std deviation (series) ® Number
STOP WEB SERVER
String (expression{; format}) ® String
STRING LIST TO ARRAY (resID; strings{; resFile})
Structure file ® String
SELECTION RANGE TO ARRAY (start; end; field | table; array{; field2 | table2; array2; ...;
fieldN | tableN; arrayN})
Substring (source; firstChar{; numChars}) ® String
Subtotal (data{; pageBreak}) ® Number
Sum (series) ® Number
Sum squares (series) ® Number
System folder ® String

T

Table (tableNum | aPtr) ® Pointer | Number
Table name (tableNum | tablePtr) ® String
Tan (number) ® Number
Temporary folder ® String
Test clipboard (dataType) ® Number
Test path name (pathname) ® Number
TEXT TO BLOB (texte; blob; formatTexte{; offset | *})
Tickcount ® Number
Time (timeString) ® Time
Time string (seconds) ® String
TRACE
Trigger level ® Number
TRIGGER PROPERTIES (triggerLevel; dbEvent; tableNum; recordNum)
True ® Boolean
Trunc (number; places) ® Number

1434 4th Dimension Language Reference

Type (fieldVar) ® Number

U

Undefined (variable) ® Boolean
UNION (set1; set2; resultSet)
UNLOAD RECORD {(table)}
Uppercase (chaîne) ® String
USE ASCII MAP (map | *; mapInOut)
USE NAMED SELECTION (name)
USE SET (set)
User in group (user; group) ® Boolean

V

VALIDATE TRANSACTION
VARIABLE TO BLOB (variable; blob{; *})
VARIABLE TO VARIABLE (process; dstVar; srcVar{; dstVar2; srcVar2; ...; dstVarN; srcVarN})
Variance (series) ® Number
Version type ® Long Integer
VOLUME ATTRIBUTES (volume; size; used; free)
VOLUME LIST (volumes)

W

Win to Mac (text) ® String
Window kind {(window)}
WINDOW LIST (windows{; *})
Window process {(window)} ® Number
Windows Alt down ® Boolean
Windows Ctrl down ® Boolean

Y

Year of (date) ® Number

4th Dimension Language Reference 1435

1436 4th Dimension Language Reference

Constants

4th Dimension Language Reference 1437

1438 4th Dimension Language Reference

4D Environment
Constant Type Value

4D Client Long Integer 4
4D Engine Long Integer 1
4D First Long Integer 6
4D Runtime Long Integer 2
4D Runtime Classic Long Integer 3
4D Server Long Integer 5
4th Dimension Long Integer 0
Demo Version Long Integer 1
Full Version Long Integer 0

4th Dimension Language Reference 1439

ASCII Codes
Constant Type Value

ACK ASCII code Long Integer 6
At sign Long Integer 64
Backspace Long Integer 8
BEL ASCII code Long Integer 7
BS ASCII code Long Integer 8
CAN ASCII code Long Integer 24
Carriage return Long Integer 13
CR ASCII code Long Integer 13
DC1 ASCII code Long Integer 17
DC2 ASCII code Long Integer 18
DC3 ASCII code Long Integer 19
DC4 ASCII code Long Integer 20
DEL ASCII code Long Integer 127
DLE ASCII code Long Integer 16
Double quote Long Integer 34
EM ASCII code Long Integer 25
ENQ ASCII code Long Integer 5
Enter Long Integer 3
EOT ASCII code Long Integer 4
ESC ASCII code Long Integer 27
Escape Long Integer 27
ETB ASCII code Long Integer 23
ETX ASCII code Long Integer 3
FF ASCII code Long Integer 12
FS ASCII code Long Integer 28
GS ASCII code Long Integer 29
HT ASCII code Long Integer 9
LF ASCII code Long Integer 10
Line feed Long Integer 10
NAK ASCII code Long Integer 21
NBSP Long Integer 202
NUL ASCII code Long Integer 0
Period Long Integer 46
Quote Long Integer 39
RS ASCII code Long Integer 30

1440 4th Dimension Language Reference

ASCII Codes (continued)
Constant Type Value

SI ASCII code Long Integer 15
SO ASCII code Long Integer 14
SOH ASCII code Long Integer 1
SP ASCII code Long Integer 32
Space Long Integer 32
STX ASCII code Long Integer 2
SUB ASCII code Long Integer 26
SYN ASCII code Long Integer 22
Tab Long Integer 9
US ASCII code Long Integer 31
VT ASCII code Long Integer 11

4th Dimension Language Reference 1441

BLOB
Constant Type Value

C string Long Integer 0
Compact compression mode Long Integer 1
Extended real format Long Integer 1
Fast compression mode Long Integer 2
Is not compressed Long Integer 0
Macintosh byte ordering Long Integer 1
Macintosh double real format Long Integer 2
Native byte ordering Long Integer 0
Native real format Long Integer 0
Pascal string Long Integer 1
PC byte ordering Long Integer 2
PC double real format Long Integer 3
Text with length Long Integer 2
Text without length Long Integer 3

1442 4th Dimension Language Reference

Clipboard
Constant Type Value

No such data in clipboard Long Integer -102
Picture data String PICT
Text data String TEXT

4th Dimension Language Reference 1443

Colors
Constant Type Value

Black Long Integer 15
Blue Long Integer 6
Brown Long Integer 13
Dark Blue Long Integer 5
Dark Brown Long Integer 10
Dark Green Long Integer 9
Dark Grey Long Integer 11
Green Long Integer 8
Grey Long Integer 14
Light Blue Long Integer 7
Light Grey Long Integer 12
Orange Long Integer 2
Purple Long Integer 4
Red Long Integer 3
White Long Integer 0
Yellow Long Integer 1

1444 4th Dimension Language Reference

Communications
Constant Type Value

Data bits 5 Long Integer 0
Data bits 6 Long Integer 2048
Data bits 7 Long Integer 1024
Data bits 8 Long Integer 3072
MacOS Printer Port Long Integer 0
MacOS Serial Port Long Integer 1
Parity Even Long Integer 12288
Parity None Long Integer 0
Parity Odd Long Integer 4096
Protocol DTR Long Integer 30
Protocol None Long Integer 0
Protocol XONXOFF Long Integer 20
Speed 115200 Long Integer 1022
Speed 1200 Long Integer 94
Speed 1800 Long Integer 62
Speed 19200 Long Integer 4
Speed 230400 Long Integer 1021
Speed 2400 Long Integer 46
Speed 300 Long Integer 380
Speed 3600 Long Integer 30
Speed 4800 Long Integer 22
Speed 57600 Long Integer 0
Speed 600 Long Integer 189
Speed 7200 Long Integer 14
Speed 9600 Long Integer 10
Stop bits One Long Integer 16384
Stop bits One and a half Long Integer -32768
Stop bits Two Long Integer -16384

4th Dimension Language Reference 1445

Database Engine
Constant Type Value

Is new record Long Integer -3
No current record Long Integer -1

1446 4th Dimension Language Reference

Database Events
Constant Type Value

Delete Record Event Long Integer 3
Load Record Event Long Integer 4
Save Existing Record Event Long Integer 2
Save New Record Event Long Integer 1

4th Dimension Language Reference 1447

Date Display Formats
Constant Type Value

Abbr Month Date Long Integer 6
Abbreviated Long Integer 2
Long Long Integer 3
MM DD YYYY Long Integer 4
MM DD YYYY Forced Long Integer 7
Month Date Year Long Integer 5
Short Long Integer 1

1448 4th Dimension Language Reference

Days and Months
Constant Type Value

April Long Integer 4
August Long Integer 8
December Long Integer 12
February Long Integer 2
Friday Long Integer 6
January Long Integer 1
July Long Integer 7
June Long Integer 6
March Long Integer 3
May Long Integer 5
Monday Long Integer 2
November Long Integer 11
October Long Integer 10
Saturday Long Integer 7
September Long Integer 9
Sunday Long Integer 1
Thursday Long Integer 5
Tuesday Long Integer 3
Wednesday Long Integer 4

4th Dimension Language Reference 1449

Events (Modifiers)
Constant Type Value

Activate window bit Long Integer 0
Activate window mask Long Integer 1
Caps Lock key bit Long Integer 10
Caps Lock key mask Long Integer 1024
Command key bit Long Integer 8
Command key mask Long Integer 256
Control key bit Long Integer 12
Control key mask Long Integer 4096
Mouse button bit Long Integer 7
Mouse button mask Long Integer 128
Option key bit Long Integer 11
Option key mask Long Integer 2048
Right control key bit Long Integer 15
Right control key mask Long Integer 32768
Right option key bit Long Integer 14
Right option key mask Long Integer 16384
Right shift key bit Long Integer 13
Right shift key mask Long Integer 8192
Shift key bit Long Integer 9
Shift key mask Long Integer 512

1450 4th Dimension Language Reference

Events (What)
Constant Type Value

Activate event Long Integer 8
Auto key event Long Integer 5
Disk event Long Integer 7
Key down event Long Integer 3
Key up event Long Integer 4
Mouse down event Long Integer 1
Mouse up event Long Integer 2
Null event Long Integer 0
Operating system event Long Integer 15
Update event Long Integer 6

4th Dimension Language Reference 1451

Expressions
Constant Type Value

MAXINT Long Integer 32767
MAXLONG Long Integer 2147483647
MAXTEXTLEN Long Integer 32000

1452 4th Dimension Language Reference

Field and Variable Types
Constant Type Value

Array 2D Long Integer 13
Boolean array Long Integer 22
Date array Long Integer 17
Integer array Long Integer 15
Is Alpha Field Long Integer 0
Is BLOB Long Integer 30
Is Boolean Long Integer 6
Is Date Long Integer 4
Is Integer Long Integer 8
Is LongInt Long Integer 9
Is Picture Long Integer 3
Is Pointer Long Integer 23
Is Real Long Integer 1
Is String Var Long Integer 24
Is Subtable Long Integer 7
Is Text Long Integer 2
Is Time Long Integer 11
Is Undefined Long Integer 5
LongInt array Long Integer 16
Picture array Long Integer 19
Pointer array Long Integer 20
Real array Long Integer 14
String array Long Integer 21
Text array Long Integer 18

4th Dimension Language Reference 1453

Find window
Constant Type Value

In contents Long Integer 3
In drag Long Integer 4
In go away Long Integer 6
In grow Long Integer 5
In menu bar Long Integer 1
In system window Long Integer 2
In zoom box Long Integer 8

1454 4th Dimension Language Reference

Font Styles
Constant Type Value

Bold Long Integer 1
Condensed Long Integer 32
Extended Long Integer 64
Italic Long Integer 2
Outline Long Integer 8
Plain Long Integer 0
Shadow Long Integer 16
Underline Long Integer 4

4th Dimension Language Reference 1455

Form Events
Constant Type Value

On Activate Long Integer 11
On Clicked Long Integer 4
On Close Box Long Integer 22
On Close Detail Long Integer 26
On Data Change Long Integer 20
On Deactivate Long Integer 12
On Display Detail Long Integer 8
On Double Clicked Long Integer 13
On Drag Over Long Integer 21
On Drop Long Integer 16
On External Area Long Integer 19
On Getting Focus Long Integer 15
On Keystroke Long Integer 17
On Load Long Integer 1
On Losing Focus Long Integer 14
On Menu Selected Long Integer 18
On Open Detail Long Integer 25
On Outside Call Long Integer 10
On Printing Break Long Integer 6
On Printing Detail Long Integer 23
On Printing Footer Long Integer 7
On Printing Header Long Integer 5
On Unload Long Integer 24
On Validate Long Integer 3

1456 4th Dimension Language Reference

Function Keys
Constant Type Value

Backspace Key Long Integer 8
Down Arrow Key Long Integer 31
End Key Long Integer 4
Enter Key Long Integer 3
Escape Key Long Integer 27
F1 Key Long Integer -122
F10 Key Long Integer -109
F11 Key Long Integer -103
F12 Key Long Integer -111
F13 Key Long Integer -105
F14 Key Long Integer -107
F15 Key Long Integer -113
F2 Key Long Integer -120
F3 Key Long Integer -99
F4 Key Long Integer -118
F5 Key Long Integer -96
F6 Key Long Integer -97
F7 Key Long Integer -98
F8 Key Long Integer -100
F9 Key Long Integer -101
Help Key Long Integer 5
Home Key Long Integer 1
Left Arrow Key Long Integer 28
Page Down Key Long Integer 12
Page Up Key Long Integer 11
Return Key Long Integer 13
Right Arrow Key Long Integer 29
Tab Key Long Integer 9
Up Arrow Key Long Integer 30

4th Dimension Language Reference 1457

Hierarchical Lists
Constant Type Value

Ala Macintosh Long Integer 1
Ala Windows Long Integer 2
Macintosh node Long Integer 860
Use PicRef Long Integer 131072
Use PICT resource Long Integer 65536
Windows node Long Integer 138

1458 4th Dimension Language Reference

ISO Latin Character Entities
Constant Type Value

ISO L1 a acute String á
ISO L1 a circumflex String â
ISO L1 a grave String à
ISO L1 a ring String å
ISO L1 a tilde String ã
ISO L1 a umlaut String ä
ISO L1 ae ligature String æ
ISO L1 Ampersand String &
ISO L1 c cedilla String ç
ISO L1 Cap A acute String Á
ISO L1 Cap A circumflex String Â
ISO L1 Cap A grave String À
ISO L1 Cap A ring String Å
ISO L1 Cap A tilde String Ã
ISO L1 Cap A umlaut String Ä
ISO L1 Cap AE ligature String &AELig;
ISO L1 Cap C cedilla String Ç
ISO L1 Cap E acute String É
ISO L1 Cap E circumflex String Ê
ISO L1 Cap E grave String È
ISO L1 Cap E umlaut String Ë
ISO L1 Cap Eth Icelandic String Ð
ISO L1 Cap I acute String Í
ISO L1 Cap I circumflex String Î
ISO L1 Cap I grave String Ì
ISO L1 Cap I umlaut String Ï
ISO L1 Cap N tilde String Ñ
ISO L1 Cap O acute String Ó
ISO L1 Cap O circumflex String Ô
ISO L1 Cap O grave String Ò
ISO L1 Cap O slash String Ø
ISO L1 Cap O tilde String Õ
ISO L1 Cap O umlaut String Ö
ISO L1 Cap THORN Icelandic String Þ
ISO L1 Cap U acute String Ú

4th Dimension Language Reference 1459

ISO Latin Character Entities (continued)
Constant Type Value

ISO L1 Cap U circumflex String Û
ISO L1 Cap U grave String Ù
ISO L1 Cap U umlaut String Ü
ISO L1 Cap Y acute String Ý
ISO L1 Copyright String ©
ISO L1 e acute String é
ISO L1 e circumflex String ê
ISO L1 e grave String è
ISO L1 e umlaut String ë
ISO L1 eth Icelandic String ð
ISO L1 Greater than String >
ISO L1 i acute String í
ISO L1 i circumflex String î
ISO L1 i grave String ì
ISO L1 i umlaut String ï
ISO L1 Less than String <
ISO L1 n tilde String ñ
ISO L1 o acute String ó
ISO L1 o circumflex String ô
ISO L1 o grave String ò
ISO L1 o slash String ø
ISO L1 o tilde String õ
ISO L1 o umlaut String ö
ISO L1 Quotation mark String "
ISO L1 Registered String ®
ISO L1 sharp s German String ß
ISO L1 thorn Icelandic String þ
ISO L1 u acute String ú
ISO L1 u circumflex String û
ISO L1 u grave String ù
ISO L1 u umlaut String ü
ISO L1 y acute String ý
ISO L1 y umlaut String ÿ

1460 4th Dimension Language Reference

Math
Constant Type Value

Degree Real 0.0174532925199432958
e number Real 2.71828182845904524
Pi Real 3.141592653589793239
Radian Real 57.29577951308232088

4th Dimension Language Reference 1461

Open window
Constant Type Value

Alternate dialog box Long Integer 3
Has grow box Long Integer 4
Has highlight Long Integer 1
Has window title Long Integer 2
Has zoom box Long Integer 8
Modal dialog box Long Integer 1
Movable dialog box Long Integer 5
Palette window Long Integer 720
Plain dialog box Long Integer 2
Plain fixed size window Long Integer 4
Plain no zoom box window Long Integer 0
Plain window Long Integer 8
Round corner window Long Integer 16

1462 4th Dimension Language Reference

Picture Display Formats
Constant Type Value

On Background Long Integer 3
Scaled to Fit Long Integer 2
Scaled to fit prop centered Long Integer 6
Scaled to fit proportional Long Integer 5
Truncated Centered Long Integer 1
Truncated non Centered Long Integer 4

4th Dimension Language Reference 1463

Platform Interfaces
Constant Type Value

Automatic interface Long Integer -1
Copland interface Long Integer 3
Macintosh interface Long Integer 0
Windows 3.1 interface Long Integer 1
Windows 95 interface Long Integer 2

1464 4th Dimension Language Reference

Platform Properties
Constant Type Value

INTEL 386 Long Integer 386
INTEL 486 Long Integer 486
Macintosh 68K Long Integer 1
Pentium Long Integer 586
Power Macintosh Long Integer 2
PowerPC 601 Long Integer 601
PowerPC 603 Long Integer 603
PowerPC 604 Long Integer 604
Windows Long Integer 3

4th Dimension Language Reference 1465

Process state
Constant Type Value

Aborted Long Integer -1
Delayed Long Integer 1
Does not exist Long Integer -100
Executing Long Integer 0
Hidden modal dialog Long Integer 6
Paused Long Integer 5
Waiting for input output Long Integer 3
Waiting for internal flag Long Integer 4
Waiting for user event Long Integer 2

1466 4th Dimension Language Reference

Query Destinations
Constant Type Value

Into current selection Long Integer 0
Into named selection Long Integer 2
Into set Long Integer 1
Into variable Long Integer 3

4th Dimension Language Reference 1467

Resources Properties
Constant Type Value

Changed resource bit Long Integer 1
Changed resource mask Long Integer 2
Locked resource bit Long Integer 4
Locked resource mask Long Integer 16
Preloaded resource bit Long Integer 2
Preloaded resource mask Long Integer 4
Protected resource bit Long Integer 3
Protected resource mask Long Integer 8
Purgeable resource bit Long Integer 5
Purgeable resource mask Long Integer 32
System heap resource bit Long Integer 6
System heap resource mask Long Integer 64

1468 4th Dimension Language Reference

SCREEN DEPTH
Constant Type Value

Black and white Long Integer 0
Four colors Long Integer 2
Is color Long Integer 1
Is gray scale Long Integer 0
Millions of colors 24 bit Long Integer 24
Millions of colors 32 bit Long Integer 32
Sixteen colors Long Integer 4
Thousands of colors Long Integer 16
Two fifty six colors Long Integer 8

4th Dimension Language Reference 1469

SET RGB COLOR
Constant Type Value

Default background color Long Integer -2
Default dark shadow color Long Integer -3
Default foreground color Long Integer -1
Default light shadow color Long Integer -4

1470 4th Dimension Language Reference

Standard System Signatures
Constant Type Value

Picture Document String PICT
QT Animation compressor String rle
QT Compact video compressor String cdvc
QT Graphics compressor String smc
QT Photo compressor String jpeg
QT Raw compressor String raw
QT Video compressor String rpza
Text Document String TEXT
Windows MIDI Document String MID
Windows Sound Document String WAV
Windows Video Document String AVI

4th Dimension Language Reference 1471

TCP Port Numbers
Constant Type Value

TCP Authentication Long Integer 113
TCP DNS Long Integer 53
TCP Finger Long Integer 79
TCP FTP Control Long Integer 21
TCP FTP Data Long Integer 20
TCP Gopher Long Integer 70
TCP HTTP WWW Long Integer 80
TCP IMAP3 Long Integer 220
TCP Kerberos Long Integer 88
TCP KLogin Long Integer 543
TCP Nickname Long Integer 43
TCP NNTP Long Integer 119
TCP NTalk Long Integer 518
TCP NTP Long Integer 123
TCP PMCP Long Integer 1643
TCP PMD Long Integer 1642
TCP POP3 Long Integer 110
TCP Printer Long Integer 515
TCP RADACCT Long Integer 1646
TCP RADIUS Long Integer 1645
TCP Remote Cmd Long Integer 514
TCP Remote Exec Long Integer 512
TCP Remote Login Long Integer 513
TCP Router Long Integer 520
TCP SMTP Long Integer 25
TCP SNMP Long Integer 161
TCP SNMPTRAP Long Integer 162
TCP SUN RPC Long Integer 111
TCP Talk Long Integer 517
TCP Telnet Long Integer 23
TCP TFTP Long Integer 69
TCP UUCP Long Integer 540
TCP UUCP RLOGIN Long Integer 541

1472 4th Dimension Language Reference

Test path name
Constant Type Value

Is a directory Long Integer 0
Is a document Long Integer 1

4th Dimension Language Reference 1473

Time Display Formats
Constant Type Value

HH MM Long Integer 2
HH MM AM PM Long Integer 5
HH MM SS Long Integer 1
Hour Min Long Integer 4
Hour Min Sec Long Integer 3

1474 4th Dimension Language Reference

Window kind
Constant Type Value

External window Long Integer 5
Floating window Long Integer 14
Modal dialog Long Integer 9
Regular window Long Integer 8

4th Dimension Language Reference 1475

1476 4th Dimension Language Reference

Command Index

A
ABORT 570
Abs 627
ACCEPT 431
ACCUMULATE 786
ACI folder 146
Activated 473
ADD DATA SEGMENT 150
ADD RECORD 343
ADD SUBRECORD 347
Add to date 365
ADD TO SET 1037
After 469
ALERT 679
ALL RECORDS 1001
ALL SUBRECORDS 1098
Append document 1121
APPEND MENU ITEM 670
APPEND TO CLIPBOARD 271
APPEND TO LIST 523
Application file 142
Application type 133
Application version 135
APPLY TO SELECTION 1020
APPLY TO SUBSELECTION 1100
Arctan 640
ARRAY BOOLEAN 191
ARRAY DATE 190
ARRAY INTEGER 184
ARRAY LONGINT 185
ARRAY PICTURE 193
ARRAY POINTER 195
ARRAY REAL 186
ARRAY STRING 187
ARRAY TEXT 189
ARRAY TO LIST 206
ARRAY TO SELECTION 213
ARRAY TO STRING LIST 974

4th Dimension Language Reference 1477

Ascii 1062
AUTOMATIC RELATIONS 932
Average 741

B
BEEP 1213
Before 467
Before selection 1012
Before subselection 1105
BLOB PROPERTIES 228
BLOB size 223
BLOB TO DOCUMENT 232
BLOB to integer 251
BLOB to list 240
BLOB to longint 253
BLOB to real 255
BLOB to text 257
BLOB TO VARIABLE 237
BREAK LEVEL 785
BRING TO FRONT 837
BUTTON TEXT 714

C
CALL PROCESS 824
CANCEL 432
CANCEL TRANSACTION 1190
Caps lock down 1226
CHANGE ACCESS 1250
CHANGE PASSWORD 1251
Change string 1070
CHANGE WEB LICENSE 1343
Char 1064
CLEAR CLIPBOARD 277
CLEAR LIST 506
CLEAR NAMED SELECTION 701
CLEAR SEMAPHORE 823

1478 4th Dimension Language Reference

CLEAR SET 1039
CLEAR VARIABLE 1271
CLOSE DOCUMENT 1122
CLOSE RESOURCE FILE 968
CLOSE WINDOW 1362
Command name 585
Compiled application 137
COMPRESS BLOB 224
COMPRESS PICTURE 806
COMPRESS PICTURE FILE 808
CONFIRM 682
COPY ARRAY 204
COPY BLOB 261
COPY DOCUMENT 1123
Copy list 505
COPY NAMED SELECTION 697
COPY SET 1050
Cos 638
Count fields 1085
Count list items 508
Count menu items 658
Count menus 657
Count parameters 573
Count screens 1155
Count tables 1084
Count tasks 863
Count user processes 864
Count users 862
Create document 1119
CREATE EMPTY SET 1034
CREATE FOLDER 1127
CREATE RECORD 910
CREATE RELATED ONE 937
Create resource file 966
CREATE SET 1035
CREATE SUBRECORD 1095
Current date 357
Current default table 1175
Current form page 485
Current form table 1179

4th Dimension Language Reference 1479

Current machine 1167
Current machine owner 1168
Current process 855
Current time 367
Current user 1253
CUT NAMED SELECTION 699
C_BLOB 316
C_BOOLEAN 317
C_DATE 318
C_GRAPH 319
C_INTEGER 320
C_LONGINT 321
C_PICTURE 322
C_POINTER 323
C_REAL 324
C_STRING 325
C_TEXT 326
C_TIME 327

D
Data file 144
DATA SEGMENT LIST 148
Database event 1206
Date 366
Day number 363
Day of 359
Deactivated 474
Dec 629
DEFAULT TABLE 1173
DELAY PROCESS 852
DELETE DOCUMENT 1125
DELETE ELEMENT 203
DELETE FROM BLOB 260
DELETE LIST ITEM 536
DELETE MENU ITEM 673
DELETE RECORD 914
DELETE RESOURCE 996
DELETE SELECTION 1003

1480 4th Dimension Language Reference

Delete string 1072
DELETE SUBRECORD 1096
DELETE USER 1255
DIALOG 350
DIFFERENCE 1044
DISABLE BUTTON 712
DISABLE MENU ITEM 668
DISPLAY RECORD 909
DISPLAY SELECTION 1016
DISTINCT VALUES 215
Document creator 1137
DOCUMENT LIST 1132
DOCUMENT TO BLOB 230
Document type 1133
DRAG AND DROP PROPERTIES 423
DRAG WINDOW 1365
Drop position 422
DUPLICATE RECORD 911
During 468

E
EDIT ACCESS 1249
ENABLE BUTTON 711
ENABLE MENU ITEM 669
End selection 1014
End subselection 1106
ERASE WINDOW 1363
EXECUTE 584
Execute on server 848
Exp 636
EXPAND BLOB 226
EXPORT DIF 557
EXPORT SYLK 553
EXPORT TEXT 549

4th Dimension Language Reference 1481

F
False 267
Field 1089
Field name 1087
FILTER EVENT 565
FILTER KEYSTROKE 438
Find in array 200
Find window 1378
FIRST PAGE 480
FIRST RECORD 1008
FIRST SUBRECORD 1101
FLUSH BUFFERS 151
FOLDER LIST 1131
FONT 707
FONT LIST 1162
Font name 1163
Font number 1164
FONT SIZE 708
FONT STYLE 709
Form event 449
Frontmost process 838
Frontmost window 1376

G
Gestalt 1169
GET CLIPBOARD 278
Get document position 1148
GET DOCUMENT PROPERTIES 1139
Get document size 1146
GET FIELD PROPERTIES 1090
GET GROUP LIST 1262
GET GROUP PROPERTIES 1263
GET HIGHLIGHT 1240
GET ICON RESOURCE 983
Get indexed string 976
GET LIST ITEM 537

1482 4th Dimension Language Reference

GET LIST ITEM PROPERTIES 532
GET LIST PROPERTIES 519
Get menu item 660
Get menu item key 666
Get menu item mark 664
Get menu item style 662
Get menu title 659
GET MOUSE 1232
GET PICTURE FROM CLIPBOARD 280
GET PICTURE FROM LIBRARY 814
GET PICTURE RESOURCE 981
Get platform interface 1216
Get pointer 583
GET PROCESS VARIABLE 825
GET RESOURCE 985
Get resource name 989
Get resource properties 992
Get string resource 977
Get text from clipboard 281
Get text resource 979
GET USER LIST 1257
GET USER PROPERTIES 1258
GET WINDOW RECT 1374
Get window title 1367
GOTO AREA 444
GOTO PAGE 484
GOTO RECORD 917
GOTO SELECTED RECORD 1006
GOTO XY 691
GRAPH 489
GRAPH SETTINGS 493
GRAPH TABLE 495

H
HIDE MENU BAR 652
HIDE PROCESS 835
HIDE TOOL BAR 1369
HIDE WINDOW 1360

4th Dimension Language Reference 1483

HIGHLIGHT TEXT 1241

I
IDLE 328
IMPORT DIF 555
IMPORT SYLK 551
IMPORT TEXT 547
In break 471
In footer 472
In header 470
In transaction 1191
INPUT FORM 1176
INSERT ELEMENT 202
INSERT IN BLOB 259
INSERT LIST ITEM 529
INSERT MENU ITEM 672
Insert string 1071
Int 628
INTEGER TO BLOB 242
INTERSECTION 1046
INVERT BACKGROUND 1245
Is a list 510
Is a variable 582
Is in set 1040
Is user deleted 1256
ISO to Mac 1079

K
Keystroke 433

L
Last object 1243
LAST PAGE 481
LAST RECORD 1010

1484 4th Dimension Language Reference

LAST SUBRECORD 1102
Length 1061
Level 790
List item parent 534
List item position 533
LIST TO ARRAY 205
LIST TO BLOB 238
LOAD COMPRESS PICTURE FROM FILE 807
Load list 501
LOAD RECORD 903
LOAD SET 1043
LOAD VARIABLES 1270
Locked 905
LOCKED ATTRIBUTES 906
Log 635
LONGINT TO BLOB 244
Lowercase 1069

M
Mac to ISO 1076
Mac to Win 1074
Macintosh command down 1229
Macintosh control down 1231
Macintosh option down 1230
MAP FILE TYPES 1135
Max 743
MAXIMIZE WINDOW 1379
MENU BAR 650
Menu bar height 1161
Menu bar screen 1160
Menu selected 655
MESSAGE 687
MESSAGES OFF 677
MESSAGES ON 678
Milliseconds 371
Min 742
MINIMIZE WINDOW 1381
Mod 633

4th Dimension Language Reference 1485

Modified 352
Modified record 912
MODIFY RECORD 345
MODIFY SELECTION 1019
MODIFY SUBRECORD 349
Month of 360
MOVE DOCUMENT 1124

N
New list 504
New process 845
NEXT PAGE 482
NEXT RECORD 1009
NEXT SUBRECORD 1103
Next window 1377
Nil 581
NO TRACE 623
Not 268
Num 1056

O
Old 354
OLD RELATED MANY 941
OLD RELATED ONE 939
ON ERR CALL 566
ON EVENT CALL 561
ON SERIAL PORT CALL 735
ONE RECORD SELECT 1025
Open document 1117
Open external window 1357
Open resource file 962
Open window 1348
ORDER BY 885
ORDER BY FORMULA 888
ORDER SUBRECORDS BY 1107
OUTPUT FORM 1178

1486 4th Dimension Language Reference

Outside call 475

P
PAGE BREAK 799
PAGE SETUP 793
PAUSE PROCESS 853
PICTURE LIBRARY LIST 812
PICTURE PROPERTIES 811
Picture size 810
PLATFORM PROPERTIES 138
PLAY 1214
POP RECORD 924
Pop up menu 1233
Position 1058
POST CLICK 1237
POST EVENT 1238
POST KEY 1236
PREVIOUS PAGE 483
PREVIOUS RECORD 1011
PREVIOUS SUBRECORD 1104
PRINT FORM 797
PRINT LABEL 779
PRINT RECORD 792
PRINT SELECTION 782
PRINT SETTINGS 795
Printing page 784
Process number 860
PROCESS PROPERTIES 858
Process state 856
PUSH RECORD 923

Q
QUERY 868
QUERY BY EXAMPLE 867
QUERY BY FORMULA 875
QUERY SELECTION 874

4th Dimension Language Reference 1487

QUERY SELECTION BY FORMULA 877
QUERY SUBRECORDS 1108
QUIT 4D 152

R
Random 632
READ ONLY 901
Read only state 902
READ WRITE 900
REAL TO BLOB 246
RECEIVE BUFFER 300
RECEIVE PACKET 297
RECEIVE RECORD 305
RECEIVE VARIABLE 303
Record number 916
Records in selection 1002
Records in set 1041
Records in subselection 1099
Records in table 915
REDRAW 1244
REDRAW LIST 511
REDRAW WINDOW 1364
REDUCE SELECTION 1022
REJECT 445
RELATE MANY 935
RELATE MANY SELECTION 943
RELATE ONE 933
RELATE ONE SELECTION 942
REMOVE FROM SET 1038
REMOVE PICTURE FROM LIBRARY 818
Replace string 1073
REPORT 777
Request 685
RESOLVE POINTER 579
RESOURCE LIST 971
RESOURCE TYPE LIST 969
RESUME PROCESS 854
Round 630

1488 4th Dimension Language Reference

S
SAVE LIST 503
SAVE OLD RELATED ONE 940
SAVE PICTURE TO FILE 809
SAVE RECORD 913
SAVE RELATED ONE 938
SAVE SET 1042
SAVE VARIABLES 1269
SCAN INDEX 1024
SCREEN COORDINATES 1156
SCREEN DEPTH 1157
Screen height 1153
Screen width 1154
SEARCH BY INDEX 733
SELECT LIST ITEM 543
SELECT LIST ITEM BY REFERENCE 544
SELECT LOG FILE 154
Selected list item 541
Selected record number 1005
SELECTION RANGE TO ARRAY 210
SELECTION TO ARRAY 208
Self 578
Semaphore 821
SEND HTML FILE 1340
SEND PACKET 295
SEND RECORD 304
SEND VARIABLE 302
Sequence number 918
SET ABOUT 654
SET BLOB SIZE 222
SET CHANNEL 289
SET CHOICE LIST 720
SET COLOR 724
SET CURSOR 1242
SET DEFAULT CENTURY 372
SET DOCUMENT CREATOR 1138
SET DOCUMENT POSITION 1149
SET DOCUMENT PROPERTIES 1145

4th Dimension Language Reference 1489

SET DOCUMENT SIZE 1147
SET DOCUMENT TYPE 1134
SET ENTERABLE 721
SET FIELD TITLES 1223
SET FILTER 718
SET FORMAT 716
Set group properties 1265
SET HTML ROOT 1339
SET INDEX 1092
SET LIST ITEM 539
SET LIST ITEM PROPERTIES 530
SET LIST PROPERTIES 512
SET MENU ITEM 661
SET MENU ITEM KEY 667
SET MENU ITEM MARK 665
SET MENU ITEM STYLE 663
SET PICTURE RESOURCE 982
SET PICTURE TO CLIPBOARD 283
SET PICTURE TO LIBRARY 815
SET PLATFORM INTERFACE 1217
SET PRINT PREVIEW 796
SET PROCESS VARIABLE 828
SET QUERY DESTINATION 878
SET QUERY LIMIT 884
SET REAL COMPARISON LEVEL 641
SET RESOURCE 987
SET RESOURCE NAME 991
SET RESOURCE PROPERTIES 993
SET RGB COLOR 726
SET SCREEN DEPTH 1159
SET STRING RESOURCE 978
SET TABLE TITLES 1219
SET TEXT RESOURCE 980
SET TEXT TO CLIPBOARD 284
SET TIMEOUT 293
Set user properties 1260
SET VISIBLE 722
SET WEB DISPLAY LIMITS 1336
SET WEB TIMEOUT 1335
SET WINDOW RECT 1375

1490 4th Dimension Language Reference

SET WINDOW TITLE 1368
Shift down 1225
SHOW MENU BAR 653
SHOW PROCESS 836
SHOW TOOL BAR 1370
SHOW WINDOW 1359
Sin 637
Size of array 197
SORT ARRAY 198
SORT BY INDEX 734
SORT LIST 521
Square root 634
START TRANSACTION 1188
START WEB SERVER 1333
Std deviation 744
STOP WEB SERVER 1334
String 1053
STRING LIST TO ARRAY 973
Structure file 143
Substring 1059
Subtotal 787
Sum 740
Sum squares 746
System folder 1165

T
Table 1088
Table name 1086
Tan 639
Temporary folder 1166
Test clipboard 285
Test path name 1126
TEXT TO BLOB 249
Tickcount 370
Time 369
Time string 368
TRACE 621
Trigger level 1208

4th Dimension Language Reference 1491

TRIGGER PROPERTIES 1209
True 266
Trunc 631
Type 575

U
Undefined 1273
UNION 1048
UNLOAD RECORD 904
Uppercase 1068
USE ASCII MAP 294
USE NAMED SELECTION 700
USE SET 1036
User in group 1254

V
Validate password 1252
VALIDATE TRANSACTION 1189
VARIABLE TO BLOB 234
VARIABLE TO VARIABLE 831
Variance 745
Version type 134
VOLUME ATTRIBUTES 1129
VOLUME LIST 1128

W
Win to Mac 1075
Window kind 1372
WINDOW LIST 1371
Window process 1373
Windows Alt down 1228
Windows Ctrl down 1227

1492 4th Dimension Language Reference

Y
Year of 362

4th Dimension Language Reference 1493

1494 4th Dimension Language Reference

4th Dimension Language Reference 1495

1496 4th Dimension Language Reference

4th Dimension Language Reference 1497

	Cover Page
	Contents
	 Introduction
	Preface
	Introduction
	Building a 4D Application

	Language Definition
	Introduction to the 4D Language
	Data Types
	Constants
	Variables
	System Variables
	Pointers
	Identifiers
	Control Flow
	If...Else...End if
	Case of...Else...End case
	While...End while
	Repeat...Until
	For...End for
	Methods
	Project Methods

	4D Environment
	Application type
	Version type
	Application version
	Compiled application
	PLATFORM PROPERTIES
	Application file
	Structure file
	Data file
	ACI folder
	DATA SEGMENT LIST
	ADD DATA SEGMENT
	FLUSH BUFFERS
	QUIT 4D
	SELECT LOG FILE

	Arrays
	Arrays
	Creating Arrays
	Arrays and Form Objects
	Grouped Scrollable Areas
	Arrays and the 4D Language
	Arrays and Pointers
	Using the element zero of an array
	Two-dimensional Arrays
	Arrays and Memory
	ARRAY INTEGER
	ARRAY LONGINT
	ARRAY REAL
	ARRAY STRING
	ARRAY TEXT
	ARRAY DATE
	ARRAY BOOLEAN
	ARRAY PICTURE
	ARRAY POINTER
	Size of array
	SORT ARRAY
	Find in array
	INSERT ELEMENT
	DELETE ELEMENT
	COPY ARRAY
	LIST TO ARRAY
	ARRAY TO LIST
	SELECTION TO ARRAY
	SELECTION RANGE TO ARRAY
	ARRAY TO SELECTION
	DISTINCT VALUES

	BLOB
	BLOB Commands
	SET BLOB SIZE
	BLOB size
	COMPRESS BLOB
	EXPAND BLOB
	BLOB PROPERTIES
	DOCUMENT TO BLOB
	BLOB TO DOCUMENT
	VARIABLE TO BLOB
	BLOB TO VARIABLE
	LIST TO BLOB
	BLOB to list
	INTEGER TO BLOB
	LONGINT TO BLOB
	REAL TO BLOB
	TEXT TO BLOB
	BLOB to integer
	BLOB to longint
	BLOB to real
	BLOB to text
	INSERT IN BLOB
	DELETE FROM BLOB
	COPY BLOB

	Boolean
	Boolean Commands
	True
	False
	Not

	Clipboard
	APPEND TO CLIPBOARD
	CLEAR CLIPBOARD
	GET CLIPBOARD
	GET PICTURE FROM CLIPBOARD
	Get text from clipboard
	SET PICTURE TO CLIPBOARD
	SET TEXT TO CLIPBOARD
	Test clipboard

	Communications
	SET CHANNEL
	SET TIMEOUT
	USE ASCII MAP
	SEND PACKET
	RECEIVE PACKET
	RECEIVE BUFFER
	SEND VARIABLE
	RECEIVE VARIABLE
	SEND RECORD
	RECEIVE RECORD

	Compiler
	Compiler Commands
	C_BLOB
	C_BOOLEAN
	C_DATE
	C_GRAPH
	C_INTEGER
	C_LONGINT
	C_PICTURE
	C_POINTER
	C_REAL
	C_STRING
	C_TEXT
	C_TIME
	IDLE

	Database Methods
	Database Methods
	On Startup Database Method
	On Exit Database Method

	Data Entry
	ADD RECORD
	MODIFY RECORD
	ADD SUBRECORD
	MODIFY SUBRECORD
	DIALOG
	Modified
	Old

	Date and Time
	Current date
	Day of
	Month of
	Year of
	Day number
	Add to date
	Date
	Current time
	Time string
	Time
	Tickcount
	Milliseconds
	SET DEFAULT CENTURY

	Debugging
	Why a Debugger?
	Syntax Error Window
	Debugger
	Watch Pane
	Call Chain Pane
	Custom Watch Pane
	Source Code Pane
	Break Points
	Break List Window
	Debugger Shortcuts
	Tracing a Process not visible or not executing code

	Drag and Drop
	Drag and Drop
	Drop position
	DRAG AND DROP PROPERTIES

	Entry Control
	ACCEPT
	CANCEL
	Keystroke
	FILTER KEYSTROKE
	GOTO AREA
	REJECT

	Form Events
	Form event
	Before
	During
	After
	In header
	In break
	In footer
	Activated
	Deactivated
	Outside call

	Form Pages
	Form Pages
	FIRST PAGE
	LAST PAGE
	NEXT PAGE
	PREVIOUS PAGE
	GOTO PAGE
	Current form page

	Graphs
	GRAPH
	GRAPH SETTINGS
	GRAPH TABLE

	Hierarchical Lists
	Load list
	SAVE LIST
	New list
	Copy list
	CLEAR LIST
	Count list items
	Is a list
	REDRAW LIST
	SET LIST PROPERTIES
	GET LIST PROPERTIES
	SORT LIST
	APPEND TO LIST
	INSERT LIST ITEM
	SET LIST ITEM PROPERTIES
	GET LIST ITEM PROPERTIES
	List item position
	List item parent
	DELETE LIST ITEM
	GET LIST ITEM
	SET LIST ITEM
	Selected list item
	SELECT LIST ITEM
	SELECT LIST ITEM BY REFERENCE

	Import and Export
	IMPORT TEXT
	EXPORT TEXT
	IMPORT SYLK
	EXPORT SYLK
	IMPORT DIF
	EXPORT DIF

	Interruptions
	ON EVENT CALL
	FILTER EVENT
	ON ERR CALL
	ABORT

	Language
	Count parameters
	Type
	Self
	RESOLVE POINTER
	Nil
	Is a variable
	Get pointer
	EXECUTE
	Command name
	Commands by Name
	Commands by Number
	TRACE
	NO TRACE

	Math
	Abs
	Int
	Dec
	Round
	Trunc
	Random
	Mod
	Square root
	Log
	Exp
	Sin
	Cos
	Tan
	Arctan
	SET REAL COMPARISON LEVEL
	Display of Real Numbers

	Menus
	Managing Menus
	MENU BAR
	HIDE MENU BAR
	SHOW MENU BAR
	SET ABOUT
	Menu selected
	Count menus
	Count menu items
	Get menu title
	Get menu item
	SET MENU ITEM
	Get menu item style
	SET MENU ITEM STYLE
	Get menu item mark
	SET MENU ITEM MARK
	Get menu item key
	SET MENU ITEM KEY
	DISABLE MENU ITEM
	ENABLE MENU ITEM
	APPEND MENU ITEM
	INSERT MENU ITEM
	DELETE MENU ITEM

	Messages
	MESSAGES OFF
	MESSAGES ON
	ALERT
	CONFIRM
	Request
	MESSAGE
	GOTO XY

	Named Selections
	Named Selections
	COPY NAMED SELECTION
	CUT NAMED SELECTION
	USE NAMED SELECTION
	CLEAR NAMED SELECTION

	Object Properties
	Object Properties
	FONT
	FONT SIZE
	FONT STYLE
	ENABLE BUTTON
	DISABLE BUTTON
	BUTTON TEXT
	SET FORMAT
	SET FILTER
	SET CHOICE LIST
	SET ENTERABLE
	SET VISIBLE
	SET COLOR
	SET RGB COLOR

	Obsolete commands
	SEARCH BY INDEX
	SORT BY INDEX
	ON SERIAL PORT CALL

	On a Series
	On a Series
	Sum
	Average
	Min
	Max
	Std deviation
	Variance
	Sum squares

	Operators
	Operators
	String Operators
	Numeric Operators
	Date Operators
	Time Operators
	Comparison Operators
	Logical Operators
	Picture Operators
	Bitwise Operators

	Printing
	REPORT
	PRINT LABEL
	PRINT SELECTION
	Printing page
	BREAK LEVEL
	ACCUMULATE
	Subtotal
	Level
	PRINT RECORD
	PAGE SETUP
	PRINT SETTINGS
	SET PRINT PREVIEW
	PRINT FORM
	PAGE BREAK

	Pictures
	Pictures
	COMPRESS PICTURE
	LOAD COMPRESS PICTURE FROM FILE
	COMPRESS PICTURE FILE
	SAVE PICTURE TO FILE
	Picture size
	PICTURE PROPERTIES
	PICTURE LIBRARY LIST
	GET PICTURE FROM LIBRARY
	SET PICTURE TO LIBRARY
	REMOVE PICTURE FROM LIBRARY

	Process (Communications)
	Semaphore
	CLEAR SEMAPHORE
	CALL PROCESS
	GET PROCESS VARIABLE
	SET PROCESS VARIABLE
	VARIABLE TO VARIABLE

	Process (User Interface)
	HIDE PROCESS
	SHOW PROCESS
	BRING TO FRONT
	Frontmost process

	Processes
	Processes
	New process
	Execute on server
	DELAY PROCESS
	PAUSE PROCESS
	RESUME PROCESS
	Current process
	Process state
	PROCESS PROPERTIES
	Process number
	Count users
	Count tasks
	Count user processes

	Queries
	QUERY BY EXAMPLE
	QUERY
	QUERY SELECTION
	QUERY BY FORMULA
	QUERY SELECTION BY FORMULA
	SET QUERY DESTINATION
	SET QUERY LIMIT
	ORDER BY
	ORDER BY FORMULA

	Record Locking
	Record Locking
	READ WRITE
	READ ONLY
	Read only state
	LOAD RECORD
	UNLOAD RECORD
	Locked
	LOCKED ATTRIBUTES

	Records
	DISPLAY RECORD
	CREATE RECORD
	DUPLICATE RECORD
	Modified record
	SAVE RECORD
	DELETE RECORD
	Records in table
	Record number
	GOTO RECORD
	Sequence number
	About Record Numbers
	PUSH RECORD
	POP RECORD
	Using the Record Stack

	Relations
	Relations
	AUTOMATIC RELATIONS
	RELATE ONE
	RELATE MANY
	CREATE RELATED ONE
	SAVE RELATED ONE
	OLD RELATED ONE
	SAVE OLD RELATED ONE
	OLD RELATED MANY
	RELATE ONE SELECTION
	RELATE MANY SELECTION

	Resources
	Resources
	Resources and 4D Insider: an Example
	Open resource file
	Create resource file
	CLOSE RESOURCE FILE
	RESOURCE TYPE LIST
	RESOURCE LIST
	STRING LIST TO ARRAY
	ARRAY TO STRING LIST
	Get indexed string
	Get string resource
	SET STRING RESOURCE
	Get text resource
	SET TEXT RESOURCE
	GET PICTURE RESOURCE
	SET PICTURE RESOURCE
	GET ICON RESOURCE
	GET RESOURCE
	SET RESOURCE
	Get resource name
	SET RESOURCE NAME
	Get resource properties
	SET RESOURCE PROPERTIES
	DELETE RESOURCE

	Selection
	ALL RECORDS
	Records in selection
	DELETE SELECTION
	Selected record number
	GOTO SELECTED RECORD
	FIRST RECORD
	NEXT RECORD
	LAST RECORD
	PREVIOUS RECORD
	Before selection
	End selection
	DISPLAY SELECTION
	MODIFY SELECTION
	APPLY TO SELECTION
	REDUCE SELECTION
	SCAN INDEX
	ONE RECORD SELECT

	Sets
	Sets
	CREATE EMPTY SET
	CREATE SET
	USE SET
	ADD TO SET
	REMOVE FROM SET
	CLEAR SET
	Is in set
	Records in set
	SAVE SET
	LOAD SET
	DIFFERENCE
	INTERSECTION
	UNION
	COPY SET

	String
	String
	Num
	Position
	Substring
	Length
	Ascii
	Char
	Character Reference Symbols
	Uppercase
	Lowercase
	Change string
	Insert string
	Delete string
	Replace string
	Mac to Win
	Win to Mac
	Mac to ISO
	ISO to Mac

	Structure Access
	Structure Access
	Count tables
	Count fields
	Table name
	Field name
	Table
	Field
	GET FIELD PROPERTIES
	SET INDEX

	Subrecords
	CREATE SUBRECORD
	DELETE SUBRECORD
	ALL SUBRECORDS
	Records in subselection
	APPLY TO SUBSELECTION
	FIRST SUBRECORD
	LAST SUBRECORD
	NEXT SUBRECORD
	PREVIOUS SUBRECORD
	Before subselection
	End subselection
	ORDER SUBRECORDS BY
	QUERY SUBRECORDS

	System Documents
	System Documents
	Open document
	Create document
	Append document
	CLOSE DOCUMENT
	COPY DOCUMENT
	MOVE DOCUMENT
	DELETE DOCUMENT
	Test path name
	CREATE FOLDER
	VOLUME LIST
	VOLUME ATTRIBUTES
	FOLDER LIST
	DOCUMENT LIST
	Document type
	SET DOCUMENT TYPE
	MAP FILE TYPES
	Document creator
	SET DOCUMENT CREATOR
	GET DOCUMENT PROPERTIES
	SET DOCUMENT PROPERTIES
	Get document size
	SET DOCUMENT SIZE
	Get document position
	SET DOCUMENT POSITION

	System Environment
	Screen height
	Screen width
	Count screens
	SCREEN COORDINATES
	SCREEN DEPTH
	SET SCREEN DEPTH
	Menu bar screen
	Menu bar height
	FONT LIST
	Font name
	Font number
	System folder
	Temporary folder
	Current machine
	Current machine owner
	Gestalt

	Table
	DEFAULT TABLE
	Current default table
	INPUT FORM
	OUTPUT FORM
	Current form table

	Transactions
	Using Transactions
	START TRANSACTION
	VALIDATE TRANSACTION
	CANCEL TRANSACTION
	In transaction

	Triggers
	Triggers
	Database event
	Trigger level
	TRIGGER PROPERTIES

	User Interface
	BEEP
	PLAY
	Get platform interface
	SET PLATFORM INTERFACE
	SET TABLE TITLES
	SET FIELD TITLES
	Shift down
	Caps lock down
	Windows Ctrl down
	Windows Alt down
	Macintosh command down
	Macintosh option down
	Macintosh control down
	GET MOUSE
	Pop up menu
	POST KEY
	POST CLICK
	POST EVENT
	GET HIGHLIGHT
	HIGHLIGHT TEXT
	SET CURSOR
	Last object
	REDRAW
	INVERT BACKGROUND

	Users and Groups
	EDIT ACCESS
	CHANGE ACCESS
	CHANGE PASSWORD
	Validate password
	Current user
	User in group
	DELETE USER
	Is user deleted
	GET USER LIST
	GET USER PROPERTIES
	Set user properties
	GET GROUP LIST
	GET GROUP PROPERTIES
	Set group properties

	Variables
	SAVE VARIABLES
	LOAD VARIABLES
	CLEAR VARIABLE
	Undefined

	Web Server
	Web Services, Overview
	Web Services, Configuration
	Web Services, Your First Time (Part I)
	Web Services, Your First Time (Part II)
	Web Services, Web Connection Processes
	On Web Connection Database Method
	Web Services, HTML Support
	Web Services, HTML and Javascript Encapsulation
	The Text Parameter Passed to 4D Methods Called via URLs
	START WEB SERVER
	STOP WEB SERVER
	SET WEB TIMEOUT
	SET WEB DISPLAY LIMITS
	SET HTML ROOT
	SEND HTML FILE
	CHANGE WEB LICENSE

	Windows
	Managing Windows
	Open window
	Window Types
	Open external window
	SHOW WINDOW
	HIDE WINDOW
	CLOSE WINDOW
	ERASE WINDOW
	REDRAW WINDOW
	DRAG WINDOW
	Get window title
	SET WINDOW TITLE
	HIDE TOOL BAR
	SHOW TOOL BAR
	WINDOW LIST
	Window kind
	Window process
	GET WINDOW RECT
	SET WINDOW RECT
	Frontmost window
	Next window
	Find window
	MAXIMIZE WINDOW
	MINIMIZE WINDOW

	Error Codes
	Syntax Errors
	Database Engine Errors
	Network Components Errors
	OS File Manager Errors
	OS Memory Manager Errors
	OS Printing Manager Errors
	OS Resource Manager Errors
	SANE NaN Errors
	OS Sound Manager Errors
	OS Serial Ports Manager Errors
	MacOS System Errors
	Testing the locked status of the data file

	ASCII Codes
	ASCII Codes
	ASCII Codes 0..63
	ASCII Codes 64..127
	ASCII Codes 128..191
	ASCII Codes 192..255
	Function Key Codes

	Command Syntax
	Command Syntax by Name

	Constants
	4D Environment
	ASCII Codes
	BLOB
	Clipboard
	Colors
	Communications
	Database Engine
	Database Events
	Date Display Formats
	Days and Months
	Events (Modifiers)
	Events (What)
	Expressions
	Field and Variable Types
	Find window
	Font Styles
	Form Events
	Function Keys
	Hierarchical Lists
	ISO Latin Character Entities
	Math
	Open window
	Picture Display Formats
	Platform Interfaces
	Platform Properties
	Process state
	Query Destinations
	Resources Properties
	SCREEN DEPTH
	SET RGB COLOR
	Standard System Signatures
	TCP Port Numbers
	Test path name
	Time Display Formats
	Window kind

	Command Index

